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Abstract This paper deals with the derivation of the

exact solutions for the static flexoelectric response of a

simply supported dielectric nano-beam subjected to

distributed mechanical and electrical loads. The

governing differential equations and the boundary

conditions are obtained based on the Gibbs free energy

for linear dielectrics considering the strain and the

electrical field gradients, and their conjugates in the

form of the higher order stresses and higher order

polarization fields. The trends and observations from

the current study are compared with the literature. The

electro-mechanical coupling observed from the cur-

rent model is compared for different electrical bound-

ary conditions. The polarization and the electric field

profiles across the thickness, developed due to the

direct effect are also presented. Due to the use of

gradient field energies, and a subsequent evaluation of

their conjugates, the size effects are better exhibited by

the current model than the models in the literature

derived without considering strain and electric field

gradients. The present study suggests that upon

considering strain gradient elasticity the sensitive

nature of flexoelectric nanosensors, nano energy

harvesters and nanoactuators is realized. The exact

solutions developed in this paper may be used as

benchmark solutions for further research on flexo-

electric solids.

Keywords Strain gradient elasticity � Nanobeam �
Flexoelectric solids � Exact solutions � Nanosensors

1 Introduction

Extensive research is carried out on the investigation

of electro-mechanical coupling in dielectric materials.

There exist numerous models based on continuum

modelling of the system to study the elastic response

of a dielectric body. The early continuummodels have

been postulated by Toupin (1956) and Mindlin (1968)

for an elastic dielectric body. One of the popular

dielectric materials exhibiting the electro-mechanical

coupling is the piezoelectric material. Such materials

generate an electric charge upon application of a

strain, and are deformed due to the applied electric

field. The structures usually studied for piezoelectric

effects have dimensions large enough to ignore the

effects of the strain gradient and electric field gradient

proposed in the model by Mindlin (1968). The

improvements in computational technology and micro

and nano-fabrication techniques have led to the

development of micro and nano electromechanical

systems. The gradient effects at the micro- and nano-

scale on the system response are compelling (Fleck

et al. 1994; Fleck and Hutchinson 1993, 1997, 2001).
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The phenomenon by virtue of which a dielectric

material develops electric polarization because of the

presence of strain gradient is called the direct flexo-

electric effect. On the other hand due to the converse

flexoelectric effect, a dielectric material undergoes

deformation upon application of electric field gradient.

Such flexoelectric effect is significant in the low-

dimensional dielectric structures (Maranganti et al.

2006).

Initially, the flexoelectric effects were theorized in

crystals by Mashkevich (1957). Further understanding

of the effect was provided by Kogan (1964) and Harris

(1965). With the continuum models by Mindlin in

place, the computation of the coupling coefficients

were accomplished based on experiments on various

dielectrics by Cross (2006) and Ma and Cross (2001).

Theoretically, these coefficients were estimated by

Sharma et al. (2007, 2010) and Yudin and Tagantsev

(2013). The huge disparity in theoretical and exper-

imental results opened a very attractive field of

research on material modelling.

Continuum models postulated for the electrome-

chanical coupled systems were further advanced for

flexoelectric systems, taking the surface and size

effects into consideration (Hu and Shen 2010; Shen

and Hu 2010). Using such models, the flexoelectric

response in different nanostructures have been inves-

tigated by Yan and Jiang (2013a, 2015), Ray

(2014, 2016), Liang et al. (2014, 2017), Zhang et al.

(2016) and Yang et al. (2015). For any continuum

body, the mechanical response to an applied load is

obtained as a solution of its governing differential

equations. This is also called the solution of the strong

form of the governing equations of the system, or the

exact solution of the system. Such exact solutions,

obtained without any a priori assumptions should be

the benchmark solutions for comparing the results

from approximate analytical and numerical methods,

which are based on simplified assumptions. Given the

infancy of the field, such benchmarks are essential for

flexoelectric structures. Analytical solutions for flex-

oelectric systems are available for the Euler–Bernoulli

cantilever beam (Liang et al. 2014; Yan and Jiang

2013b), Timoshenko dielectric beam (Zhang et al.

2016), simply supported beam (Ray 2014), dielectric

nano-rings (Yan 2017) and plates based on classical

plate theory (Yang et al. 2015). However, most of

these works have assumed a displacement field (Liang

et al. 2014; Zhang et al. 2016; Yang et al. 2015; Yan

and Jiang 2013b), or taken a uniform electric field

across the volume (Liang et al. 2014; Zhang et al.

2016; Yang et al. 2015; Yan and Jiang 2013b), or have

not considered the complete effects of the presence of

gradients (Ray 2014). Numerical solutions to these

models following the above mentioned assumptions

are also available using Finite Element Methods

(FEM) (Choi and Kim 2017), Meshfree methods

(Ray 2017; Abdollahi et al. 2014), Mixed-Finite

Element formulation (Mao et al. 2016). Moreover,

with the flexoelectric effect being linearly propor-

tional to the gradient effects, the full scope of the

flexoelectric effect cannot be realized in such formu-

lations. Considering the gradient effects, partially, an

exact solution has been proposed for a simply

supported beam by Ray (2014). This paper presented

the exact solutions for the dielectric nano-beam under

applied mechanical and electrical loads. However,

unlike the piezoelectric behavior, which exhibits

coupling between the strain and electric field, thereby

being energy conjugates of one other, the flexoelectric

behavior does not exhibit such symmetry. Since, the

strain gradients develop an electric field and electric

field gradient causes mechanical strain in a flexoelec-

tric body, the field gradients are not mutually conju-

gate to each other. The model presented by Ray (2014)

did not consider the energy conjugates of strain

gradient and electric field gradients for formulating

the constitutive relations. For micro- and nano-struc-

tures, where the gradients can be very high, consid-

eration of these gradients and gradient conjugates in

the energy functional is expected to exhibit a stronger

electromechanical coupling. The current paper is a

step towards the complete energy formulation of the

flexoelectric domains. The current model takes the

higher order stresses and higher order electric fields

into consideration while accounting the energy func-

tional of the system . The objective of this investiga-

tion is to derive the exact solutions for the flexoelectric

response of a simply supported dielectric beam

activated by the combined mechanical and electric

loads have been derived.

2 Flexoelectric constitutive modelling

The Gibbs free energy density U for a centro-

symmetric dielectric solid, as a function of the strain,

the electric field and their gradients, can be written for
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the dielectrics (Hu and Shen 2009, 2010; Abdollahi

et al. 2014, Yan and Jiang 2011) as:

U ¼ � 1

2
E � a � E� 1

2
V : b : V þ 1

2
� : C : �� � : e :

V � E � l..
.
gþ 1

2
g..
.
g..
.
g ð1Þ

where aij and Cijkl are the second order dielectric

permittivity tensor and the fourth order elastic coef-

ficient tensor, respectively, eijkl and lijkl are the direct
and the converse flexoelectric tensors, respectively,

while they are related as eijkl ¼ �lijkl. Here, � and g

are the strain and the strain gradient tensors, respec-

tively, given by

� ¼ 1

2
r� uþ u�rð Þ; and g ¼ ��r ð2Þ

where u denotes the displacement vector. The electric

field vector E and the second-order electric field

gradient tensor V are given by

E ¼ �r/; and V ¼ �r�r/ ð3Þ

where / is the scalar electric potential field within the

volume. The linear constitutive equations expressed in

terms of the free energy density U can be written as

(Hu and Shen 2009, 2010; Yan and Jiang 2011;

Abdollahi et al. 2014):

r ¼ oU

o�
¼ C : �� e : V; ð4aÞ

s ¼ oU

og
¼ g..

.
g� E � l; ð4bÞ

D ¼ � oU

oE
¼ a � Eþ l..

.
g; ð4cÞ

Q ¼ � oU

oV
¼ b : V þ � : e ð4dÞ

Here rij and Di are the conventional stress and the

electric displacement field tensors, respectively, and

sijk and Qij are the higher-order stress (moment stress)

and the electric quadrupoles, respectively. The sixth-

order material elastic tensor g is given by Zhou et al.

