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Abstract A hybrid method using an approximation

that is based on the finite element analysis and

empirical modeling is proposed to analyze the

dynamic characteristics of a rubber bushing. The

hyperelastic–viscoplastic model and an overlay

method are used to obtain the hysteresis of the rubber

bushing in the finite element analysis. A spring,

fractional derivatives, and frictional components are

used in the empirical model to obtain the dynamic

stiffness in wide ranges of the excitation frequencies

and amplitudes. The parameters of the proposed

empirical model are determined using the hysteresis

curves that were obtained from the finite element

analysis. The dynamic stiffness of the rubber bushing

in the wide ranges of the frequencies and amplitudes

was predicted using the proposed hybrid method and

was validated using lower arm bushing experiments.

The proposed hybrid method can predict the dynamic

stiffness of a rubber bushing without the performance

of iterative experiments and the incurrence of a high

computational cost, making it applicable to analyses

of full-size vehicles with numerous rubber bushings

under various vibrational loading conditions.

Keywords Rubber bushing � Finite element

method � Overlay method � Empirical model �
Dynamic equivalent stiffness

1 Introduction

Rubber bushings are used for several industrial

components to transfer motion from one part to

another. In automotive suspension systems, rubber

bushings play the role of an isolator by reducing the

external loadings and transmitted vibrations. Although

the rubber bushing is a prevalent component in

automobiles, it is still challenging to predict the actual

behavior of the rubber bushing due to its dynamic

characteristics.

The dynamic characteristics of a rubber bushing are

dependent on several factors such as the amplitude,

frequency, temperature and so on. The dynamic

stiffness of the rubber material is decreased with the

increasing of the excitation amplitude. Furthermore,

the associated amplitude effect is more evident

regarding filled rubber compared with natural rubber,

and this is due to the disintegration of the filler-matrix

structures that is called the Fletcher-Gent effect (1954)

or the Payne effect (1971). Medalia (1978) investi-

gated the amplitude-dependent behavior of elas-

tomeric material by studying the couplings between

the materials and the dynamic strain. Dean et al.
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(1984) studied the variation of the dynamic stiffness of

carbon-black filled rubber in terms of the frequency,

strain amplitude, and temperature, reporting on the

observed inseparable relationships between these

measures. Coveney et al. (1995) applied the standard

triboelastic solid model (STS) to characterize the

amplitude dependence of a heavily filled rubber

isolator.

The dynamic stiffness of rubber is increased with

the increasing of the frequencies because of the

viscoelastic effect that is generated from the delayed

reorganization of the polymer chain. This viscoelastic

response was initially characterized by the Maxwell

model and the Kelvin–Voight model (Findley, Davis

1989); however, the correlations of each model with

the creep and the stress relaxation, respectively, are

poor. Through a combining of the Maxwell model and

the Kelvin–Voight model, the standard linear solid

model (SLS) was proposed to overcome these draw-

backs (Banks et al. 2011). Kaliske and Rohert (1997)

proposed a three-dimensional visocoelastic model

based on the Maxwell–Wiechert model. Govindjee

and Simo (1992) suggested a viscoelastic-damage

model containing the Mullin’s effect (1969), which is

the softening phenomenon in filled rubber. Wineman

et al. (1998) researched the Popkin-Rogers nonlinear

viscoelastic formulations (1968) using the force–

displacement approach. Lu (2006) proposed a modi-

fied fractional derivative model that was initially

adopted by Bagley and Torvik (1983) to predict

complex modulus of elastomeric material under high

frequencies.

Although linear viscoelastic models can be used to

predict the actual behavior of rubber bushings in a

small strain state, they are limited by heavily filled

rubber and large strain states. To avoid these draw-

backs, the coupled model with amplitude and fre-

quency effects was investigated. Berg (1998)

proposed a one-dimensional empirical model that is

a combination of the spring, dashpot, and Coulomb-

friction components that represent the amplitude and

frequency dependent behaviors. Sjöberg and Kari

(2002) proposed a modified empirical model by using

fractional derivative. Garcı́a Tárrago et al.

(2007a, b, c) suggested a dynamic-stiffness model

that involves the geometric information of the rubber

bushing for which a modified-stiffness term that was

suggested by Horton et al. is utilized (2000a, b).

Under a large deformation, the dynamic stiffness

shows an increasing tendency unlike a small-defor-

mation case. To describe this effect, Dzierzek (2000)

suggested a nonlinear elastic component that accu-

rately provided the dynamic stiffness of the rubber

bushing in a wide amplitudinal range. Lijun et al.

(2010) proposed a novel model using a nonlinear

elastic part and a reduced viscoelastic term. Puel et al.

