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Abstract The strain gradient elasticity theory is

applied to the solution of a mode III crack in an elastic

layer sandwiched by two elastic layers of infinite

thickness. The model includes volumetric and surface

strain gradient characteristic length parameters. Both

the near-tip asymptotic stresses and the crack dis-

placement are obtained. Due to stain gradient effects,

the magnitudes of the stress ahead of the crack tip are

significantly higher than those in the classical linear

elastic fracture mechanics. When the gradient param-

eters reduce to sufficiently small, all results reduce to

the conventional linear elastic fracture mechanics

results. In addition to the single crack in the finite

layer, the solution and the results for two collinear

cracks are also established and given.

Keywords Strain gradient elasticity � Layered
structure � Anti-plane fracture � Crack tip field �
Collinear crack

1 Introduction

Materials at small scales may have significant differ-

ent behaviours from their bulks. Essential, they show

strong size effect that has been observed in experi-

mental studies. Fleck et al. (1994) observed that the

normalized torsion hardening of thin copper wires

increases significantly as the wire diameter decreases

to below * 100 microns. Stolken (1997) observed a

significant increase in the normalized bending hard-

ening of a beam when its thickness decreases to below

a few tens microns. Micro- and nano-indentations also

suggest that the measured indentation hardness of

metals and ceramics can be double to triple as the

width of the indent decreases (Ma and Clarke 1995;

Poole et al. 1996; McElhaney et al. 1998). Lam et al.

(2003) found that the normalized rigidity of micron-

sized beams exhibited an inverse squared dependence

on the beam’s thickness. A micro-cantilever experi-

ment also confirmed the size dependence of the

stiffness of the material (McFarland and Colton

2005). In the recent years, several experimental and

computational studies (Fang et al. 2011; Zeng et al.

2016; Thevamaran et al. 2016) reported that a novel
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class of materials with gradients nanostructures

exhibited a pronounced the strain gradient. These

studies represent the latest progress of strain gradient

theory and phenomena.

Several theories have been proposed to account for

the size effect of solids at small scales. The most

classic well-known theories are non-local elasticity

theory, couple stress theory and strain gradient theory.

In particular, strain gradient effects of materials

become important near a crack tip because of the

dramatic change of strain gradient ahead of the crack

front. A few studies related to a crack in infinite solids

were conducted based on gradient elasticity theories.

The pioneering works are gradient elasticity with anti-

plane shearing of cracks that account for only two

material characteristic length constants (these are the

volumetric and surface strain gradients) (Vardoulakis

et al. 1996). Exadaktylos et al. (1996) and subse-

quently Exadaktylos (1998) studied the mode I strain

gradient fracture. Paulino et al. (2003) and Chan et al.

(2008) applied gradient elasticity theory to mode III

crack problems in functionally graded materials for

cracks that are perpendicular and parallel to the

material gradation. Fannjiang et al. (2002) employed a

hyper-singular integral–differential equation technol-

ogy to solve the mode III crack problem basic on strain

gradient elasticity theory. Some interesting informa-

tion related to dislocation based-gradient elastic

fracture mechanics for the anti-plane crack problem

is discussed by Mousavi and Aifantis (2005). An anti-

plane analysis of an infinite plane with multiple cracks

based on strain gradient theory was recently carried

out by Karimipour and Fotuhi (2017). Very recently,

Joseph et al. (2018) studied an infinite medium with a

single crack. However, the nature of the stress at the

crack tip of they obtained follows the traditional linear

elastic fracture mechanics that against most available

strain gradient fracture mechanics solutions. Analysis

of strain gradient fracture poses significant challeng-

ing therefore numerical method such as finite element

method has been developed by Wei (2006).

On the other hand, understanding the cracking

behavior of multilayered composite materials is crit-

ical in understanding their strengths. Fracture mechan-

ics studies of multilayered composite materials based

on traditional elasticity theory have been carried out

extremely. Strain gradient fracture of multilayered

composite materials, however, is very rare. To the

authors’ knowledge, most of the strain gradient related

fracture studies have been limited to a homogeneous

infinite medium. This paper establishes a general

approach to investigate the anti-plane (mode III)

fracture of an elastic layer sandwiched by two elastic

layers with strain gradient effects. Both a single crack

and a pair of collinear cracks are studied. The

objective is to numerically estimate the crack dis-

placement and the stresses near the crack tip to show

the effects of material strain gradient and the finite

layer thickness. A summary of the elastic strain

gradient theory and the problem description are

presented in Sect. 2. The solution of the crack problem

through the hypersingular integral equation is given in

Sect. 3. Important results for the crack displacement

and the crack tip stresses are given in Sect. 4 and the

conclusions are summarized in Sect. 5.

2 Theory background for the anti-plane

deformation with strain gradient effects

The constitutive equations and theoretical formula-

tions for the anti-plane deformation of strain gradient

elastic materials approach considered here are similar

to Vardoulakis et al. (1996) and Exadaktylos (1998)

that consider two material gradient parameters that are

responsible for material volumetric and surface strain

gradient terms. Application and validation of this

strain gradient theory have been confirmed by Gian-

nakopoulos and Stamoulis (2007).

