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Abstract In this paper, a model of two dimensional

problem of generalized thermoelasticity for a fiber-

reinforced anisotropic elastic medium under the effect

of temperature dependent properties is established.

Reflection phenomena of plane waves in an initially

stressed thermoelastic medium is studied in the

context of two theories proposed by Lord–Shulman

and Green–Lindsay. Using proper boundary condi-

tions, the amplitude ratios and energy ratios for

various reflected waves are presented. The phase

speeds, reflection coefficients and energy ratios are

computed numerically with the help of MATLAB

programming and are depicted graphically to show the

effect of initial stress and temperature dependent

properties. It is found that there is no dissipation of

energy at the boundary surface during reflection. A

comparison between the two theories is also depicted

in the present investigation.

Keywords Reflection � Anisotropic material � Fiber-
reinforced � Initial stress � Temperature dependent

elastic modulus
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1 Introduction

Weight reduction is often the principal consideration

for selecting fiber reinforced polymers over metals and

for many applications, they provide a higher material

index than metals and therefore suitable for minimum

mass design. Depending on the application, there are

other advantages of using fiber reinforced composites,

such as higher damping, no corrosion, parts integra-

tion, control of thermal expansion and so on. Fiber-

reinforced polymers have a great potential for replac-

ing reinforced concrete and steel in bridges, buildings

and other civil infrastructures. The principal reason for

selecting these composites is their corrosion resis-

tance, which leads to longer life and lower mainte-

nance and repair costs. Another advantage of using

fiber reinforced polymers for large bridge structures is

their light weight, which means lower dead weight for

the bridge, easier transportation from the production

factory (where the composite structure can be prefab-

ricated) to the bridge location, easier hauling and

installation and less injuries to people in case of an

earthquake . With lightweight construction, it is also

possible to design bridges with longer span between

the supports.

During the last few decades, fiber-reinforced theory

has been successfully employed for modeling different

processes and systems, specially in the area of

engineering, mechanics and physics. Fiber-reinforced

composites have many applications in commercial and

industrial areas. Fiber-reinforced polymer composites
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are also used in building construction, furniture, power

industry, oil industry, medical industry, aircraft, space,

automotive, sporting goods etc. The elastic moduli for

fiber-reinforced material were introduced by Hashin

and Rosen (1964). Pipkin (1973) and Rogers (1975)

did exciting works on the subject. Belfield et al.

(1983) investigated the stress in elastic plates rein-

forced by fibers lying in concentric circles. Sengupta

and Nath (2001) discussed the two-dimensional prob-

lem of surface waves in an anisotropic, fiber-rein-

forced solid elastic medium. Singh and Singh (2004)

solved a two dimensional problem on reflection of

plane waves at free surface of a fiber-reinforced

elastic-half space.

Singh (2006) discussed the propagation of plane

harmonic waves in a fiber-reinforced anisotropic

thermoelastic medium. Othman and Atwa (2012)

employed normal mode technique to study the prop-

agation of plane waves in fiber-reinforced anisotropic

thermoelastic half-space under the effect of magnetic

field. Othman and Said (2012) studied the effect of

rotation on two-dimensional problem of a fiber-

reinforced thermoelastic medium with one relaxation

time. Othman and Said (2015) in another article

analyzed the effect of rotation on a fiber-reinforced

medium under generalized magneto-thermoelasticity

with internal heat source. Micromechanical finite

element analysis of effective properties of a unidirec-

tional short piezoelectric fiber reinforced composite is

presented by Panda and Panda (2015). Reflection of

thermoelastic waves from insulated boundary of a

fiber-reinforced half-space under influence of rotation

and magnetic field was investigated by Elsagheer and

Abo-Dahab (2016).

The conventional theory of thermoelasticity can be

used in several particular problems, although this turns

out to predict an infinite speed of thermal signals,

which is physically unrealistic. Generalized theories

proposed by Lord and Shulman (1967) and Green and

Lindsay (1972) are two well known theories of

thermoelasticity to overcome this deficiency. After

that, providing sufficient basic modifications in gov-

erning equations, Green and Naghdi (1991, 1992,

1993) produced an alternative theory which was

further divided into three different parts, referred to

as GN theory of type I, II, III. Under Green–Lindsay

theory, Darabseh et al. (2012) studied the transient

thermoelastic response of a thick hollow cylindermade

of functionally graded material under thermal loading.