(2016):

gijklmn¼
a1

4
ðdijdkldmnþdimdjkdlnþdikdjldmnþdindjkdlmÞ

þa2

4
ðdijdkmdlmþdijdkndlm

þdikdjmdlnþdikdjndlmÞþa3dildjkdnm

þa4

2
ðdildjmdknþdildjndkmÞ

þa5

4
ðdimdjldknþdimdjndklþdindjldknþdindjndklÞ

where

a2 ¼
2

15
ð27ll20 � 4ll21 � 15ll22Þ; a4 ¼

2

3
ðll21 þ 6ll22Þ;

a5 ¼
4

3
ðll21 � 3ll22Þ; a1 ¼ � 2

3
ða2 þ a5Þ; a3 ¼

2

3
a2 þ

1

6
a5

ð6Þ

in which l0, l1 and l2 are the three micro-structure-

dependent material length parameters. It may be noted

that the sixth order tensor gijklmn defined above has

been proposed for isotropic materials. The simplified

models for the sixth order tensor, based on one micro-

structure-dependent material length parameter, have

been proved to be ineffective to capture the size effects

(Fleck and Hutchinson 1993, 2001). Hence, the more

general model of the sixth order tensor as presented

above has been used in the current formulation.

However, for an intuitive study and due to the dearth

of the higher order tensor components for any known

flexoelectric material, the authors have used the

tensors proposed for an elastic isotropic material as

described above for the current study. The material

tensors for the mechanical and electrical properties of

a centro-symmetric dielectric are given by Mindlin

(1968), Hu and Shen (2010) and Shen and Hu (2010):

aij ¼ adij; bijkl ¼ bcdijkl þ b12dijdkl þ b44ðdikdjl þ dildjkÞ;
Cijkl ¼ Ccdijkl þ C12dijdkl þ C44ðdikdjl þ dildjkÞ;
lijkl ¼ lcdijkl þ l12dijdkl þ l44ðdikdjl þ dildjkÞ;
where; bc ¼ b11 � b12 � 2b44;

Cc ¼ C11 � C12 � 2C44; lc ¼ l11 � l12 � 2l44

ð7Þ

In Eq. (7), dijkl is equal to unity only if all the indices

are identical, and otherwise equals zero, and a is the

permittivity constant. Using Eqs. (4a)–(4d) in Eq. (1),

the Gibbs free energy density can be expressed as:
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U ¼ 1

2
r : �þ 1

2
s..
.
g� 1

2
D � E� 1

2
Q : V ð8Þ

3 Governing differential equations of equilibrium

The total Gibbs free energy W, defined for a system

occupying the domain with volumeX, and bounded by
oX can be calculated from the free energy density of

an elastic dielectric derived in the previous sec-

tion. The governing equations and the associated

boundary conditions for this system are derived by

applying the variational principle over the total Gibbs

free energy for the above system. The first variation of

the Gibbs free energy can be expressed as:

dW ¼
Z
X

r : ðdu�rÞ þ s..
.
ðd��rÞ þ D � ðrd/Þ þ Q : ðr � rÞd/

� �
dX

ð9Þ

Upon applying the divergence theorem, Eq. (9) can be

written as:

dW ¼�
Z
X
r � r�r � sð Þ � dudXþ

Z
X
r � D�r � Qð Þd/dX

þ
Z
oX

n � r�r � sð Þ � dudAþ
Z
oX

n � s : d�dA

þ
Z
oX

n � D�r � Qð Þd/dAþ
Z
oX

n � Q � rd/dA

ð10Þ

As the variations of the gradients � and r/ are not

independent of the variation of u and / over the

surface oX these derivatives are split into surface and

normal components as follows:

du�r ¼ R � du�rð Þ þ n� nð Þ � du�rð Þ;
rd/ ¼ R � rd/ð Þ þ n� nð Þ � rd/ð Þ

ð11Þ

where n� nð Þ gives the normal gradient, and R

denotes the surface projector defined as

R ¼ 1� n� nð Þ. Using the above definitions, it can

be shown that:

Z
oX

n � s : d�dA ¼
Z
oX

n � s : ðR � du�rð ÞÞ

þ ðn� nÞ : s � ðn � ðdu�rÞÞdA;Z
oX

n � Q � rd/ð ÞdA ¼
Z
oX

n � Q � ðR � rd/ð ÞÞ

þ ðn� nÞ : Qð Þðn � rd/ð ÞdA
ð12Þ

where

ðn � sÞ : ðR � du�rð ÞÞ ¼ R : r� ðn � sÞ � du½ �ð Þ
� R : n � sð Þ � r½ � � du;

ðn � QÞ � ðR � rd/ð Þ ¼ R : r� ðn � QÞd/½ �ð Þ
� R : n � Qð Þ � r½ �d/ ð13Þ

In the above derivation, symmetry of the second-order

strain tensor � and the corresponding indices in third-

order moment stress tensor s have been utilized.

Following (Gao and Park 2007), the surface gradient

terms in Eqs. (12) and (13) can further be written in

terms of the independent variations of u and / as:

R : n � sð Þ � r½ � � duð Þ ¼ R : ðr � nÞ½ � ðn� nÞ : s½ �
� duþ n � ðr ^ ðn ^ ððn � sÞ � duÞÞÞ

R : r� ðn � QÞd/½ �ð Þ ¼ R : ðr � nÞ½ � ðn� nÞ : Q½ �
d/þ n � ðr ^ ðn ^ ððn � QÞd/ÞÞÞ ð14Þ

where ^ denotes the conventional vector-cross prod-

uct. For bodies without any sharp edges or disconti-

nuities, the second terms of the LHS of both the

equations in Eq. (14) do not contribute to the dW when

integrated over the smooth surface (Yurkov 2011).

However, due to the presence of sharp edges for the

beam system, if these edges are represented using C, it
can be shown using the Stoke’s theorem (Gao and Park

2007) that:

Z
oX

n � ðr ^ ðn ^ ððn � sÞ � duÞÞÞdA ¼
I
C
½½ðn�mÞ : s�� � dudL

Z
oX

n � ðr ^ ðn ^ ððn � QÞd/ÞÞÞdA ¼
I
C
½½ðn�mÞ : Q��d/dL

ð15Þ

where m is the co-normal vector given by m ¼ s ^ n

and s is the unit vector tangent to the edge C, and ½½���
denotes the jump across the C. Finally after simplifi-

cation, the Eq. (9) can be written in terms of the

independent variations of displacement vector,
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electrical potential and their respective normal gradi-

ents as follows:

dW ¼�
Z
X
r � r�r � sð Þ � dudX

þ
Z
X
r � D�r �Qð Þd/dX

þ
Z
oX

n � r�r � sð Þ � R : n � sð Þ �r½ �½

þ R : ðr� nÞ½ � ðn� nÞ : s½ �� � dudA

þ
Z
oX

n � D�r �Qð Þ � R : n �Qð Þ �r½ �½

þ R : ðr� nÞ½ � ðn� nÞ : Q½ ��d/dA

þ
Z
oX
ðn� nÞ : s � ðn � ðdu�rÞÞdA

þ
Z
oX

ðn� nÞ : Qð Þðn � rd/ð ÞdA

þ
I
C
½½ðn�mÞ : s�� � duþ ½½ðn�mÞ : Q��d/ dl

ð16Þ

Considering the total potential energy P in terms of

the internal energyW and the external work done Vext

as P¼W �Vext, the variational principle dP¼ 0

yields:

dW ¼ dVext ¼
Z
X
ðb � duþ hd/ÞdX

þ
Z
oX
ðt � duþ pd/ÞdA

þ
Z
oX
ðd � ðn � ðdu�rÞÞ þ vðn � rd/ð ÞÞÞdA

þ
I
C
ðr � duþ qd/Þdl ð17Þ

where the mechanical loads b, t, d and r are the applied

body force per unit volume, surface traction per unit

area, double stress traction per unit surface area and

the line load along the sharp edge, respectively, and

the distributed electrical loads applied per unit volume

and per unit area are given by h, p, respectively, q is

the electrical line load applied along the sharp edge,

and v is the quadrupole-associated electrical load

applied per unit surface area. Substitution of Eq. (16)

in Eq.(17), yields the following governing differential

equations of motion:

�r � r�r � sð Þ ¼ b; r � D�r � Qð Þ ¼ h ð18Þ

while the boundary conditions are obtained as follows:

n � r�r � sð Þ � R : n � sð Þ � r½ � þ R : ðr � nÞ½ �
ðn� nÞ : s½ � ¼ t or u ¼ u on oX ð19 aÞ

ðn� nÞ : s ¼ d or ðn � ðdu�rÞÞ
¼ ðn � ðdu�rÞÞ on oX

ð19bÞ

½½ðn�mÞ : s�� ¼ r or u ¼ u on C ð19cÞ

n � D�r � Qð Þ � R : n � Qð Þ � r½ �
þ R : ðr � nÞ½ � ðn� nÞ : Q½ � ¼ p or / ¼ / on oX

ð19dÞ

ðn� nÞ : Qð Þ ¼ v or ðn � rd/ð Þ ¼ ðn � rd/
� �

on oX

ð19eÞ

½½ðn�mÞ : Q�� ¼ q or / ¼ / on C ð19fÞ

where u; n � ðdu�rÞ; / and n � rd/
� �

are speci-

fied values of the corresponding variables. These

derived conditions agree very well with the results of

Hu and Shen (2009) and Iesan (2018). In what follows,

the exact solutions for the mechanical displacement

and the electrical potential, satisfying the governing

equations given by Eq. (18) and the boundary

conditions given in Eq. (19) will be obtained in the

next section.

The importance of including the strain gradient

energy in the Gibbs energy can be asserted from the

resulting singularity in strain gradient at the surface

when g ! 0 for a non-zero electrical field, as previ-

ously reported by Yurkov (2011). Despite this obser-

vation, a majority of the literature in this field has

ignored the contribution of the strain gradient energy

to the Gibbs free energy in Eq. (1). To re-emphasize

the above observation from the variational approach

used here, it may be noted that when d ¼ 0 in

Eq. (19b), the natural boundary condition for s ! 0 on

oX can be written from Eq. (4b) as:

ðn� nÞ : s ¼ ðn� nÞ : g..
.
g� E � l

� �
¼ 0 ð20Þ

So, when g ! 0, either the strain gradient gmust tend

to1 or the constraint E ¼ 0would be enforced on the

surface. Keeping aside the singularity, the constraint

over electric field is an entirely different essential

constraint, and it overlaps Eq. (19e) involving normal
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gradient of electrical potential. Moreover, it would

result in very different results and physical phenom-

ena. Hence, given the significance of the strain

gradient energy towards avoiding mathematical

inconsistencies or arbitrary physical constraints, the

authors have felt the need to include the strain gradient

energy in the current study.

Further, it must be noted that for literature involv-

ing constant electric field across the thickness or a

specified electric field at the surfaces the essential

boundary conditions for the normal gradients given in

Eq. (19e) must be enforced. These result in a different

study, which is not undertaken here as the authors feel

such a constraint results in a behaviour which does not

realize the full scope of gradient-dependent flexoelec-

tric effect. Thus, only the natural boundary condition

corresponding to the normal gradients of electric

potential given in Eq. (19e) is enforced throughout.

4 Exact solutions

The governing equations and the associated boundary

conditions derived in the previous section for a

flexoelectric dielectric body possessing strain and

electric field gradients are now solved for a specific

case of a dielectric beam, schematically illustrated in

Fig. 1. The length, width and the thickness of the beam

are taken to be L, b and h, respectively. The origin of

the coordinate system is chosen at one end of the beam

such that x1 ¼ 0 and x1 ¼ L represent two ends of the

beam and x3 ¼ 0 represents the mid-plane of the

beam. The top surface of the beam is subjected to

distributed mechanical load qðx1Þ. The beam may also

be actuated by an electrical load, and two separate

cases of the circuit connections are studied. In the case

of open circuit, the surfaces of the beam are left free

without any constraint over the electrical potential

developed. In the other case-study, the top surface is

subjected to a distributed electrical potential given by

/1ðx1Þ and the bottom surface of the beam is subjected

to a distributed electrical loading given by /2ðx1Þ.
From the general flexoelectric constitutive relations

given in Eqs. (4a–d) and the material constants given

in Eqs. (5) and (7), the specific constitutive relations

for use in the current system can be derived by varying

the indices i; j; k; l ¼ 1; 3. Similarly, the governing

differential equations for the system under consider-

ation can be obtained from Eq. (18) using i; j; k ¼ 1; 3.

These are given as follows:

or11
ox1

þ or31
ox3

� o

ox1

os111
ox1

� o

ox3

os131
ox1

� o

ox1

os311
ox3

� o

ox3

os331
ox3

¼ 0;

or33
ox3

þ or13
ox1

� o

ox1

os113
ox1

� o

ox3

os133
ox1

� o

ox1

os313
ox3

� o

ox3

os333
ox3

¼ 0;

oD1

ox1
þ oD3

ox3
� o

ox1

oQ11

ox1
� o

ox3

oQ13

ox1

� o

ox1

oQ31

ox3
� o

ox3

oQ33

ox3

ð21Þ

Subsequently, the boundary conditions expressed

tensorially in Eq. (19) are also simplified for the

model chosen by using i; j; k ¼ 1; 3. The resulting

mechanical boundary conditions from Eqs. (19a–b)

are obtained as follows:

u3jx1¼0;L ¼ 0; ð22aÞ

ðr11 � s111;1 � s131;3 � s311;3Þjx1¼0;L ¼ 0; ð22bÞ

bðr33 � s313;1 � s133;1 � s333;3Þjx3¼h=2 ¼ qðx1Þ;
ð22cÞ

ðr33 � s313;1 � s133;1 � s333;3Þjx3¼�h=2 ¼ 0; ð22dÞ

ðr31 � s311;1 � s131;1 � s331;3Þjx3¼�h=2 ¼ 0; ð22eÞ

s331jx3¼�h=2 ¼ 0; ð22fÞ

s333jx3¼�h=2 ¼ 0 ð22gÞ
Fig. 1 Schematic of the simply supported flexoelectric

nanobeam system with the applied mechanical load
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These boundary conditions have been previously used,

and validated in the study of the size-dependent

behaviour of elastic micro- and nano-beams (Sidhardh

and Ray 2018). Additionally, the electrical boundary

conditions for the current system can be written from

Eqs. (19d–f) as:

/jx1¼0;L ¼ 0; ð23aÞ

/jx3¼h=2 ¼ /1ðx1Þ or; ð23bÞ

D3 � Q31;1 � Q13;1 � Q33;3jx3¼h=2 ¼ 0; ð23cÞ

/jx3¼�h=2 ¼ /2ðx1Þ or; ð23dÞ

D3 � Q31;1 � Q13;1 � Q33;3jx3¼�h=2 ¼ 0; ð23eÞ

Q11jx1¼0;L ¼ 0; ð23fÞ

Q33jx3¼�h=2 ¼ 0 ð23gÞ

The mechanical and electrical boundary conditions

match excellently with those presented by Abdollahi

et al. (2014). As discussed previously, two separate

studies of the electrical loading will be carried out. For

the open circuit connection where the potential over

the top and bottom surfaces should not be enforced,

the natural boundary conditions with respect to the

electrical displacements and electrical quadrupole

gradients given in Eqs. (23c) and (23e) will be

utilized. Further, for the case-study where potential

is applied over the beam, the essential boundary

conditions involving electrical potentials at top and

bottom surfaces given by Eqs. (23b) and (23d) will be

employed. The displacement fields explicitly satisfy-

ing the essential mechanical boundary condition in

Eq. (22a) and natural boundary condition given by

Eq. (22b) are considered as follows:

u1ðx1; x3Þ ¼ U1ðx3Þ cosðpx1Þ;
u3ðx1; x3Þ ¼ U3ðx3Þ sinðpx1Þ

ð24Þ

and the electrical potential field satisfying the essential

electrical boundary condition given by Eq. (23a) and

the natural boundary condition given by Eq. (23f), is

assumed as:

/ðx1; x3Þ ¼ Uðx3Þ sinðpx1Þ ð25Þ

where Uiðx3Þ and Uðx3Þ are unknown functions of x3
and p ¼ np=L (n is the mode number). With this

choice of displacement and electric potential func-

tions, the edge conditions in Eqs. (19c) and (19f) are

automatically fulfilled. Further, it may be assumed that

U1ðx3Þ U3ðx3Þ Uðx3Þ½ � ¼ U0
1 U0

3 U0
� �

esx3 ð26Þ

wheres s is a characteristic parameter and U0
1 , U

0
3 and

U0 are corresponding unknown constants. Substituting

Eqs. (24–26) into the governing differential equations,

a set of homogeneous algebraic equations are obtained

as follows:

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

U0
1

U0
3

U0

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; ð27Þ

in which,

A11 ¼ 4p4f2 � p2s2f3 þ s4f1 þ 4C11p
2 � 4C44s

2;

� A12 ¼ A21 ¼ ps ðp� sÞðpþ sÞf5 þ 4C12 þ 4C44ð Þ;
A13 ¼ 8p f9s

2 � l11p
2

� �
; A33 ¼ a11ðp� sÞðpþ sÞ

þ b11 p4 þ s4
� �

� 2 b13 þ 2b44ð Þp2s2;
A22 ¼ �p2s2f3 þ 4s4f2 þ p4f1 þ 4C44p

2 � 4C33s
2;

A23 ¼ 8s l11s
2 � f9p

2
� �

; A31 ¼ 2p l11p
2 � f9s

2
� �

;

A32 ¼ 2s l11s
2 � f9p

2
� �

;

The expressions for f0is, used for simplifying above

expressions, are provided in the Appendix 1. From

Eq. (27), the expressions for U0
1 , U

0
3 and U0 can be

related as:

U0
3 ¼ f ðsÞU0

1 ; U0 ¼ gðsÞU0
1 ;

where; f ðsÞ ¼ A23A31 � A21A33

A22A33 � A23A32

;

and gðsÞ ¼ A21A32 � A22A31

A22A33 � A23A32

ð28Þ

To eliminate the case of trivial solutions for U0
1 , U

0
3

and U0, the determinant of the coefficient matrix from

Eq. (27) must be equated to zero. This yields the

characteristic equation for the governing differential

equations as

A6s
12 þ A5s

10 þ A4s
8 þ A3s

6 þ A2s
4 þ A1s

2 þ A0 ¼ 0

ð29Þ
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where the expressions for Aiði ¼ 1. . .6Þ are expressed
in the Appendix 1. The form of the roots of the

polynomial vary for different material and geometric

parameters. For the material properties of BaTiO3,

given in the next section, the following roots are

obtained:

s1; s2 ¼ �a; s3; s4 ¼ �b; s5; s6 ¼ �c;

s7; s8 ¼ �k; s9; s10 ¼ �j; s11; s12 ¼ �x ð30Þ

Expanding Eq. (26), considering the solutions pro-

vided in Eq. (30), and utilizing the relations in

Eq. (28), the exact solutions for the displacement

and the electric potential functions are derived as

follows:

u1ðx1; x3Þ ¼ ðU1e
ax3 þ U2e

�ax3 þ U3e
bx3 þ U4e

�bx3

þ U5e
cx3 þ U6e

�cx3

þ U7e
kx3 þ U8e

�kx3 þ U9e
jx3 þ U10e

�jx3

þ U11e
xx3 þ U12e

�xx3Þ cosðpx1Þ
ð31Þ

u3ðx1; x3Þ ¼ ðR1U1e
ax3 þ R2U2e

�ax3 þ R3U3e
bx3

þ R4U4e
�bx3 þ R5U5e

cx3 þ R6U6e
�cx3

þ R7U7e
kx3 þ R8U8e

�kx3 þ R9U9e
jx3

þ R10U10e
�jx3 þ R11U11e

xx3

þ R12U12e
�xx3Þ sinðpx1Þ

ð32Þ

/ðx1; x3Þ ¼ ðQ1U1e
ax3 þ Q2U2e

�ax3 þ Q3U3e
bx3

þ Q4U4e
�bx3 þ Q5U5e

cx3 þ Q6U6e
�cx3

þ Q7U7e
kx3 þ Q8U8e

�kx3 þ Q9U9e
jx3

þ Q10U10e
�jx3 þ Q11U11e

xx3

þ Q12U12e
�xx3Þ sinðpx1Þ

ð33Þ

Similarly the exact solutions for the Cauchy stresses

can be derived from the constitutive relations as

follows:

r11 ¼ T1U
1
1e

ax3 þ T2U
2
1e

�ax3 þ T3U
3
1e

bx3
�
þ T4U

4
1e

�bx3 þ T5U
5
1e

cx3 þ T6U
6
1e

�cx3

þT7U
7
1e

jx3 þ T8U
8
1e

�jx3 þ T9U
9
1e

kx3

þ T10U
10
1 e�kx3 þ T11U

11
1 exx3

þ T12U
12
1 e�xx3Þ sinðpx1Þ

ð34Þ

r33 ¼ T13U
1
1e

ax3 þ T14U
2
1e

�ax3 þ T15U
3
1e

bx3
�
þT16U

4
1e

�bx3 þ T17U
5
1e

cx3 þ T18U
6
1e

�cx3

þT19U
7
1e

jx3 þ T20U
8
1e

�jx3 þ T21U
9
1e

kx3

þ T22U
10
1 e�kx3 þ T23U

11
1 exx3

þ T24U
12
1 e�xx3Þ sinðpx1Þ

ð35Þ

r13 ¼ r31 ¼ T25U
1
1e

ax3 þ T26U
2
1e

�ax3 þ T27U
3
1e

bx3
�

þT28U
4
1e

�bx3 þ T29U
5
1e

cx3 þ T30U
6
1e

�cx3

þT31U
7
1e

jx3 þ T32U
8
1e

�jx3 þ T33U
9
1e

kx3

þ T34U
10
1 e�kx3 þ T35U

11
1 exx3

þ T36U
12
1 e�xx3Þ cosðpx1Þ ð36Þ

The unknown constants Ui
1ði ¼ 1; 2; 3. . .; 12Þ can be

determined from the prescribed mechanical boundary

conditions given by Eqs. (22) and the electrical

boundary conditions from Eqs. (23). Also, the con-

stants Ri;Qi in Eqs. (32) and (33) are obtained as

follows:

Ri ¼ f ðsiÞ ði ¼ 1; 2; . . .12Þ Qi ¼ gðsiÞ
ði ¼ 1; 2; . . .12Þ

ð37Þ

The expressions for Ti ði ¼ 1; 2; . . .36Þ are provided in
Appendix 2. The expressions for the higher order

stresses, electrical field displacements and the electri-

cal quadrupole are derived from Eqs. (2–4) and (31–

33), and for the sake of brevity only the expression for

the s311 is presented in Appendix 3. For all the

electrical conditions, the mechanical load will be

given by:

qðx1Þ ¼ q0 sin px1 ð38Þ

here q0 is the amplitude of the applied sinusoidal

mechanical load. For the open circuit condition, the

electrical boundary conditions involving electrical

displacements and electrical quadrupoles have been

given in Eqs. (23c) and (23e). For the closed circuit

condition, where a prescribed voltage is applied at the

top and bottom surfaces, the following distributions

are assumed:

/ðx1; x3Þjx3¼h=2 ¼ /1 x1ð Þ ¼ V1 sin px1; and

/ðx1; x3Þjx3¼�h=2 ¼ /2 x1ð Þ ¼ V2 sin px1
ð39Þ

with V1 and V2 being the amplitudes of the sinusoidal

electric potentials prescribed at the top and the bottom
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surfaces of the beam,respectively. With the above

assumed loading conditions along with the conditions

in Eqs. (22) and (23), the 12 unknown Ui
1’s are solved

to evaluate the numerical values of the exact solutions.