Figure 1 shows a crack of length 2a placed at the

mid plane of a strain gradient layer with thickness

(height) 2h and sandwiched by two strain gradient

layers of infinite thickness. We consider the anti-plane

problem such that the only non-vanishing displace-

ment component is along the z axis and is denoted as

2a

2h

x

y

Fig. 1 A crack in a strain gradient layer sandwiched by two

strain gradient layers (the strain gradients are in x and

y directions)
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w. According to the gradient elasticity theory, the

stresses and couple stresses derived from the consti-

tutive equations of gradient elasticity with surface

energy are given as (Chan et al. 2008; Paulino et al.

2003; Vardoulakis et al. 1996):

rxz ¼ G
ow

ox
� l2r2 ow

ox

� �
; ryz ¼ G

ow

oy
� l2r2 ow

oy

� �
;

ð1aÞ

lxzx ¼ Gl2
o2w

ox2
; lxzy ¼ Gl2

o2w

oxoy
; ð1bÞ

lyzx ¼ G �l0
ow

ox
þ l2

o2w

oxoy

� �
;

lyzy ¼ G �l0
ow

oy
þ l2

o2w

oy2

� � ð1cÞ

Here r2 ¼ o2=ox2 þ o2=oy2, l and l0 are the volumet-

ric and surface material characteristic lengths, respec-

tively, G is the shear modulus, r is the stress tensor,

and l is the couple stress tensor, l, l0 are material

lengths related to volume and surface energy, respec-

tively, restricted (in order for the strain energy density

to be positive definite) such that �1\l0=l\1 (Ex-

adaktylos et al. 1996; Vardoulakis et al. 1996).

The equilibrium equation remains the same as the

classical one and is orxz=oxþ oryz=oy ¼ 0. This can

be expressed in terms of the displacement component

w with the help of Eqs. (1a)–(1c) as

o2w

ox2
þ o2w

oy2

� �
� l2

o4w

ox4
þ 2

o4w

ox2oy2
þ o4wz

oy4

� �
¼ 0

ð2Þ

The general solution of the fourth order differential

Eq. (2) may be represented as; wðx; yÞ ¼ wcðx; yÞ þ
wgðx; yÞ (Mousavi and Aifantis 2005), where wc is the

general solution of the harmonic equation o2w=ox2 þ
o2w=oy2 ¼ 0 and wg is a particular solution of Eq. (2).

Due to symmetry, only y C 0 part of the layered

material needs to be considered. The application of

Fourier transform gives the solution of harmonic

equation as

wcðx; yÞ ¼ 1

2p

Z1

�1

AðsÞe� sj jy þ CðsÞe sj jy� �
e�isxds:

ð3aÞ

A particular solution of Eq. (2) can be given as

wgðx; yÞ ¼ 1

2p

Z1

�1

BðsÞe� s1j jy þ DðsÞe s1j jy� �
e�isxds:

ð3bÞ

where s1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ð1=l2Þ

p
. Combining Eqs. (3) and

(4) gives the general solution of Eq. (2):

wðx; yÞ ¼ 1

2p

Z1

�1

AðsÞe� sj jy þ BðsÞe� s1j jy�

þCðsÞe sj jy þ DðsÞe s1j jy�
e�isxds:

ð4Þ

The constants A(s), B(s), C(s) and D(s) are to be

determined from the boundary conditions of the prob-

lem. For the purpose of the following analysis, the shear

stress ryzðx; yÞ from Eqs. (1b) and (4) is written as

ryzðx; yÞ ¼ � G

2p

Z 1

�1
sj j AðsÞe� sj jy � CðsÞe sj jy� �

e�isxds;

ð5Þ

and the couple stress lyzyðx; yÞ from Eqs. (1f) and (4)

is written as

lyzy ¼
Gl

0

2p

Z1

�1

sj jAðsÞe� sj jy þ s1j jBðsÞe� s1j jy

� sj jCðsÞe sj jy � s1j jDðsÞe s1j jy

2
4

3
5e�isxds

þGl2

2p

Z1

�1

AðsÞe� sj jys2 þ BðsÞe� s1j jys21þ

CðsÞe sj jys2 þ DðsÞe s1j jys21

2
4

3
5e�isxds:

ð6Þ

Applying the same to the sandwiching layers (the

outer layers) to get

w2ðx; yÞ ¼
1

2p

Z1

�1

EðsÞe� sj jy þ FðsÞe� s2j jy� �
e�isxds:

ð7Þ

where s2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ð1=l22Þ

p
. The constants E(s) and

F(s) are to be determined from the boundary
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conditions of the problem. For the purpose of the

following analysis, the shear stress ryzðx; yÞ from

Eqs. (1b) and (7) is written as

s2yzðx; yÞ ¼ �G2

2p

Z 1

�1
sj jEðsÞe� sj jye�isxds; ð8Þ

and the couple stress lyzyðx; yÞ from Eqs. (1f) and (4)

is written as

l2yzy ¼
G2l

0
2

2p

Z1

�1

sj jEðsÞe� sj jyþ s2j jFðsÞe� s2j jy� �
e�isxds

þG2l
2
2

2p

Z1

�1

EðsÞe� sj jys2þFðsÞe� s2j jys22
� �

e�isxds:

ð9Þ

The subscript 2 has been used to distinguish the outer

layers from the middle layer.