The elastic modulus is an important physical

property of materials reflecting the elastic deformation

capacity of the material when subjected to an applied

external load. In most of the investigations, the

material properties are assumed to be constant.

However, it is well known that the physical properties

of engineering materials vary with temperature. At

high temperature, the material characteristics such as

modulus of elasticity, Poisson’s ratio, coefficient of

thermal expansion and the thermal conductivity are no

longer constant, Lomakin (1976). Ezzat et al. (2001)

solved a problem of generalized thermoelasticity with

two relaxation times in an isotropic elastic medium

with temperature-dependent mechanical properties.

Aouadi (2006) examined the effect of temperature

dependency of elastic modulus on the behavior of two-

dimensional solutions in micropolar thermoelastic

medium. Othman and Kumar (2009) constructed the

model of generalized magneto-thermoelasticity in an

isotropic perfectly conducting elastic medium under

the effect of temperature dependent properties. Kalkal

and Deswal (2014) adopted normal mode technique to

investigate the effect of phase lags on three-dimen-

sional wave propagation with temperature-dependent

properties. Othman and Said (2014) investigated the

influence of magnetic field and temperature dependent

properties on the plane waves in a fiber-reinforced

thermoelastic medium in the context of three-phase-

lag theory and Green–Naghdi theory without energy

dissipation.

Recent years have seen an ever growing interest in

investigation of the problems related to initially

stressed elastic medium, due to its numerous applica-

tions in various fields, such as earthquake engineering,

seismology and geophysics. The earth is assumed to be

under high initial stresses. The dynamic problem of an

elastic medium under initial stress was solved by Biot

(1965). The linear theory of thermoelasticity with

hydrostatic initial stress for an isotropic medium was

developed by Montanaro (1999). Abbas and Abd-Alla

(2011) studied the two-dimensional problem of gen-

eralized thermoelasticity for a fiber-reinforced aniso-

tropic thick plate under initial stress. Kumar et al.

(2015) showed the effect of the initial stress on wave

propagation in fiber-reinforced transversely isotropic

thermoelastic medium. Deswal et al. (2016) studied

the dynamical interactions of the thermal, elastic and

diffusion fields under the fractional order generalized

thermoelasticity theory with two-temperature and
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initial stress. Propagation of waves in an initially

stressed generalized electro-microstretch thermoelas-

tic medium with temperature dependent properties

under the effect of rotation was investigated by

Deswal et al. (2017). Yadav et al. (2017) analyzed

the thermoelastic interactions in a homogeneous

isotropic electro-microstretch semi-space caused by

a mechanical source acting on an initially stressed

surface.

In the present manuscript, we have studied the

possibility of wave propagation in a fiber-reinforced

initially stressed anisotropic thermoelastic medium

with temperature dependent properties. The formulae

for amplitude ratios and energy ratios corresponding

to various reflected waves have been presented when a

set of coupled waves strikes obliquely at boundary

surface of the assumed model and their variations with

angle of incidence are presented graphically. The

phase speeds of various existing waves are computed

and their variations are depicted graphically against

frequency. It has been verified that during reflection

phenomena, the sum of energy ratios is equal to unity

at each angle of incidence. Some comparisons have

been made in figures to estimate the effects of initial

stress and temperature dependent properties.

The present information may be useful in some

possible experiment based problems on wave propa-

gation in fiber-reinforced initially stressed anisotropic

thermoelastic medium with temperature dependent

properties under Lord–Shulman and Green–Lindsay

models. The efforts of this research are focused on

systematically studying the difference of theories and

effect of considered parameters in generalized ther-

moelastic medium. Currently there is no publication

available that is related to reflection phenomenon in a

fiber-reinforced initially stressed anisotropic thermoe-

lastic medium with temperature dependent properties

under Lord–Shulman and Green–Lindsay models.

Hence, to address this issue, we have solved a two-

dimensional problem in such type of medium.