This results in a set of algebraic equations:

½K�fXg ¼ fFg ð40Þ

in which the elements of the matrix [K] are the

coefficients of the unknownUi’s. The vectors fXg and
fFg are given by

fXg ¼ ½U1
1 U2

1 U3
1 . . . U11

1 U12
1 �T ;

fFg ¼ ½0 0 q0 0 0 0 0 0 V1 V2 0 0�T

5 Results and discussion

To investigate the flexoelectric responses in the

dielectric beam using the model derived here, numer-

ical results are evaluated for simply supported

nanobeams made of barium titanate (BaTiO3) which

belongs to the centro-symmetric point group with

cubic symmetry. The length of the beams considered

here is fixed at 1 lm. The height of the beam is varied

for each study and is mentioned for different cases.

The elastic coefficients for BaTiO3 are taken as C11 ¼
166GPa;C33 ¼ 162GPa;C13 ¼ 78GPa and C55 ¼
42:9GPa (Giannakopoulos and Suresh 1999). The

material length scales deciding the elastic size-effects

of the system response have been proposed to be of the

order of lattice parameter for ferroelectrics, by

Maranganti and Sharma (2007). Experimental results

have identified the lattice parameter to be phase-

dependent and varying with temperature from 3.963 to

5.704 Å (Giannakopoulos and Suresh 1999). Hence,

for the current study the material length scales are all

taken equal to a constant value of 5 Å, i.e. l0 ¼ l1 ¼
l2 ¼ l ¼ 5 Å. As mentioned in the text, since the Lamé

parameter cannot be defined for a non-isotropic

material the value of l necessary for evaluation of

constants ai’s in Eq. (6) has been considered to be

equal to C44. Moreover, given the elastic constants

mentioned above, it may be noted that they are not

significantly different from an isotropic material with

the Lamé parameters k ¼ 78 GPa and l ¼ 42:9 GPa.

The dielectric properties for the BaTiO3 at room

temperature are taken as �0 ¼ 8:85� 10�12 Fm�1 and

the value of v=�0 is assumed as 1000 (Cross 2006). The

flexoelectric coupling coefficients for the BaTiO3, as

used by Yudin and Tagantsev (2013), are taken as

f11 ¼ 5:1V; f13 ¼ 3:3V and f44 ¼ 0:045V. It may be

mentioned that such values of the flexoelectric cou-

pling tensors have been used for similar studies

available in the literature (Yan and Jiang 2013b;

Zhang et al. 2014). The flexoelectric coefficients,

l11; l13 and l44 for the dielectric can be calculated

from the flexoelectric coupling coefficients by multi-

plying with the dielectric susceptibility v (Yudin and

Tagantsev 2013). Further, the values for the compo-

nents of the tensor b available in the literature for a

similar dielectric material (Maranganti et al. 2006; Qi

et al. 2016) have been scaled using v for BaTiO3. They

have been taken as b12 ¼ 0:87� 10�8 Nm4=C2; b44 ¼
0:5255� 10�8 Nm4=C2 and b11 ¼ 1:921� 10�8

Nm4=C2 (Yudin and Tagantsev 2013).

To begin-with, results for the current model actu-

ated by a mechanical load only are compared with the

results from the purely elastic model by the authors

(Sidhardh and Ray 2018). The above comparison is

considered for both the open circuit and closed circuit

connections. The results for this example are presented

in Table 1. Owing to the very low flexoelectric

coefficients, the mid-plane transverse displacements

of the beam under open circuit condition and closed

circuit connection with DV ¼ V1 � V2 ¼ 0:0 do not

vary appreciably in comparison to the purely elastic

size-dependent response of the beam. However, a

marginal decrease of the transverse center deflection

ðu3ðx1; 0ÞÞ is noted for the coupled dielectric response
over that of the purely elastic response, with or without

strain gradient elasticity. This difference increases for

aspect ratios L=h ¼ 20 and L=h ¼ 100, as expected.

This reduction of the displacement for the coupled

response from the purely elastic response in the above

findings can be attributed to the direct flexoelectric

effect. This is realized from the non-zero electric field

induced due to mechanical load, which in turn causes

further mechanical actuation due to converse flexo-

electric effect. Thus, an increase in the difference

between the coupled response and purely elastic

response with increase in aspect ratio indicates an

increase in the flexoelectric effect with increase in

aspect ratio, while the length of the beam is maintained

a constant. This observation is in agreement with a

similar finding by Zhang et al. (2014), that the
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flexoelectric effect reduces as the thickness increases.

Further, the higher electromechanical coupling for an

open circuit configuration over closed circuit at

smaller scales reported by Abdollahi et al. (2014), is

also noted from the lower values of transverse

displacement in open circuit against closed circuit

configuration for higher aspect ratios in Table 1.

To analyze the converse flexoelectric effect, non-

zero distributed potentials are applied at the top and

bottom surfaces, under the closed circuit configura-

tion. As seen from the Table 1, the beam can be

mechanically actuated as a result of the converse

flexoelectric effect, with an application of the non-

zero electrical potential at the surfaces. The beam

activated with a positive potential applied at the top

surface counteracts the upward mechanical load

causing decrease in the transverse displacement, while

it aids the mechanical load when activated with a

positive potential applied at the bottom surface. This is

contrary to the previous finding reported in literature

(Yan and Jiang 2013a). This can be attributed to the

presence of l11 in the constitutive relations of the

current analysis, unlike in literature where l11 is

eliminated from the constitutive relations. The con-

trary behaviour can also be explained from the

parametric study indicating opposing actuation of

the structure to a purely electrical load upon consid-

eration of flexoelectric coefficients l11 and l13
independently (Yan and Jiang 2015). Thus, the

direction of final actuation is dependent on the net

effect of counteracting flexoelectric responses.

Finally, from Table 1, the proportionate increase of

the gradients with reduction in the height of the beam,

thereby resulting in a size-dependent flexoelectric

Table 1 Comparison of flexoelectric response for different aspect ratios for different electrical and mechanical conditions

L / h q0 Electrical loads u3
L
2
; 0

� �
�33;3

L
2
; h
2

� �
r11 L

2
; h
2

� �
E3

L
2
; h
2

� �
N/m � 10�10 m m�1 MPa V / m

10 10�1 Elastic beam 4.919 – 30.500 –

Strain-gradient elastic (Sidhardh and Ray 2018) 4.917 - 876.222 30.545 –

Open circuit 4.9162 5444.16 30.7917 6607.95

DV ¼ 0:0 V 4.9166 9418.63 30.963 10,763.4

DV ¼ 0:1 V 4.8321 - 858,660 - 6.5 - 896,851

DV ¼ �0:1 V 5.0012 843,566 66.9 882,907

20 10�1 Elastic beam 77.226 – 243.3 –

Strain-gradient elastic (Sidhardh and Ray 2018) 77.06 - 13798.4 243.82 –

Open circuit 77.029 - 16,708.9 243.478 - 3049.89

DV ¼ 0:0 V 77.051 41,576.9 246.024 57,893.6

DV ¼ 0:1 V 76.411 - 1.727 9 106 168.713 - 1.792 9 106

DV ¼ �0:1 V 77.690 1.811 9 106 323.335 1.908 9 106

20 10�2 Elastic beam 7.723 – 24.33 –

Strain-gradient elastic (Sidhardh and Ray 2018) 7.706 - 1379.84 24.382 –

Open circuit 7.702 - 1670.89 24.347 - 304.989

DV ¼ 0:0 V 7.705 4157.69 24.602 5789.36

DV ¼ 0:1 V 7.066 - 1.765 9 106 - 52.708 - 1.844 9 106

DV ¼ �0:1 V 8.344 1.774 9 106 101.914 1.856 9 106

100 10�5 Elastic beam 4.7967 – 3.039 –

Strain-gradient elastic (Sidhardh and Ray 2018) 4.5618 - 818.428 2.9476 –

Open circuit 4.5365 - 3487.71 2.8171 - 2795.56

DV ¼ 0:0 V 4.5607 - 660.062 2.9531 165.382

DV ¼ 0:1 mV 3.7510 - 95,225.6 - 1.594 - 98,857.7

DV ¼ �0:1 mV 5.3705 93,883.9 7.499 99,165.9
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behaviour is identified by comparison of the strain

gradients and electrical potential gradients induced by

an identical voltage applied for beams with aspect

ratios (L/h) 10 and 20.

Further comparison with the previous work by Ray

(2014) is carried out to elucidate the differences of the

current work from one of the author’s previous work.