3 Solution of the crack problem

The transmission conditions for ideal interface imply

continuity of the stress, couple stress, displacements

and rotations (Piccolroaz et al. 2012). From

ryzðx; hÞ ¼ s2yzðx; hÞ we get:

AðsÞe� sj jh � CðsÞe sj jh ¼ G2

G1

EðsÞe� sj jh ð10Þ

From lyzyðx; hÞ ¼ l2yzyðx; hÞ we get:

l
0 sj jAðsÞe� sj jh þ s1j jBðsÞe�h s1j j

� sj jCðsÞe sj jh � s1j jDðsÞeh s1j j

2
4

3
5

þ l2
AðsÞe� sj jhs2 þ BðsÞe�h s1j js21þ

CðsÞe sj jhs2 þ DðsÞeh s1j js21

2
4

3
5

¼ G2

G
l
0

2 sj jEðsÞe� sj jh þ s2j jFðsÞe�h s2j j� �

þ G2

G
l22 EðsÞe� sj jhs2 þ FðsÞe�h s2j js22
� �

ð11Þ

The displacement and its rotation are also continuous

across the interface. Thus,

AðsÞe� sj jh þ BðsÞe� s1j jh þ CðsÞe sj jh þ DðsÞe s1j jh

¼ EðsÞe� sj jh þ FðsÞe� s2j jh: ð12Þ

�AðsÞse� sj jh � BðsÞs1e� s1j jh þ CðsÞse sj jh

þ DðsÞs1e s1j jh

¼ �EðsÞse� sj jh � FðsÞs2e� s2j jh: ð13Þ

Due to symmetry, the non-classical boundary

condition on the cracked plane of the medium is

lyzyðx; 0Þ ¼ 0 for any value of x [derived from the

variational principal (Chan et al. 2008; Paulino et al.

2003)]. Therefore

l0
sj jAðsÞ þ s1j jBðsÞ

� sj jCðsÞ � s1j jDðsÞ

" #
þ l2

AðsÞs2 þ BðsÞs21þ
CðsÞs2 þ DðsÞs21

" #

¼ 0

ð14Þ

As usually in the fracture mechanics analysis, the

crack surfaces are assumed to be subjected to an

applied anti-plane shear stress pðxÞ such that the

following mixed boundary conditions on the y = 0

plane hold [these boundary conditions were also used

by Paulino et al. (2003) and Chan et al. (2008)]:

syðx; 0Þ ¼ �p; xj j\a ð15aÞ

wðx; 0Þ ¼ 0; xj j � a ð15bÞ

3.1 The singular integral equation

The six boundary conditions, Eqs. (10)–(15) are

sufficient for determining the full-field solution of

the problem. For this, we introduce a discontinuity

function g(x) along the cracked plane according to

gðxÞ ¼ 2
owðx; 0Þ

ox
: ð16Þ

By this define, the continuity condition for the

displacement on the y = 0 plane requires that gðxÞ ¼
0 for xj j � a and

R a
�a

g xð Þdx ¼ 0, which is the single-

value condition.

Substituting Eq. (4) into Eq. (16) and with Fourier

inversion, a relationship between A(s), B(s), C(s) and

D(s) can be obtained:

AðsÞ þ BðsÞ þ CðsÞ þ DðsÞ ¼ i

2s

Z a

�a

gðrÞeisrdr;

ð17Þ

The system of six equations, Eqs. (10)–(14) and (16),

can be used to express A(s), B(s), C(s) D(s), E(s) and
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F(s), in terms of the single unknown function g(x). In

particular, suppose the expressions for A(s) and C(s)

are, respectively,

AðsÞ ¼ AðsÞ i

2s

Z a

�a

gðrÞeisrdr ð18aÞ

and

CðsÞ ¼ CðsÞ i

2s

Z a

�a

gðrÞeisrdr ð18bÞ

Then the shear stress on the cracked obtained with the

submission of Eqs. (18a) and (18b) into Eq. (5) is

ryzðx; 0Þ ¼ G

Z a

�a

Rðx; rÞgðrÞdr ð19Þ

where the integral kernel Rðx; rÞ is

Rðx; rÞ ¼ lim
y!þ0

i

2p

Z 1

�1

1

2

sj j
s

�AðsÞe� sj jy þ CðsÞe sj jy� �

eisðr�xÞds: ð20Þ

or

Rðx; rÞ ¼ lim
y!þ0

1

2p

Z 1

0

AðsÞe� sj jy � CðsÞe sj jy� �
sin½sðr � xÞ�ds:

ð21Þ

In order to identify the asymptotic behaviour of

AðsÞ � CðsÞ for s at infinity, one can consider a crack

of length 2a at the infinite medium of the same

material of the layer. This is, one considers h to be

equal to infinity. After examining, it is found that for

large values of s, CðsÞ andDðsÞ become vanishing and

AðsÞ approaches to 1þ l2s2 þ l0

2
sj j � l0

2l

� �2
. This func-

tion is denoted as K0ðsÞ in the following analysis. In

fact, the expression of K0ðsÞ has been obtained

previously by Chan et al. (2008) and Paulino et al.