2 Governing equations

In the context of Lord–Shulman (LS) and Green–

Lindsay (GL) theories, the constitutive relations and

field equations, after ignoring the body force for a

fiber-reinforced thermoelastic anisotropic medium

with initial stress are given as:

(i) Constitutive relations [Belfield et al. (1983),

Xiong and Tian (2016)]:

rij ¼� Pðdij þ xijÞ þ kekkdij
þ 2lTeij þ aðakamekmdij þ aiajekkÞ
þ 2ðlL � lTÞðaiakekj þ ajakekiÞ
þ bakamekmaiaj � bijðHþ s1 _HÞdij;

ð1Þ

where P is the initial pressure, rij are the

components of stress, eij are the components

of strain, k, lT are elastic constants, a; b; and
ðlL � lTÞ are reinforced parameters, dij is the
Kronecker’s delta, s1 is the thermal relax-

ation time, T is the absolute temperature, T0 is

the reference temperature chosen so that

jðT � T0Þ=T0j � 1, H is temperature devia-

tion from reference temperature i.e. H ¼
T � T0 and the components of vector a~ are

ða1; a2; a3Þ, where a21 þ a22 þ a23 ¼ 1, b11 ¼
ð2kþ 3aþ 4lL � 2lT þ bÞa11 þðkþ aÞa22;
b22 ¼ ð2kþ aÞa11 þ ðkþ 2lTÞa22; a11 and

a22 are coefficients of linear thermal expan-

sion. The deformation tensor and xij can be

expressed in terms of the displacement ui as

eij ¼
1

2
ðui;j þ uj;iÞ; ð2Þ

xij ¼
1

2
ðuj;i � ui;jÞ: ð3Þ

(ii) Equation of motion

rji;j ¼ q€ui; ð4Þ

where q is the mass density.

(iii) The balance law of energy

qi;i ¼ qh� _ST0; ð5Þ

where S is the entropy per unit volume and

h is heat source per unit mass.

(iv) The entropy linear equation

S ¼ qCE

T0
Hþ bijeij; ð6Þ

where CE is the specific heat.

(v) Heat conduction law

qi þ s0 _qi ¼ �kijH;i ; ð7Þ
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where qi are the components of heat flux

vector, s0 is the thermal relaxation time and

kij is the thermal conductivity. Elimination of

S; qi and eij from Eqs. (2) and (5)–(7) in the

absence of heat source yields the following

coupled heat equation for the two models (LS

and GL) as

kijH;ij ¼ qCE

o

ot
þ s0

o2

ot2

� �
H

þ T0
o

ot
þ g0s0

o2

ot2

� �
bijui;j; ð8Þ

where g0 is a unifying parameter, a comma

followed by suffix denotes material deriva-

tive and a superposed dot denotes the

derivative with respect to time t.

Moreover, the use of the relaxation times s1 in Eq. (1),

s0 and unifying parameter g0 in Eq. (8) makes these

fundamental equations valid for the two different

theories of thermoelasticity:

(i) Lord and Shulman’s theory (1967)

s1 ¼ 0; s0 [ 0; g0 ¼ 1:

(ii) Green and Lindsay’s theory (1972)

s1 [ 0; s0 [ 0; g0 ¼ 0:

Our aim is to examine the effect of the temperature

dependent nature of the material. So we assume that

[Othman and Said (2014)]

ðk1; a1; b1; b1ij; lL1; lT 1Þ

¼ 1

ð1� a�T0Þ
ðk; a; b; bij; lL; lTÞ; ð9Þ

where a� is an empirical material constant.

3 Statement of the problem

We consider the problem of a fiber-reinforced

anisotropic initially stressed half space with temper-

ature dependent properties, initially at the uniform

temperature T0. The rectangular cartesian co-ordinates

are introduced having origin on the surface ðx ¼ 0Þ
and x-axis pointing vertically downward into the half

space, which is thus designated as x� 0. We restrict

our analysis to a two dimensional problem in

xy�plane. Thus all the field quantities are independent

of the variable z.