(2013) investigated the implementation of a rate-

dependent triboelastic (RT) model for which they

adopted a smoothing process. Luo et al. (2013)

researched the effect of the preload on the rubber

absorber in rail-fastening systems, and they suggested

a technique to obtain the dynamic stiffness. Those

empirical models are convenient as they can depict the

amplitude and frequency effects on the dynamic

stiffness by using model parameters that have been

obtained from several experiments. In this process,

however, the empirical-model parameters are geom-

etry-dependent, and iterative experiments are required

to identify the parameters when the geometry changes.

In addition to the empirical bushing models,

constitutive modeling has also been studied. The

constitutive models can be implemented regardless of

the geometry of the bushing because they are geom-

etry-independent. These models are already prede-

fined in the finite element (FE) codes. A hyperelastic–

viscoplastic model for which an overlay method that

additively superposes the hyperelastic, viscoelastic,

and elastoplastic elements was investigated to repre-

sent the amplitude and frequency dependencies

(Olsson 2007; Gracia et al. 2010). Moreover, Oscar

and Centeno (2009) investigated the hyperelastic–

viscoelastic bushing model and used full-vehicle

transient-crash simulations for its validation. Kha-

jehsaeid et al. (2013) proposed an explicit time-

discrete formulations for hyperelastic–viscoelasitc

model which was validated with experimental results

under axial–torsional coupled modes of elastomeric

bushing. Kaya et al. (2016) suggested an approach for

the acquisition of the target stiffness of a vehicular

rubber bushing using hyperelastic and shape-opti-

mized modeling. Also, Cao et al. (2016) investigated

the effects of the rubber bushing on the bearing

dynamics using the explicit finite element method

(EFEM) and the dynamic bearing model (DBM). Even

though constitutive models effectively predict the

dynamic stiffness, they require a large computational
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time to calculate the stiffness value for each corre-

sponding amplitude and frequency.

In this study, to supplement the drawbacks of

previous methods, a new approach for which the FE

method is combined with the empirical model to

predict the bushing dynamic stiffness is proposed. The

relevant procedure is shown in Fig. 1. First, a

geometric model of a rubber bushing is built using

an FE code. A hyperelastic–viscoplastic model that

was defined using the overlay method is used to

predict the hysteresis curves of the rubber bushing.

These hysteresis curves were used to determine the

empirical-model parameters for the prediction of the

dynamic stiffness of the rubber bushing in wide ranges

of frequencies and amplitudes. FE simulations are

advantageous because a hysteresis curve can be

obtained regardless of the bushing geometry that is

used since the FE model is established by the

geometry-independent material properties of rubber.

However, FE-simulation constructions of the rubber-

bushing dynamic stiffness within a wide range of

excitation frequencies and amplitudes incur very high

computational costs. To reduce this central-process-

ing-unit (CPU) time, a modified empirical model is

proposed to complement the FE analysis. The FE

simulations of only a few loading cases need to be

performed to define the empirical model. Subse-

quently, the established empirical model predicts the

dynamic stiffness of the filled rubber bushing in wide

ranges of the excitation frequencies and amplitudes.

The proposed hybrid method makes it possible to

predict the dynamic stiffness of the rubber bushing

without the need for iterative experiments and the

incurrence of an expensive computational cost.

Fig. 1 Schematic of a hybrid method combining the finite element analysis and empirical modeling
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2 Experiments

Rubber bushings serves as connectors and shock

absorbers in the automotive suspension system illus-

trated in Fig. 2. Four bushings are ensuring assembly

between a metallic sub frame and two lower control

arms. Two kinds of bushings are used depending on

the most solicited direction of loading such as

cylindrical A-bushing (this study) and G-bushing with

complex geometry. As denoted previously, the rubber

bushings are essential to absorb shocks and vibrations

due to irregular ground surfaces, incline of the

suspension system and motor induced vibrations. It

is important to predict the mechanical properties of the

rubber bushing such as dynamic stiffness because it is

an indicator of the ability of the part to withstand high

levels of shock and vibrations during its lifetime.

To characterize the mechanical behavior of the

rubber bushing, radial-loading tests were conducted.