(2003). The asymptotic analysis allowing splitting of

the integral kernel Rðx; rÞ into two parts so that the

stress of Eq. (18) can be re-written as:

ryzðx; 0Þ ¼ G

Z a

�a

Xðx; rÞgðrÞdr

þ G

Z a

�a

R1ðx; rÞgðrÞdr ð22Þ

where the regular kernel is

Xðx; rÞ ¼ 1

2p

Z 1

0

AðsÞ � CðsÞ � K0ðsÞ
� �

sin½sðr � xÞ�ds;

ð23Þ

and the singular kernel is

R1ðx; rÞ ¼ 1

2p

Z 1

0

1þ l2s2 þ l0

2
s� l0

2l

	 
2
" #

sin½sðr � xÞ�ds:

ð24Þ

The regular kernel, Eq. (23) can be evaluated by

standard numerical integral technique. The singular

kernel, Eq. (24) can be evaluated by hypersingular

integral equation technique of Paulino et al. (2003)

and Chan et al. (2003). As a result of such procedure,

we get

ryzðx; 0Þ ¼ �Gl2

p

Z a

�a

gðrÞ
ðr � xÞ3

dr þ
G 1� ½l0=ð2lÞ�2
� �

2pZ a

�a

gðrÞ
r � x

dr

þ Gl0

4
g0ðxÞ þ G

Z a

�a

Xðx; rÞgðrÞdr

ð25Þ

Equation (25) provides the expression for syðx; 0Þ
outside as well as inside the crack. In the case of inside

the crack, application of the crack face stress boundary

condition, Eq. (15a) will yield the function g(x).

Details will be given in following subsection

3.2 Numerical solution of the singular integral

equation

In the case of inside the crack, applying the crack face

stress boundary condition to Eq. (25) gives

�ðl=aÞ2

p

Z 1

�1

gðrÞ
ðr � xÞ3

dr þ 1� ½l0=ð2lÞ�2

2p

Z a

�a

gðrÞ
r � x

dr

þ l0=a

4
g0ðxÞ þ a

Z 1

�1

Xðx; rÞgðrÞdr

¼ � p

G

ð26Þ

Here and in the following, the notations x ¼ x=a and

r ¼ r=a are used. Equation (26) is a hypersingular

integral equation. According to Chan et al. (2008) and

Paulino et al. (2003), the solution of g(r) can be

expressed in the following form:
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gðrÞ ¼
X1
m¼1

CmUmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ð27Þ

in which Um is the Chebyshev polynomial of the

second kind, UmðxÞ ¼ sin½ðmþ1Þar cosðxÞ�ffiffiffiffiffiffiffiffi
1�x2

p , and Cm are

unknowns to be evaluated. It is observed that the

single-value condition of g(x), Eq. (15b), is identically

satisfied by Eq. (27). After substituting Eq. (27),

truncated with the first M terms, into Eq. (26),

following the same procedure of Chan et al. (2008)

and Paulino et al. (2003), and through expansions and

integrals of Chebyshev polynomials, which is listed in

‘‘Appendix’’ (Wei 2006), it can be seen that

� ðl=aÞ2

4ð1� x2Þ
XM
m¼1

Cm mðmþ 1ÞUmþ1ðxÞ½

�ðm2 þ 3mþ 2ÞUm�1ðxÞ
�

� 1� ½l0=ð2lÞ�2

2

XM
m¼1

CmTmþ1ðxÞ

� l0=a

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
XM
m¼1

ðmþ 1ÞTmþ1ðxÞCm

þ a
XM
m¼1

CmVmðxÞ ¼ � p

G

ð28Þ

where Tm is the Chebyshev polynomial of the first kind

TmðxÞ ¼ cos½mar cosðxÞ�, and Vm is

VmðxÞ ¼
Z 1

�1

Xðx; rÞUmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dr; ð29Þ

For the case of infinite layer sandwiched layer

thickness, the regular integral kernel Xðx; rÞ vanishes
and Eq. (28) becomes:

� ðl=aÞ2

4ð1� x2Þ
X1
m¼1

Cm mðmþ 1ÞUmþ1ðxÞ½

�ðm2 þ 3mþ 2ÞUm�1ðxÞ
�

� 1� ½l0=ð2lÞ�2

2

X1
m¼1

CmTmþ1ðxÞ

� l0=a

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
X1
m¼1

ðmþ 1ÞTmþ1ðxÞCm

¼ � p

G

ð30Þ

The simplest method for solving the functional

Eq. (28) is using an appropriate collocation in x. This

is, we used M allocation points, x = x1, x = x2,…,

x = xM, so that Eq. (28) is satisfied for all allocation

points. Therefore, Eq. (28) will yields M linear alge-

braic equations:

� ðl=aÞ2

4ð1� x2Þ
XM
m¼1

Cm mðmþ 1ÞUmþ1ðxmÞ½

�ðm2 þ 3mþ 2ÞUm�1ðxmÞ
�

� 1� ½l0=ð2lÞ�2

2

XM
m¼1

CmTmþ1ðxmÞ

� l0=a

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
XM
m¼1

ðmþ 1ÞTmþ1ðxmÞCm

þ a
XM
m¼1

CmVmðxmÞ ¼ � p

G
; m ¼ 1; 2; . . .;M

ð31Þ

The solution of Eq. (28) will give C1, C2,…, CM. In

this paper, the allocation points are chosen according

to:

xm ¼ cos
ðm� 0:5Þp

M

� �
; m ¼ 1; 2; . . .;M ð32Þ

After evaluating Cm from Eq. (31), the displace-

ment field can be calculated from Eq. (4) since A(s),

B(s), C(s) and D(s) have been expressed in terms of

g(x). The associated stress can be obtained from the

constitutive equations of Eqs. (1a)–(1c). Thus, the full

field solution is obtained.

3.3 Fracture mechanics paramaters

Of particular interest are the crack opening displace-

ment and the crack tip stress state. The displacement

jump across the crack can be evaluated from

Dwðx; 0Þ ¼
R x
�a

gðrÞdr. With the substituting of

Eq. (27), we get

Dwðx; 0Þ ¼ a
XM
m¼1

Cm

sin½ðmþ 2Þarcosðx=aÞ�
2ðmþ 2Þ � sin½m arcosðx=aÞ�

2m

	 

;

xj j\a:

ð33Þ

Due to symmetry, the displacement on the upper

surface of the crack w(x,0) is half of Dwðx; 0Þ. The
maximum crack face displacement appears at x = 0 on
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the upper surface of the crack and is

wð0; 0Þ ¼ Dwð0;0Þ
2

¼ �a
PM
m¼1

Cm
sinðm p=2Þ

4
1

mþ2
þ 1

m

� �
.

For gradient elasticity theory, sy have a strong

singularity, which can not be described by conven-

tional linear elasticity fracture mechanics. Note that

the expression for syðx; 0Þ is valid for xj j\a as well as

xj j[ a. Equation (25) provides the expression for

syðx; 0Þ outside as well as inside the crack. With the

substitution of the density function (27) and again

through expansions of Chebyshev polynomials (Chan

et al. 2008), the stress near the crack tip is found to be

(neglect the secondary terms):

ryzðx; 0Þ ¼ �
G 1� ½l1=ð2lÞ�2
� �

2X1
m¼1

Cm x� xj j
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p	 
mþ1

þ Gðl=aÞ2

2

X1
m¼1

Cmðmþ 1Þ

x� xj j
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p	 
m�1

m 1� xj jffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
	 
2

þ
x� xj j

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� �3
2
64

3
75

ð34Þ

The highest singularity is ðx� 1Þ3=2. This is totally

different from the conventional linear elasticity frac-

ture mechanics result, which gives ðx� 1Þ1=2
singularity.

Because the stresses are singular at the crack tips, it

is necessary to study the intensity of the stress

concentration near the crack front. For this, it is

important to recognize that the stresses at the crack tip

have (x2 - a)-3/2 singularity when x ? a? or

x ? - a-. Paulino et al. (2003) and Chan et al.

(2008) defined the generalized stress intensity factor

KIII according to

KIIIð�aÞ ¼ lim
x!�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðxþ aÞ

p
ðxþ aÞryzðx; 0Þ

ð35aÞ

and

KIIIðaÞ ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
ðx� aÞryzðx; 0Þ ð35bÞ

and obtained the expressions as follows:

KIIIð�aÞ ¼
ffiffiffiffiffiffi
pa

p

2
G
X1
m¼1

ð�1Þmðmþ 1ÞC1m ð36aÞ

and

KIIIðaÞ ¼
ffiffiffiffiffiffi
pa

p

2
G
X1
m¼1

ðmþ 1ÞC1m ð36bÞ

4 The collinear crack problem

In formulating the problem, no conditions of symme-

try with respect to x = 0 were assumed regarding the

crack geometry and the external loads. Thus, the

integral Eq. (21) derived in previous section is valid

basically for any number of collinear cracks defined by

y = 0, bj\x\cj, j ¼ 1; . . .; nð Þ along the x-axis with

the additional single-value condition for each crack,

namely gjðxÞ ¼ 0 for xj j 62 ðbj; cjÞ and
R cj
bj
gjðxÞdx ¼ 0,

where j ¼ 1; . . .; nð Þ. The only change in the integral
equation would be in replacing the integral ð�a; aÞ by
the sum of the integrals Lj ¼ ðbj; cjÞ corresponding to
the collinear cracks, where j ¼ 1; . . .; nð Þ and aj ¼
ðcj�bjÞ=2 is the half length of the jth crack.