The components of displacement vector u~¼
ðu1; u2; u3Þ assume the form

u ¼ u1 ¼ uðx; y; tÞ; v ¼ u2 ¼ uðx; y; tÞ; and w

¼ u3 ¼ 0:

ð10Þ

We choose the fiber direction as a~¼ ð1; 0; 0Þ, so that

the preferred direction is x-axis. Eqs. (1), (4) and (8)

with the help of (2), (3), (9) and (10), take the form

r11 ¼ A1

ou

ox
þ A2

ov

oy
� a0b111 1þ s1

o

ot

� �
H� P;

ð11Þ

r22 ¼ A2

ou

ox
þ A3

ov

oy
� a0b122 1þ s1

o

ot

� �
H� P;

ð12Þ

r12 ¼ a0lL1 �
P

2

� �
ov

ox
þ a0lL1 þ

P

2

� �
ou

oy
; ð13Þ

r21 ¼ a0lL1 �
P

2

� �
ou

oy
þ a0lL1 þ

P

2

� �
ov

ox;
ð14Þ

q
o2u

ot2
¼A1

o2u

ox2
þ A2 þ a0lL1 þ

P

2

� �
o2v

oyox

þ a0lL1 �
P

2

� �
o2u

oy2

�a0b111
oH
ox

þ s1
o _H
ox

 !
;

ð15Þ

q
o2v

ot2
¼A3

o2v

oy2
þ A2 þ a0lL1 þ

P

2

� �
o2u

oyox

þ a0lL1 �
P

2

� �
o2v

ox2

�a0b122
oH
oy

þ s1
o _H
oy

 !
;

ð16Þ

k11
o2

ox2
þ k22

o2

oy2

� �
H� q CE

o

ot
þ s0

o2

ot2

� �
H

¼ T0
o

ot
þ s0g0

o2

ot2

� �
b111

ou

ox
þ b122

ov

oy

� �
a0;

ð17Þ
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where A1 ¼ ðk1 þ 2a1 þ b1 þ 4lL1 � 2lT 1Þa0, A2 ¼
ða1þ k1Þa0, A3 ¼ ðk1 þ 2lT 1Þa0; a0 ¼ ð1� a�T0Þ.

To facilitate the solution, we introduce non-dimen-

sional variables as follows:

ðx0;y0;u0;v0Þ ¼ vc1ðx;y;u;vÞ; ðt0;s00;s01Þ ¼ vc21ðt;s0;s1Þ;

H0 ¼ b111
H
qc21

; P0 ¼ P

qc21
; r0ij ¼

rij
qc21

; ð18Þ

where

c21 ¼
A1

q
; v ¼ qCE

k11
:

Now, in terms of the non dimensional quantities

defined in (18), Eqs. (15)–(17) along with some

simplifications, provide the following relations (drop-

ping the prime notation)

o2u

ot2
¼ o2u

ox2
þ B1

o2u

oy2
þ B2

o2v

oyox
� a0

oH
ox

þ s1
o _H
ox

 !
;

ð19Þ

o2v

ot2
¼B2

o2u

oyox
þ B1

o2v

ox2
þþB3

o2v

oy2

� a0B4

oH
oy

þ s1
o _H
oy

 !
;

ð20Þ

o2H
ox2

þ B5

o2H
oy2

¼ oH
ot

þ s0
o2H
ot2

þ B6

o2u

oxot
þ B7

o2v

otoy

þ B8

o3u

ot2ox
þ B9

o3v

ot2oy
;

ð21Þ

where

B1 ¼
2a0lL1 � Pqc21

2A1

;

B2 ¼
2a0lL1 þ 2A2 þ Pqc21

2A1

;

B3 ¼
A3

A1

; B4 ¼
b122
b111

; B5 ¼
k22

k11
; B6 ¼

T0b1
2
11a0

A1qCE

;

B7 ¼ B6B4; B8 ¼
g0T0a0s0b1

2
11

A1qCE

; B9 ¼ B8B4:

4 Solution of the problem

Various types of waves generated in a homogeneous

and anisotropic half space will be discussed in this

section. To solve the Eqs. (19)–(21) analytically in the

form of the harmonic travelling waves, we call the

solution of the form:

ðu; v; hÞ ¼ ðu�; v�; h�Þ expfikð�x coshþ y sinhÞ � ixtg;
ð22Þ

where k is the wave number, x is the angular

frequency having the definition x ¼ kV , V being the

phase velocity and the pair ðcosh; sinhÞ denotes the

projection of wave normal onto the xy-plane.