The mid-plane deflections for a thin beam, with

L/h ¼ 100, and a thick beam, with L/h ¼ 10, actuated

under closed circuit configurations by DV ¼ 0:0 and

DV 6¼ 0, are presented in Figs. 2 and 3, respectively.

From the figures it may be noted that the transverse

actuations experienced by the thick and thin beams

without considering strain gradient elasticity (Ray

2014) are very low in comparison to the corresponding

actuations obtained by the current model. Further, the

stress profiles across the thickness obtained by

considering the gradient-enhanced model are com-

pared with the stress profiles, available in the litera-

ture, without considering them in Figs. 4 and 5. These

comparisons confirm that an enhanced electro-me-

chanical coupling is exhibited if the gradient-en-

hanced model is used for flexoelectric actuation. Also,

the strain gradient elasticity marginally influences the

passive response (DV ¼ 0) of the thin beam when

compared with the results without considering the

strain gradient elasticity (Ray 2014). The above

findings emphasize the importance of considering

the entire energy functional, without ignoring either

the gradients or their corresponding conjugates, for a

study involving flexoelectric response in structures.

A comparison of the converse flexoelectric effect

for closed circuit configuration for different voltages is

illustrated in Fig. 6. For this study, the aspect ratio of

the beam (L/h) is taken to be 10. The voltage at the

bottom surface is kept at zero. As claimed previously

in Table 1, it may be observed from Fig. 6 that with an

applied positive voltage at the top surface, the

activated beam due to flexoelectric effect counteracts

the upward mechanical load and the actuation

increases with the increase in the magnitude of the

voltage. If the polarity of the applied electrical field is

changed, the beam gets deflected in the opposite

direction, as realized from the figure for a negative V1.

Similar study is conducted for a thin beam

ðL/h ¼ 100Þ, under a distributed mechanical load of

amplitude q0 ¼ 10�4 N/m2 and zero V2 and the results

are presented in Fig. 7. The trends noted for a thick

beam are also exhibited by the thin beam.

Next, the axial stress profiles across the thickness

for different aspect ratios are presented for closed

circuit condition and different amplitudes of applied

voltages. The effect of the flexoelectric coupling

cannot be solely determined from the values of the

Fig. 2 Variation of the center deflection u3 along the length of

the thin nanobeam compared with results from Ray (2014)

(h ¼ L=100, q0 ¼ 10�6 N/m, V2 ¼ 0)

Fig. 3 Variation of the center deflection u3 along the length of

the thick nanobeam compared with results from Ray (2014)

(h ¼ L=10, q0 ¼ 10�2 N/m, V2 ¼ 0)
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axial stresses at the top surface provided in Table 1.

Even though, the values of the axial stress at the

surfaces differ greatly from the axial stress due to

mechanical load only, it may be observed from Figs. 8

and 9 that purely electrical load generates much lower

values of this axial stress in the bulk, away from

surfaces. This is true, in particular, for a thick beam

ðL/h ¼ 10Þ as seen in Fig. 8. The axial stress devel-

oped across the thickness is very low, in comparison to

that developed at the surfaces. As noted from Table 1,

the influence of the flexoelectric effect is expected to

be higher for a thinner beam. This is also supported by

the observations from Fig. 9, where it can be seen that

the axial stress developed by the electrical load is

considerably higher across major part of the thickness,

and varies in a much more smooth fashion for a thin

beam as compared to the thick beam in Fig. 8. These

observations are in-line with the effects at the surface

observed in Zhang et al. (2014) and Qi et al. (2016).

Fig. 4 Variation of the axial stress r11 at mid-length across the

thickness of the thick nanobeam compared with results from

Ray (2014) (h ¼ L=10, q0 ¼ 10�2 N/m, V2 ¼ 0)

Fig. 5 Variation of the axial stress r11 at mid-length across the

thickness of the thin nanobeam compared with results from Ray

(2014) (h ¼ L=100, q0 ¼ 10�6 N/m, V2 ¼ 0)

Fig. 6 Variation of the center deflection u3 along the length of

the thick nanobeam (h ¼ L=10, q0 ¼ 10�1 N/m, V2 ¼ 0)

Fig. 7 Variation of the center deflection u3 along the length of

the thin nanobeam. (h ¼ L=100, q0 ¼ 10�4 N/m, V2 ¼ 0)
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As seen from Fig. 8, the axial stress generated when

DV [ 0 and q0 ¼ 0 counteracts the axial stress

generated by the upward mechanical load, thereby

supporting previous observations.

Similar trends are followed in case of other Cauchy

stresses, as well. The variation of transverse shear

stress r13 across the thickness for a thick ðL/h ¼ 10Þ

and a thin ðL/h ¼ 100Þ beam, under a combined

mechanical and electrical loads, is illustrated in

Figs. 10 and 11, respectively. Similar to the axial

stresses, the shear stresses caused by the electrical load

only are low across the bulk of the thickness, but show

a sharp variation at the surface. This jump is sharp for a

thick beam and smooth for a thinner beam. The zero

values for the shear-stress at the surfaces expected in

macro-structures is not observed in Figs. 10 and 11,

because of the modification in the corresponding

natural boundary conditions in Eq. (22e) by the higher

order stresses. This was also noted for the purely-

elastic size-dependent response studied by the authors

(Sidhardh and Ray 2018). The higher order stresses

s311, developed across the thickness of a thin ðL/h ¼
100Þ beam under both the electrical and mechanical

loads are presented in Fig. 12.

The above studies involved converse flexoelectric

effects and the study of it under different electrical

loads. Now, the study is extended to analyze the direct

flexoelectric effect, where the electric field and

polarization generated by the applied mechanical load

q0 will be studied for open circuit and closed circuit

with DV ¼ 0:0 V. It may be mentioned that the direct

flexoelectric effect is exploited to make the dielectric

beam behave as a nano flexoelectric energy harvester.

For a thick beam ðL/h ¼ 10Þ under a distributed

mechanical load a non-zero potential is induced across

Fig. 8 Distribution of axial normal stress r11 across the

thickness of the thick nanobeam (h ¼ L=10, r ¼ 10�1 N/m,

V2 ¼ 0)

Fig. 9 Distribution of axial normal stress r11 across the

thickness of the thin nanobeam (h ¼ L=100, r ¼ 10�4 N/m,

V2 ¼ 0)

Fig. 10 Distribution of transverse shear stress r13 across the

thickness of the thick nanobeam (h ¼ L=10, r ¼ 10�1 N/m,

V2 ¼ 0)
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the domain. The distribution of this potential across

the thickness for open and closed circuit conditions

under varying mechanical loads have been compared

in Fig. 13. A similar comparison for a thin beam is

presented in Fig. 14. It can be clearly observed that

under open circuit conditions a much larger electrical

potential is induced across the thickness as compared

to that under closed circuit condition, for a given

mechanical load. Thereby, indicating a stronger elec-

tro-mechanical coupling exhibited by the open circuit

boundary condition. Further, the electrical potential

induced corresponding to an applied mechanical

loading is remarkably lower for the thick nanobeam,

further re-emphasizing the stronger flexoelectric

effect demonstrated by the thin structures. Addition-

ally, with an increase in the applied mechanical load, a

Fig. 12 Distribution of higher order stress s311 across the

thickness of the thin nanobeam (h ¼ L=100, r ¼ 10�4 N/m,

V2 ¼ 0)

Fig. 11 Distribution of transverse shear stress r13 across the

thickness of the thin nanobeam (h ¼ L=100, r ¼ 10�4 N/m,

V2 ¼ 0)

Fig. 13 Distribution of electric potential / induced across the

thickness of the thick nanobeam (h ¼ L=10, r1 ¼ 10�1 N/m,

and r2 ¼ 3� 10�1 N/m)

Fig. 14 Distribution of electric potential / induced across the

thickness of the thin nanobeam (h ¼ L=100, r1 ¼ 10�4 N/m,

and r2 ¼ 3� 10�4 N/m)
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proportionate increase in the induced potential is

observed. The distribution of the induced electrical

potential along the length of the thin beam has been

illustrated in Fig. 15. This figure may serve as the

representative exact solution for the flexoelectric

energy harvested by the dielectric beam. As expected

the polarity of the induced voltage at the top surface is

opposite to that of the bottom surface. The variation of

transverse electric field E3 induced across the thick-

ness is depicted in Fig. 16. Similar study conducted

for a thin beam ðL/h ¼ 100Þ is shown in Fig. 17. The

difference between the electric field profiles for the

open and the closed circuit conditions is not very

significant for a thick beam, as seen in Fig. 16.