As an example, consider the case of two symmet-

rically located and symmetrically loaded collinear

cracks (Fig. 2). That is, one assumes b1 ¼ b,

c1 ¼ bþ 2a, b2 ¼ �ðbþ 2aÞ and c2 ¼ �b. The sin-

gular integral Eq. (26) becomes:

� l2

p

Z bþ2a

b

1

ðr � xÞ3
þ 1

ðr þ xÞ3

 !
gðrÞdr

þ 1� ½l0=ð2lÞ�2

2p

Z bþ2a

b

1

r � x
þ 1

r þ x

	 

gðrÞdr

þ l0

4
g0ðxÞ þ

Z bþ2a

b

X1ðx; rÞgðrÞdr ¼ � p

G

ð37Þ

where X1ðx; rÞ ¼ Xðx; rÞ � Xðx;�rÞ. The integral

Eq. (37) is solved under the single-value conditionR c

b
gðxÞdx ¼ 0. By normalizing the length parameters

according to x ¼ axþ aþ b and r ¼ ar þ aþ b, the
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integral Eq. (37) will be reduced to the following

standard form

� ðl=aÞ2

p

Z 1

�1

1

ðr � xÞ3
þ 1

r þ xþ 2 bþa
a

� �3
 !

gðrÞdr

þ 1� ½l0=ð2lÞ�2

2p

Z 1

�1

1

r � x
þ 1

r þ xþ 2 bþa
a

 !
gðrÞdr

þ l0=a

4
g0ðxÞ þ a

Z 1

�1

X1ðx; rÞgðrÞdr ¼ � p

G

ð38Þ

The solution of g has the same form as Eq. (27). With

the substitution of Eq. (27) and applying the integral

formulas of ‘‘Appendix’’, Eq. (38) can be reduced to

� ðl=aÞ2

4ð1� x2Þ
X1
m¼1

Cm

mðmþ 1ÞUmþ1ðxÞ � ðm2 þ 3mþ 2ÞUm�1ðxÞ
� �

þ ðl=aÞ2

4ð1� x2Þ
X1
m¼1

Cm

1

2
ðmþ 1Þ x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 1

q� �m�1

m 1� x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 1

p
 !2

þ
x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 1

ph i

ðx21 � 1Þ3=2

2
4

3
5

� 1� ½l0=ð2lÞ�2

2

X1
m¼1

CmTmþ1ðxÞ

� 1� ½l0=ð2lÞ�2

2

X1
m¼1

Cm x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � 1

q� �mþ1

� l0=a

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
X1
m¼1

ðmþ 1ÞTmþ1ðxÞCm

þa
X1
m¼1

CmVm1ðxÞ ¼ � p

G

ð39Þ

where x1 ¼ �xþ 2ðbþ aÞ=a and

Vm1ðxÞ ¼
Z 1

�1

Xðx; rÞ � Xðx;�rÞ½ �UmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dr;

ð40Þ

With the substitution of Eq. (23), it is found that

Vm1ðxÞ ¼
Z 1

�1

X2ðx; rÞUmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dr; ð41Þ

where

X2ðx; rÞ ¼
1

2p

Z 1

0

2 AðsÞ � CðsÞ � K0ðsÞ
� �

sinðsrÞ cosðsxÞds;

ð42Þ

Again, the integral Eq. (39) can be solved by using an

appropriate collocation in x.

5 Results and discussion

5.1 Convergence study

All results are given for a constant surface shear load

ryzðx; 0Þ ¼ �p0 on the crack faces. Firstly, the con-

vergence study for the normalized crack face dis-

placement is conducted for an infinite layer with

volumetric strain gradient only (l 6¼ 0 and l0 ¼ 0). The

value ofM required for a convergent result depends on

the relative value of strain gradient l to the crack length

parameter a. For example, if l/a = 0.1, a value of

M higher than 20 can give a result with negligible

error. However, if l/a downs to 0.00005, the value of

M for a convergent crack profile is higher than 300. If

l/a downs to 0.00001, a value of M higher than 600 is

required to give a convergent result. Despite the fact

that the convergence depends on the strain gradient

parameter, all calculations confirm that the results

converge as the number of allocation points

M increases.

5.2 A single layer

The crack face displacement profile for an infinite

medium (i.e., h � a) is plotted in Fig. 3 to show the

effect of the gradient parameter lwith choice of l0 ¼ 0.

It can be seen that the displacement considerably

decreases with the gradient parameter. The crack

profile corresponding to l = 0.2a obtained here is very

close to that given previously by Paulino et al. (2003).

As the surface strain gradient (l0) increase, the

displacement decreases monotonically. This means

that in comparison to the classical elasticity fracture

mechanics, strain gradient effect stiffens the crack.