Making use of expression (22), Eqs. (19)–(21) take

the form

k2D1 þ x2
� �

u� þ k2D2v
� þ kD3H

� ¼ 0; ð23Þ

k2D2u
� þ k2D4 þ x2

� �
v� þ kD5H

� ¼ 0; ð24Þ

kD6u
� þ kD7v

� þ k2D8 þ D9

� �
H� ¼ 0; ð25Þ

where

D1 ¼ �cos2h� B1sin
2h; D2 ¼ coshsinhB2;

D3 ¼ ia0 cos hþ s1x cos ha0;

D4 ¼ �B1 cos
2 h� B3 sin

2 h;

D5 ¼ �ia0B4 sin h� a0B4s1x sin h;

D6 ¼ B6x cos h� i cos hx2B8;

D7 ¼ iB9x
2 sin h� B7x sin h;

D8 ¼ � cos2 h� B5 sin
2 h; D9 ¼ ixþ s0x

2:

The condition for the existence of non trivial

solution of the homogeneous system of Eqs. (23)–

(25) provides us the characteristic equation satisfied

by V as

V6 þ AV4 þ BV2 þ C ¼ 0; ð26Þ

where
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A ¼ x2ðE1E9 þ E2E8 � E4E6Þ
E2E9

;

B ¼ x4ðE1E8 þ E2E7 � E4E5 � E3E6Þ
E2E9

;

C ¼ x6ðE1E7 � E3E5Þ
E2E9

; E1 ¼ D1D5 � D2D3;

E2 ¼ x2D5; E3 ¼ D2D5 � D3D4;

E4 ¼ �x2D3; E5 ¼ �D2D8;

E6 ¼ D5D6 � D2D9; E7 ¼ �D4D8;

E8 ¼ D5D7 � D4D9 � x2D8; E9 ¼ �x2D9:

The roots of equation (26) give three values of V2

which correspond to three coupled waves, namely,

quasi-longitudinal ðqP1Þ, quasi-transverse ðqP2Þ and

quasi-thermal ðqP3Þ propagating with velocities

V1;V2 and V3 respectively.

5 Reflection phenomena

Here, we shall investigate the reflection phenomena of

a coupled plane qP1 wave striking at the plane

boundary of considered half-space, propagating with

velocity V1 and making an angle h0 with the normal to

the surface. In order to satisfy the boundary condi-

tions, we postulate that incident qP1 wave generates

three reflected coupled plane waves qP1;2;3 of ampli-

tudes R1;2;3 propagating with phase speeds V1;2;3 and

making angles h1;2;3 respectively with the normal as

shown in Fig. 1. The full structure of the wave field

consisting of the incident and reflected waves can be

defined as

ðu; v; hÞ ¼ ð1; a1; b1ÞR0P
�
0 þ

X3
i¼1

ð1; ai; biÞRiP
þ
i

ð27Þ

where P�
0 ¼ expfik1ðy sinh0� xcosh0Þ� ix1tg, Pþ

i ¼
expfikiðy sinhiþ xcoshiÞ� ixitg, ai and biði¼ 1;2;3Þ
are the coupling parameters between u and v, u and h
respectively. The expressions of the coupling param-

eters are given as

ai ¼
k2i ðD1D5 � D2D3Þ þ x2

i D5

x2
i D3 � k2i ðD2D5 � D4D3Þ

;

bi ¼ � k2i D1 þ x2 þ k2i D2ai

kiD3

:

To determine the amplitudes R0; R1; R2 and R3, we

postulate some boundary conditions at the surface

x ¼ 0. The appropriate boundary conditions of the

problem can be written in mathematical form as

r11 þ P ¼ 0; r12 ¼ 0 and H ¼ 0 at x ¼ 0: ð28Þ

In order to satisfy the boundary conditions (28), the wave

numbers k1; k2; k3 and the incident and the reflected

angles are connected by the relation k1 sin h0 ¼
k1 sin h1 ¼ k2 sin h2 ¼ k3 sin h3, which can also be

expressed as (extended Snell’s law)

Fig. 1 Geometry of the

problem showing various

reflected waves
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sin h0
V1

¼ sin h1
V1

¼ sin h2
V2

¼ sin h3
V3

: ð29Þ

Using expressions (27) in boundary conditions (28)