However, from Fig. 17 for a thin beam, a much larger

electrical field is induced in open circuit condition as

compared to that under the closed circuit condition, for

a given mechanical load. This induced electrical field

proportionately increases with an increase in the

applied load. In the closed circuit condition, enforcing

V1 ¼ V2 ¼ 0 restricts the electrical field generated

such that the potential induced across the thickness is

very low when compared with the open circuit. This is

the reason for the marginally lower values of the

displacement observed in Table 1 for the open circuit

as compared to purely elastic and closed circuit

condition responses. Also, as evident in Fig. 16, there

being no significant difference between the potentials

developed for a thick beam, the differences in

transverse displacements is not observed in thick

beams. Finally, the profiles of polarization across the

thickness of a thin beam with L/h ¼ 100 for the open

circuit and closed circuit with DV ¼ 0:0 V, due to

different mechanical loads is given in Fig. 18. With

Fig. 15 Distribution of electric potential / induced along the

length of the thin nanobeam (h ¼ L=100, r1 ¼ 10�4 N/m, and

r2 ¼ 3� 10�4 N/m)

Fig. 17 Distribution of transverse electrical field E3 across the

thickness of the thin nanobeam (h ¼ L=100, r1 ¼ 10�4 N/m,

and r2 ¼ 3� 10�4 N/m)

Fig. 16 Distribution of transverse electrical field E3 across the

thickness of the thick nanobeam (h ¼ L=10, r1 ¼ 10�1 N/m,

and r2 ¼ 3� 10�1 N/m)
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variations found at the surfaces, and a constant value

across the bulk away from the free surfaces, the results

follow the expected trend for a gradient theory (Zhang

et al. 2014; Qi et al. 2016). Further, the polarity of the

polarization is reversed for both the conditions, as

previously noted in Table 1.

6 Conclusions

In this paper, exact solutions for the static flexoelectric

response of a simply supported dielectric nanobeam

have been developed. The beams under consideration

are actuated by a distributed mechanical loading

applied at the top surface, and/or distributed voltages

applied at the top or the bottom surface. The consti-

tutive relations for the flexoelectric material are

derived from the energy functional for an elastic

dielectric available in the literature. The strain gradi-

ent elasticity and polarization gradient which were

neglected in the open literature on such studies have

been considered in the current formulation. The

governing differential equations and the associated

boundary conditions for the beam are attained from the

energy functional by using a variational principle. The

governing differential equations are solved for axial,

transverse displacements and electric potential by

simultaneously satisfying the derived mechanical and

electrical boundary conditions. The electrical bound-

ary conditions for the open and closed circuit config-

urations are separately investigated and compared,

with the mechanical conditions remaining the same

throughout. Upon solving a numerical problem for

BaTiO3, it is ascertained that the converse flexoelec-

tric effect in an active beam can be used to actuate a

nanobeam using an electrical load. The actuation

authority of the active beam is significantly found to

increase if moment stresses and electric quadrupoles

in the paradigm of strain gradient elasticity is incor-

porated for modelling the flexoelectric structures.

Also, the direct flexoelectric effect induces an electric

potential across the dielectric subjected to an applied

mechanical load, which can be the basis for develop-

ment of flexoelectric sensors and energy harvesters.

For a particular length, the flexoelectric effects exhibit

significant increase in their influence with an increase

in the aspect ratio. This observation established the

size dependence of the flexoelectric effect due to the

strain and the electric field gradients. The behaviour of

converse effect resulting in the development of

mechanical stresses due to an applied electrical field

is examined for different aspect ratios. A stronger

coupling of the electromechanical behaviour is

observed in an open circuit condition as compared to

the closed circuit configuration. The thin beam is

much more sensitive to exhibit converse flexoelectric

responses than the thick beam implying the size

dependence of the converse flexoelectric behaviour.

The results presented here can be used as the

benchmark results for verification of other analytical

and numerical models based on simplified assump-

tions. The present study also reveals that the strain

gradient elasticity based on moment stresses and

electric quadrupoles must be considered for develop-

ing the models of highly sensitive flexoelectric

nanosensors and nanoactuators.

Appendix 1

The following constants are defined for ease in

presentation of Eq. (27):

Fig. 18 Distribution of transverse polarization P3 developed

across the thickness of the thin nanobeam (h ¼ L=100,

r1 ¼ 10�4 N/m, and r2 ¼ 3� 10�4 N/m)
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f1 ¼ ða2 þ 2a4 þ a5Þ;
f2 ¼ ða1 þ a2 þ a3 þ a4 þ a5Þ;
f3 ¼ ð4a1 þ 5a2 þ 4a3 þ 6a4 þ 5a5Þ;
f4 ¼ ða1 þ a3 � a4Þ;
f5 ¼ ð4a1 þ 3a2 þ 4a3 þ 2a4 þ 3a5Þ;
f6 ¼ ð2a1 þ a2 þ 2a3 þ a5Þ;
f7 ¼ ð2a1 þ 3a2 þ 2a3 þ 4a4 þ 3a5Þ;
f8 ¼ ð8a1 þ 9a2 þ 8a3 þ 10a4 þ 9a5Þ;
f9 ¼ l13 þ 2l44ð Þ

The expressions for A6. . .A0 in Eq. (29), simplified

using the constants defined above, can be written as:

A6 ¼ 4b11f1f2;

A5 ¼ �4 a11f1f2 þ b11 4f2 p2f1 þ C44

� �
þ C33f1

� �
þ 2f1 b13 þ 2b44ð Þp2f2 þ 2l211

� �� �
A4 ¼ 4 a11 f1 5p2f2 þ C33

� �
þ 4C44f2

� ��
þ2 2 b44p

2 4f2 p2f1 þ C44

� �
þ C33f1

� �
þ l211 p2f3 þ 4C44

� �
þ 4f9

2p2f2 � 4l11f9p
2f6

� ��
þb13p

2 4f2 p2f1 þ C44

� �
þ C33f1

� ��
þ b11 p2 4C11f2 � 2C12f5 þ C33f3ð Þ þ 7p4f1f2 þ 4C44 C33 � p2f4

� �� ��
;

A3 ¼ �4 2a11 p2 2C11f2 � C12f5 þ C33f7ð Þ þ 5p4f1f2 þ 2C44 p2f1 þ C33

� �� ��
þp2 b11 p2 4f1 2p2f2 þ C44

� �
þ C33f3

� �
þ C11 p2f3 þ 4C33

� �
� 2C12 p2f5 þ 4C44

� �
� 4C2

12

� ��
þ2 2 b44 p2 4C11f2 � 2C12f5 þ C33f3ð Þ þ 6p4f1f2 þ 4C44 C33 � p2f4

� �� ���
�2 �2f9l11 p2f7 � 2C12

� �
þ l211 p2f6 � 2C11

� �
þ 2f9

2 p2f4 � C33

� �� ��
þb13 p2 4C11f2 � 2C12f5 þ C33f3ð Þ þ 6p4f1f2 þ 4C44 C33 � p2f4

� �� ����
;

A2 ¼ 4p2 a11 C33p
2f8 þ C11 p2f8 þ 4C33

� �
þ 4C12 p2ð�f5Þ � 2C44

� �
þ 10p4f1f2 þ 4C44 C33 � 2p2f4

� �
� 4C2

12

� ��
þp2 2 2 b44 C11 p2f3 þ 4C33

� �
þ 2 2p2 f2 p2f1 þ C33

� �
� C44f4

� �
þ C12 p2ð�f5Þ � 4C44

� �
� 2C2

12

� �� ����
þ4f9l11 p2f7 þ 2C11 þ 2C33

� �
� 2l211 p2f6 þ 4C12 þ 4C44

� �
� 4f9

2 p2f4 þ 2C12

� ��
þb13 C11 p2f3 þ 4C33

� �
þ 2 2p2 f2 p2f1 þ C33

� �
� C44f4

� �
þ C12 p2ð�f5Þ � 4C44

� �
� 2C2

12

� �� ��
þb11 p2 C11f3 � 2C12f5 þ C33f3 þ 7p2f1f2

� �
þ 4C44 p2f1 þ C11 þ C33

� �� ���
;