Also as the gradient parameter become sufficiently

small (in current case, l=a� 0:001), the result is

y

b c-c
x

-b

h

h

Fig. 2 Two collinear cracks
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almost identical to the conventional linear elastic

fracture mechanics solution.

In order to further demonstrate the strain gradient

effect, it is necessary to evaluate the influence of

different values of parameter l0. Therefore, in Fig. 4,

the normalized crack face displacement is plotted as a

function of the normalized position. Results for ‘‘layer

height to crack length’’ ratio (h/a) equals to 1 and

infinity are presented. With the stress-free boundary

conditions on the layer surfaces, the crack face

displacement is significantly increased due to finite

layer thickness. This is especially obvious for higher

(negative) gradient parameter (l0) magnitude. This fact

suggests that contribution of surface energy on strain

gradient fracture is very important and may not be

omitted. Basically, under the region of the gradient

parameter considered, crack displacement decreases

with l0. In general, the effect of a negative l0 leads to a
more compliant crack. On the contrary, the effect of a

positive l0 leads to a stiffer crack. However, the

influence of positive l0 is apparently less significant

than the negative l0.
Since growth of a crack starts around its tips, it is

essential to know the stress near the crack tips. For this

consideration, the stresses at the right crack tip for

different l/a and l0=l values are obtained (the stresses at
the left crack tip are same but with an opposite sign) to

permit to assess the influence of the gradient param-

eters on the stress solutions. It is obvious from Fig. 5

that the magnitudes of the stresses increase as l/

a increases and vice versa, suggesting that the stresses

in strain gradient fracture are significantly larger than

the classical field. This trend observation is the same

as that made by Zhang et al. (1998) for an infinite

medium. Generally, the effect of strain gradient on the

crack in the finite layer is more significant than in the

infinite layer when the crack length is large enough

(e.g., a[ h). Generally, finite layer border tends to

enhance the stress level near the crack tip.

Crack tip stresses with both volumetric and surface

strain gradient (represented as l and l0, respectively)
are presented in Fig. 6 for h/a = 1. It should be

mentioned from the energy consideration that, depend

on the materials, the constant l1 may be positive or

negative but its magnitude can not excesses l

Normalized position, x on the crack surface

,tne
meclapsid

dezila
mro

N
w

(x
,0

)/(
ap

0/G
)

l/a=0.1

l/a=0.2

l/a=0.5

l/a=0.05

l/a less than 0.001 and Linear elastic fracture mechanics solution

Fig. 3 Crack surface displacement profiles in an infinite

medium under surface shear load ryzðx; 0Þ ¼ �p0 with choice

of l0 ¼ 0

Fig. 4 Crack surface displacement profiles for crack face

surface shear load ryzðx; 0Þ ¼ �p0 with choice of l/a = 0.2 for

different values of l0

sser ts
pit

kca rc
dezila

mro
N

Normalized position, x on the cracked plane

h=a

h=infinity

l/a=0.2
l/a=0.1

l/a=0.5

Fig. 5 Normalized stress syðx; 0Þ=p0 near the right crack tip for
surface shear load ryzðx; 0Þ ¼ �p0 with choice of l0 ¼ 0
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(Exadaktylos et al. 1996; Vardoulakis et al. 1996).

Therefore, the results are presented for both positive

and negative surface strain gradient material param-

eter l0 while maintaining the volumetric strain gradient

material parameter l as a constant 0.2a. It may be seen

that as the surface strain gradient l0 varies from

- 0.9l to 0, the stress level is considerably reduced.

Result for positive surface gradient is very close to that

for zero surface strain gradient. Therefore, the effect of

surface strain gradient is less prominent than volu-

metric strain gradient. The volumetric strain gradient

dominates the crack tip behaviour in strain gradient

fracture.

Some sample results for the problem of two

identical collinear cracks are also obtained when the

surface gradient parameter is not included and the

layer thickness is infinite. Figure 7 plots the crack

displacement profiles for l ¼ 0:2a and l ¼ 0:5a,

respectively. The crack displacements for the collinear

cracks are smaller than those for the single crack. The

collinear crack solution approach the single crack

solution when the crack space become large enough

(e.g., for b higher than 10a). In Fig. 8, the stresses near

the outer crack tip are plotted for selected values of

crack spacing. It can be seen that the crack level is

considerably enhanced if the two cracks become

closer. Thus, interaction of collinear cracks consider-

ably enhances the stress level at the crack tip. Once

again, it is found that if the crack space is sufficiently

large, effect of crack interaction becomes negligible

and the stresses at both crack tips are identical and

approach to the corresponding values of the single

crack solution.