(after making non-dimensional), one can obtain a

system of three non homogeneous equations in three

unknowns, which can be written as

X3
i¼1

bijZj ¼ Yi; ði ¼ 1; 2; 3Þ ð30Þ

where

b1j ¼ fikjðcos hj þ n1aj sin hÞ � a0bj þ ia0s1xjbjg;
b2j ¼ ðg1aj cos hj þ g2 sin hjÞikj; b3j ¼ bj;

Zj ¼
Rj

R0

; ðj ¼ 1; 2; 3Þ

and

Y1 ¼ fik1ðcos h0 � n1a1 sin h0Þ þ a0b1 � ix1s1b1g;
Y2 ¼ ik1ðg1a1 cos h0 � g2 sin h0Þ; Y3 ¼ �b1;

n1 ¼
A2

A1

; g1 ¼
a0lL1
A1

� P

2

� �
; g2 ¼

a0lL1
A1

þ P

2

� �
:

6 Energy partition

In order to check the physical rightness of this

problem, we must certify the energy balance during

reflection at the boundary surface. Following [Achen-

bach (1973)], the instantaneous rate of work of surface

traction is the product of the surface traction and the

particle velocity. This scalar product is called the

power per unit area denoted by P� and is given by

P� ¼ ðr11 þ PÞ _uþ r12 _v: ð31Þ

Let \P�
0 [ denotes the average energy carried along

incident wave, \P�
i [ ði ¼ 1; 2; 3Þ denote the aver-

age energy carried along reflected coupled waves. The

expressions for energy ratios Ei ði ¼ 1; 2; 3Þ for

reflected waves are given by

Ei ¼
\P�

i [
\P�

0 [
; ð32Þ

E1 ¼P0 cos h1 þ a1 sin h1 n1 þ
ðis1x1 � 1Þa0 b1

ik1

�

þðg1a1 cos h1 þ g2 sin h1Þa1
�
jZ1j2;

ð33Þ

E2 ¼P0 cos h2 þ a2 sin h2 n1 þ
ðis1x1 � 1Þa0 b2

ik2

�

þðg1a2 cos h2 þ g2 sin h2Þa2
�

k2

k1

� �
jZ2j2;

ð34Þ

E3 ¼P0 cos h3 þ a3 sin h3 n1 þ
ðis1x1 � 1Þa0 b3

ik3

�

þðg1a3 cos h3 þ g2 sin h3Þa3
�

k3

k1

� �
jZ3j2;

ð35Þ

where

P0 ¼ � cos h0 þ a1 sin h0 n1 þ
ðis1x1 � 1Þa0 b1

ik1

�

þðg2 sin h0 � g1a1 cos h0Þa1
��1

:

We note that these energy ratios depend on the elastic

properties of the medium, angle of incidence and

amplitude ratios.

7 Special cases

7.1 Case I: without temperature dependent

property

If we assume that the parameters k; lL; lT ; a; b and

bij are free from temperature dependent effect, i.e.

a� ¼ 0, then we shall be dealing with a half space

problem in an initially stressed fiber-reinforced ther-

moelastic medium. Taking into consideration the

above mentioned modifications, Eq. (30) will provide

us the reflection coefficients for the corresponding

problem. If we further neglect the initial stress from

the medium, then the results of the relevant problem
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coincide with those of Elsagheer and Abo-Dahab

(2016) with appropriate changes in the boundary

conditions after removing the rotation and magnetic

effects.

7.2 Case II: without initial stress

If we neglect the presence of initial stress from the half

space, then we shall be left with the problem of wave

propagation and its reflection in fiber-reinforced ther-

moelastic medium with temperature dependent proper-

ties. For this purpose, we shall set P = 0. With this

consideration, the corresponding reflection coefficients

for incidence of a set of coupled waves can be obtained

from the Eq. (30). If we further neglect the temperature

dependence of parameters then the results of the relevant

problem coincide with Singh (2006) with appropriate

changes in the theory and boundary conditions.