A1 ¼ �4p4 a11 p2 f1 5p2f2 þ 4C44

� �
þ 4C33f2

� �
� 2C12 p2f5 þ 4C44

� �
þ C11 2p2f7 þ 4C33 þ 4C44

� �
� 4C2

12

� ��
þp2 2 2 b44 p2f1 þ 4C44

� �
p2f2 þ C11

� �
þ l211 p2f3 þ 4C33

� �
þ 4f9

2 p2f2 þ C11

� �
� 4f9l11 p2f6 þ 2C12

� �� ���
þb13 p2f1 þ 4C44

� �
p2f2 þ C11

� ��
þb11 C11 p2f3 þ 4C33

� �
þ 2 2p2 f2 p2f1 þ C33

� �
� C44f4

� �
þ C12 p2ð�f5Þ � 4C44

� �
� 2C2

12

� �� ���
;

A0 ¼ p4f1 þ 4C44p
2

� �
4p4 a11 þ b11p

2
� �

p2f2 þ C11

� �
þ 16l211p

6
� �

Appendix 2

The terms Tiði ¼ 1; 2; . . .36Þ used in Eqs. (34), (35)

and (36) are:
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T1 ¼ �C11pþ aC12R1 þ l11p
2Q1 � a2l13Q1;

T2 ¼ �C11p� aC12R2 þ l11p
2Q2 � a2l13Q2;

T3 ¼ �C11pþ bC12R3 þ l11p
2Q3 � b2l13Q3;

T4 ¼ �C11p� bC12R4 þ l11p
2Q4 � b2l13Q4;

T5 ¼ �C11pþ cC12R5 þ l11p
2Q5 � c2l13Q5;

T6 ¼ �C11p� cC12R6 þ l11p
2Q6 � c2l13Q6;

T7 ¼ �C11pþ C12kR7 þ l11p
2Q7 � k2l13Q7;

T8 ¼ �C11p� C12kR8 þ l11p
2Q8 � k2l13Q8;

T9 ¼ �C11pþ C12jR9 þ l11p
2Q9 � j2l13Q9;

T10 ¼ �C11p� C12jR10 þ l11p
2Q10 � j2l13Q10;

T11 ¼ �C11pþ C12R11xþ l11p
2Q11 � l13Q11x

2;

T12 ¼ �C11p� C12R12xþ l11p
2Q12 � l13Q12x

2;

T13 ¼ �C12pþ aC33R1 þ l13p
2Q1 � a2l11Q1;

T14 ¼ �C12p� aC33R2 þ l13p
2Q2 � a2l11Q2;

T15 ¼ �C12pþ bC33R3 þ l13p
2Q3 � b2l11Q3;

T16 ¼ �C12p� bC33R4 þ l13p
2Q4 � b2l11Q4;

T17 ¼ �C12pþ cC33R5 þ l13p
2Q5 � c2l11Q5;

T18 ¼ �C12p� cC33R6 þ l13p
2Q6 � c2l11Q6;

T19 ¼ �C12pþ C33kR7 þ l13p
2Q7 � k2l11Q7;

T20 ¼ �C12p� C33kR8 þ l13p
2Q8 � k2l11Q8;

T21 ¼ �C12pþ C33jR9 þ l13p
2Q9 � j2l11Q9;

T22 ¼ �C12p� C33jR10 þ l13p
2Q10 � j2l11Q10;

T23 ¼ �C12pþ C33R11xþ l13p
2Q11 � l11Q11x

2;

T24 ¼ �C12p� C33R12xþ l13p
2Q12 � l11Q12x

2;

T25 ¼ aC44 þ C44pR1 � 2al44pQ1;

T26 ¼ �aC44 þ C44pR2 þ 2al44pQ2;

T27 ¼ bC44 þ C44pR3 � 2bl44pQ3;

T28 ¼ �bC44 þ C44pR4 þ 2bl44pQ4;

T29 ¼ cC44 þ C44pR5 � 2cl44pQ5;

T30 ¼ �cC44 þ C44pR6 þ 2cl44pQ6;

T31 ¼ C44kþ C44pR7 � 2kl44pQ7;

T32 ¼ �C44kþ C44pR8 þ 2kl44pQ8;

T33 ¼ C44jþ C44pR9 � 2jl44pQ9;

T34 ¼ �C44jþ C44pR10 þ 2jl44pQ10;

T35 ¼ C44pR11 þ C44x� 2l44pQ11x;

T36 ¼ C44pR12 � C44xþ 2l44pQ12x

Appendix 3

The expression for higher order stress s311 derived

using the constitutive relations and the assumed form

of the exact solutions may be written as follows:

s311 ¼ V1U
1
1e

ax3 þ V2U
2
1e

�ax3 þ V3U
3
1e

bx3
�
þV4U

4
1e

�bx3 þ V5U
5
1e

cx3 þ V6U
6
1e

�cx3

þV7U
7
1e

jx3 þ V8U
8
1e

�jx3 þ V9U
9
1e

kx3

þ V10U
10
1 e�kx3 þ V11U

11
1 exx3

þ V12U
12
1 e�xx3Þ sinðpx1Þ

ð44Þ

where, the expressions for Vi ði ¼ 1; 2; . . .12Þ are as

follows:

V1¼
1

4
�apða1þ4ða3þa4Þþ2a5Þð

þ2a2R1ða1þ2a3Þþp2R1ð�ða1þ2a5ÞÞþ4al13Q1

�
V2¼

1

4
apða1þ4ða3þa4Þþ2a5Þð

þ2a2R2ða1þ2a3Þþp2R2ð�ða1þ2a5ÞÞ�4al13Q2

�
V3¼

1

4
�bpða1þ4ða3þa4Þþ2a5Þð

þ2b2R3ða1þ2a3Þþp2R3ð�ða1þ2a5ÞÞþ4bl13Q3

�
V4¼

1

4
bpða1þ4ða3þa4Þþ2a5Þð

þ2b2R4ða1þ2a3Þþp2R4ð�ða1þ2a5ÞÞ�4bl13Q4Þ

V5¼
1

4
�cpða1þ4ða3þa4Þþ2a5Þð

þ2c2R5ða1þ2a3Þþp2R5ð�ða1þ2a5ÞÞþ4cl13Q5

�
V6¼

1

4
cpða1þ4ða3þa4Þþ2a5Þð

þ2c2R6ða1þ2a3Þþp2R6ð�ða1þ2a5ÞÞ�4cl13Q6

�
V7¼

1

4
�kpða1þ4ða3þa4Þþ2a5Þð

þ2k2R7ða1þ2a3Þþp2R7ð�ða1þ2a5ÞÞþ4kl13Q7

�
V8¼

1

4
kpða1þ4ða3þa4Þþ2a5Þð

þ2k2R8ða1þ2a3Þþp2R8ð�ða1þ2a5ÞÞ�4kl13Q8

�
V9¼

1

4
�jpða1þ4ða3þa4Þþ2a5Þð

þ2j2R9ða1þ2a3Þþp2R9ð�ða1þ2a5ÞÞþ4jl13Q9

�
V10¼

1

4
jpða1þ4ða3þa4Þþ2a5Þð

þ2j2R10ða1þ2a3Þþp2R10ð�ða1þ2a5ÞÞ�4jl13Q10

�
V11¼

1

4
�pxða1þ4ða3þa4Þþ2a5Þð

þ2R11x
2ða1þ2a3Þþp2R11ð�ða1þ2a5ÞÞþ4l13Q11x

�
V12¼

1

4
pxða1þ4ða3þa4Þþ2a5Þð

þ2R12x
2ða1þ2a3Þþp2R12ð�ða1þ2a5ÞÞ�4l13Q12x

�
ð45Þ
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