5.3 Layered structures

Figure 9 displays variation of the crack surface

displacement with outer layer stiffness of a layered

medium for h/a = 1.0; l/a = 0.2 and l0 ¼ 0. The values

of the strain gradient l for the outer layers and the

middle layers are same. As expected, the structure

becomes stiffer and the crack surface displacement

reduces when the shear modulus of the outer layer

increases. The zero outer layer stiffness is related to a

crack in a single layer. On the other hand, the infinite

layer thickness corresponds to a single layer with its

top and bottom surfaces fixed so that the displace-

ments on its top and bottom surfaces are zero. Shown

in Fig. 10 are the stresses at the right crack tip for the

same conditions as for the Fig. 9. Apparently, the

outer layers provide a constraint to the central layer so

that the crack tip stresses are reduced. The higher the

values of the shear modulus of the outer layer are, the

lower the crack tip stresses.

Finally, Fig. 11 depicts the effect of the layer

thickness and strain gradient parameter on the stress

intensity factor. Similar to the conventional linear

elastic fracture mechanics, the magnitude of the stress

intensity factor decreases as the layer thickness

increases. Notice that whenG2/G = 1, the sandwiched

layer and the outer layers will have same material

properties and the problem becomes a crack in an

Fig. 6 Normalized stress syðx; 0Þ=p0 near the right crack tip for
surface shear load ryzðx; 0Þ ¼ �p0 with choice of l/a = 0.2 and

h = a for different values of l0

l/a=0.2, b=0.1a

, tne
meclapsid

dezi la
mro

N
w

(x
,0

)/(
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Normalized position, x on the crack surface

l/a=0.2, b=0.5a

l/a=0.2, b=2a

l/a=0.2, b=infinity

l/a=0.5, b=0.5a

l/a=0.5, b=0.1a

l/a=0.5, b=2a

l/a=0.5, b=infinity

Fig. 7 Crack surface displacement profiles in an infinite

medium with two collinear cracks under surface shear load

ryzðx; 0Þ ¼ �p0 with choice of l0 ¼ 0
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infinite medium. As a result the stress intensity factor

will show no dependence on the thickness of the

sandwiched layer when G2/G = 1. It is expected that

when the layer thickness becomes sufficiently (e.g., h/

a[ 3), all results will converge to the solutions of a

crack in an infinite medium. The results of Fig. 11 also

confirm that the normalized stress intensity factor

increase with the strain gradient parameter. This

observation coincides with the result of Paulino et al.

(2003).

6 Conclusion

A crack in a finite elastic layer sandwiched by two

elastic layers under anti-plane deformation has been

studied using strain gradient elasticity theory, which

involves volumetric and surface strain gradient mate-

rial constants. The theoretical framework and corre-

sponding computational implementation have been

presented. The crack is considered to be parallel to the

layer surface and is located at the center of the layer.

The present hypersingular integral equation approach

leads to a numerically tractable solution of the crack
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Normalized position, x on the cracked plane

b=infinity

b=2a

b=0.5a

b=0.1a

Fig. 8 Normalized stress syðx; 0Þ=p0 near the outer crack tip for
two collinear cracks in an infinite medium under surface shear

load ryzðx; 0Þ ¼ �p0 with choice of l = 0.2a and l0 ¼ 0

Fig. 9 Crack surface displacement profiles in a layered

medium under surface shear load ryzðx; 0Þ ¼ �p0 with choice

of h/a = 1.0; l/a = 0.2 and l0 ¼ 0
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Fig. 10 Normalized stress syðx; 0Þ=p0 near the right crack tip in
a layered medium under surface shear load ryzðx; 0Þ ¼ �p0 with

choice of h/a = 1.0; l/a = 0.2 and l0 ¼ 0

Fig. 11 Normalized stress intensity factor (left crack tip) in a

layered medium under surface shear load ryzðx; 0Þ ¼ �p0 with

choice of l0 ¼ 0 where K0 ¼ p0
ffiffiffiffiffiffi
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p

123

Fracture mechanics analysis of an anti-plane crack 517



displacement profile and the stresses near the crack tip.

In particular, when the gradient parameters are

sufficiently small, the results from the current analysis

model automatically reduce to the conventional linear

fracture mechanics solution. Parametric studies

including various strain gradient parameters and layer

thickness have been conducted and discussed. Natural

extensions of this research are the solution of an anti-

plane shear crack where the crack is perpendicular to

the layer border surface and the mode I and mode II

fracture problems.

The studies mentioned above are mostly limited to

the elastic fracture mechanics framework. Strain

gradient fracture may also be significant for structures

material with non-homogeneous interfaces at micro-

scale. In a series of studies, Wu et al. (Wu et al.

2016a, b) have explored the thermally induced fracture

of interface crack in bi-material structures; crack tip

field and crack extension in functionally graded

materials without piezoelectric effect (Shi et al.

2014) and with piezoelectric effect (Qiu et al. 2018),

and film/substrate structures with ferroelectric effect

(Wu et al. 2016a, b). Future research is clearly needed

in studying the more challenging case of strain

gradient plasticity fracture associated with the finite

crack problem in non-homogeneous micro-structures.
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Appendix

The following formulas (Chan et al. 2008; Fannjiang

et al. 2002; Paulino et al. 2003) are used in deriving the

hypersingular integral equations:

1
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Z 1
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1� r2

p
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� x� xj j
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