8 Numerical results and discussions

With an aim to discuss the behavior of wave propa-

gation through a fiber-reinforced, anisotropic initially

stressed mediumwith temperature dependent mechan-

ical properties in greater detail, a numerical analysis is

carried out. For the purpose of numerical computation,

the material constants of problem are taken [Singh

(2006)] and [Othman (2014)] as:

q ¼ 2660 kg m�3; lT 1 ¼ 1:89� 1010 N m�2;

a1 ¼ �1:28� 1010 N m�2;

lL1 ¼ 2:45� 1010 N m�2; k1 ¼ 7:59� 1010 N m�2;

b1 ¼ 0:32� 1010 N m�2;

k11 ¼ 0:0921� 103 J m�1 deg�1 s�1;

k22 ¼ 0:0963� 103 J m�1 deg�1 s�1;

a11 ¼ 0:017� 104 deg�1;

a22 ¼ 0:015� 104 deg�1; T0 ¼ 293K;

CE ¼ 0:787� 103J kg�1 deg�1; s0 ¼ 0:02s;

s1 ¼ 0:03s; x ¼ 2 s�1:

With these numerical values of parameters, we have

evaluated the amplitude ratios and energy ratios

corresponding to incident qP1 wave at different angles

of incidence varying from normal incidence to grazing

incidence. We have examined the variations of

amplitude ratios and energy ratios in the considered

medium for three different cases. (i) Medium under

initial stress and with temperature dependent proper-

ties (MISTD, a� ¼ 0:005; P ¼ 1, solid line) (ii)

Medium under initial stress (MIS, P ¼ 1; a� ¼ 0:0,

long dashed line) (iii) Medium with temperature

dependent properties (MTD, a� ¼ 0:005; P ¼ 0:0,

small dashed line). Figures 2, 3, 4 are plotted to

observe the effects of temperature dependency of

material constants and initial pressure on the profile of
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reflection coefficients. In Figs. 5, 6, 7, we have

examined the variation of amplitude ratios in a fiber-

reinforced initially stressed medium with temperature

dependent properties under Lord–Shulman (LS, solid

line) and Green–Lindsay (GL, long dashed line)

models.The dependence of energy ratios of various

reflected waves on angle of incidence is displayed in

Fig. 8. Figures (9, 10, 11, 12) are plotted with the

purpose to show the change in phase speeds with

frequency. All the graphs except Figs. (5, 6, 7) are

plotted for L–S theory only.

Figure 2 is plotted to display the variations of

moduli of amplitude ratio Z1 versus angle of

incidence. From the figure, we observe that values of

jZ1j remain in the neighborhood of unity for all the

cases in the entire range of angle of incidence. It can be

noticed from the figure that the presence of initial

stress has a slight increasing effect while temperature

dependency of material constants has decreasing

effect on the profile of amplitude ratio jZ1j. Figure 3

depicts the variations of absolute values of Z2 against

angle of incidence. It can be noticed from the

figure that the curve of jZ2j for MISTD case is upper

than that for both MIS and MTD cases. This has

happened due to the temperature dependency of

material constants and the presence of initial stress
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in the medium. Hence, temperature dependent mate-

rial constants and initial stress parameter have

increasing effect. The variations of reflection coeffi-

cient jZ3j are illustrated in Fig. 4. The presence of

temperature dependent material constants has an

increasing impact on the profile of this reflection

coefficient, while initial stress parameter has both

increasing and decreasing impacts.

Figure 5 is drawn with the purpose to display a

comparison of variation of reflection coefficient jZ1j
versus angle of incidence for LS and GL theories. It is

clear from the figure that the values of jZ1j for LS

theory are found to be larger as compared to GL

theory. It is also evident from the plot that the

reflection coefficient jZ1j has qualitatively similar

behavior for LS and GL theories. However, dissimi-

larity lies on the ground of magnitude. The behavior of

variation of reflection coefficient jZ2j against angle of
incidence has been expressed in Fig. 6 for LS and GL

theories. This reflection coefficient experiences a

similar pattern of variations in both the theories. We

observe from the figure that the values of jZ2j for GL
theory are found to be large as compared to LS theory.

In Fig. 7, we have plotted the curves to exhibit the

variations of reflection coefficient jZ3j for both the

theories. The figure shows that the values of jZ3j for LS
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theory are smaller than the values for GL theory in the

entire range except at one point. The reflection

coefficients jZ3j enjoys a similar pattern of variations

in both theories.

Figure 8 is plotted to analyze the variations of

modulus of energy ratios of reflected waves with the

angle of incidence h0 lying in the registered range of

incident coupled wave moving with velocity V1. The

curves of energy ratios jE2j and jE3j are plotted after

mounting up their original values by 1015 and 1019

respectively. It is noticed from the figure that the

values of jE1j and sum are almost equal to 1.0 i.e.

maximum energy is carried along reflected qP1 wave.

Since the reflection coefficients jZ2j and jZ3j are found

to be very small, therefore the corresponding energy

ratios jE2j and jE3j are also very small in the entire

range of angle of incidence except at grazing inci-

dence, where their values are zero. It has been verified

that at each angle of incidence
P3

i¼1 Ei � 1 . Thus we

conclude that energy balance law is verified for each

angle of incidence.

Figure 9 is drawn to exhibit the variations of

modulus of speed V1 with frequency. It is found from

the figure that initial stress parameter has caused a very

little impact, while the temperature dependency of

material constants has strongly influenced the velocity

V1. The presence of temperature dependency of
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material constants has a decreasing impact on the

profile of V1, while initial stress parameter has both

increasing and decreasing effects. For better presen-

tation, the variations of phase speed V1 for MISTD,

MIS and MTD cases have also been shown separately

in Figs. 10a–c respectively. The frequency depen-

dency of jV2j is demonstrated graphically in Fig. 11. It

can be noticed from the figure that the curve of jV2j for
MISTD case is lower than that for MTD case. This is

due to the effect of initial stress parameter. From the

numerical values, it can be observed that the presence

of temperature dependency of material constants has

both increasing and decreasing impacts on jV2j. In
Fig. 12, a graphical representation is given for the

variations of absolute values of velocity V3 with

frequency. We have observed from the figure that the

curve of jV3j for MISTD case is higher than that for

MIS case and lower than MTD case. The little
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differences between absolute values of phase speed in

MISTD andMTD cases show the small effect of initial

stress. The values of jV3j show continuously increas-

ing behavior with increasing frequency. The presence

of temperature dependency of material constants has

significantly increased the magnitude of jV3j.

9 Concluding remarks

In this paper, a mathematical treatment has been

presented to discuss the phenomena of elastic wave

propagation in a fiber-reinforced thermoelastic

medium under initial stress and temperature depen-

dent properties. The expressions giving the reflection

coefficients and energy ratios have been presented

graphically. From the analysis of the illustrations, we

can arrive at the following conclusions:

• Numerical results show that the reflection coeffi-

cients of various reflected waves are significantly

affected by initial stress parameter and tempera-

ture dependence of material constants.

• Temperature dependence of material constants has

an increasing effect on reflection coefficient jZ2j
and jZ3j; while decreasing effect is observed on

reflection coefficient jZ1j.
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• While studying the numerical results, it is observed

that the maximum amount of the incident energy

goes along the reflected wave corresponding to the

reflection coefficient jZ1j.
• The modulus values of reflection coefficients jZ2j

and jZ3jcorresponding to an incident coupled wave
are found to be small for LS theory as compared to

GL theory, whereas, reverse happens for the

reflection coefficient jZ1j.
• The numerical results reveal that sum of the

modulus values of energy ratios is approximately

unity at each angle of incidence, thus proving the

law of conservation of energy.

• It is apparent from the Figs. 10, 11, 12 that the

numerical values of phase speeds V2 and V3 have

decreased due to the presence of initial stress,

while increasing and decreasing effects are

observed on phase speed V1. Presence of temper-

ature dependent material constants decreases the

numerical values of the phase speed V1, increases

the numerical values of phase speed V3 and has

both increasing and decreasing effects on the

profile of phase speed V2.

Wave phenomenon in a thermoelastic medium is of

great practical importance in various technological

and geophysical circumstances. The propagation of

waves along with other geophysical and geothermal

data carries information about the structure and

distribution of underground magnum. The wave

propagation as part of exploration seismology helps

in various economic activities like tracing of hydro-

carbons and other mineral ores which are essential for

various developmental activities like construction of

dams, huge buildings, roads, bridges, the design of

highways as well as foundation problems in soil

mechanics. The introduction of initial stress and

temperature dependent material constants to the

generalized thermoelastic medium provides a more

realistic model for these studies. The present theoret-

ical results may provide interesting information for

experimental scientists / researchers/ seismologists

working on this subject.
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