The specimen that was used in the experiments is a

cylindrical lower arm bushing composed of carbon-

black filled rubber, and the rubber material is between

the inner and outer steel sleeves. The sample and its

dimensions are shown in Fig. 3a. The experiments

were conducted by following the ASTM D5992-96

standard (1996). The specimen was mounted on an

Instron 8801 (Instron, USA.) servo-hydraulic testing

machine. The maximum axial-force capacity of the

testing-machine actuator is 100 kN, while its load-cell

accuracy is 0.005%. A holding jig was used to fix the

specimen and to impose the radial-loading condition,

as shown in Fig. 3b. Therefore, the outer-bushing

sleeve is fixed, and a displacement is imposed onto the

inner sleeve as a sine-wave signal with a frequency

range of 0.1–20 Hz and an amplitude range of

0.2–2.4 mm. The reaction force was extracted and

recorded from these experiments. It was reliable to

record reaction forces by using one directional load

cell on test machine because a holding jig was used to

ensure a fixed radial boundary conditions of rubber

bushing. So, the hysteresis curves were obtained by

representing displacement (input) against reaction

force (output). Moreover, to eliminate the Mullin’s

effect of the rubber material, 20 cycles of the sample

were initially loaded. By limiting the number of test

cycles, a constant temperature was maintained, and

this first prevented the heating and then the softening

of the specimen.

Figure 4 shows the hysteresis loop that was

obtained from the radial-loading tests. Note that the

measuring noise was not considerable even for small

amplitudes. For instance, for an amplitude of 0.2 mm,

the total force recorded is almost 300 N. It was large

enough compared to measured noise fluctuation of

10 N. In the region of the small amplitude (0.6 mm),

under the quasistatic condition, the shape of the

hysteresis loop is eliptical, as shown in Fig. 4a.

However, under the large amplitude (2.4 mm), the

bent hysteresis loop is due to the dominance of

compressive stress in the rubber, as shown in Fig. 4a.

In this case, the equivalent stiffness shows an

increasing tendency. Contrarily, although it is under

the large amplitude, this phenomenon does not appear

under the axial-loading conditions because shear stress

is the main occurrence in the material. Similarly, this

amplitude-dependent behavior is also observed under

the dynamic condition (10-Hz excitation), as shown in

Fig. 4b. In this case, the hysteresis-curve bandwidth is

wider than the quasistatic result, and the stiffness

magnitude was increased; this behavior is due to the

increasing of the viscoelastic-damping force as the

excitation frequency was increased.

3 Numerical modeling

3.1 Finite element modeling

Generally, in rheological models, the stress tensor of a

rubber bushing is additively decomposed into elastic

re, viscoelastic rv, and elastoplastic rep parts, and it is
defined by the following equation:

r ¼ re þ rv þ rep ð1Þ

The rate-dependent response is represented by the

viscoelastic component. Conversely, the amplitude-

Fig. 2 Schematic of an automobile suspension system and the

rubber bushing which connects the sub frame to the lower

control arms
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dependent response is considered using the elasto-

plastic component. In the FEmodeling, the summation

of these effects is performed using the overlay method.

For the overlay model, the hyperelastic, viscoelastic,

and elastoplastic elements were combined to obtain an

equivalent element, as shown in Fig. 5. These ele-

ments must share the same nodes to preserve the same

displacement field. The commercial FEM package

Abaqus (ABAQUS, Inc., USA) offers the possibility

to overlap elements with different properties for the

attainment of an equivalent behavior.

3.1.1 Hyperelastic model

The hyperelastic effect is mainly considered using the

strain-energy density function, which is defined by the

uniaxial, biaxial, and shear tests. Among the com-

monly used hyperelastic models, the Ogden model,

which is directly described in terms of the principal

stretch ratio, is adopted for the forthcoming analysis

and is presented by the following equation:

Fig. 3 a Shape and

geometry of the cylindrical

rubber bushing and the

b Experimental setup

Fig. 4 Hysteresis curve: a Under a Quasi-static Test (0.1 Hz) and b Under a Dynamic Test (10 Hz)
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U ¼
XN

i¼1

2di
a2i

�kai1 þ �kai2 þ �kai3 � 3
� �

þ
XN

i¼1

1

Di

J � 1ð Þ2i

ð2Þ

where �kn denotes the principal stretches, J is the

volume ratio, di denotes Ogden model constant, the

constants di and ai are obtained by a fitting with the

stress–strain curve of the material, and Di denotes the

compressibility. In the case of incompressible mate-

rial, Eq. (2) can be reduced to the following equation:

U ¼
XN

i¼1

2di
a2i

�kai1 þ �kai2 þ �kai3 � 3
� �

ð3Þ

3.1.2 Viscoelastic model

To consider time dependent effect, a viscoelastic

model is needed. The rate-dependent behavior is

modeled by the Prony series based on the stress-

relaxation properties. The Prony series allows for a

decrease of the shear modulus. The equation of the

Prony series is as follows:

G tð Þ ¼ G0 1�
XN

i¼1

gie
�t
si

� �" #
ð4Þ

whereG tð Þ andG0 represent the shear modulus and the

initial shear modulus, respectively, and the terms gi

and si denote the dimensionless shear-relaxation

modulus and the relaxation time, respectively.

3.1.3 Elastoplastic model

It is already been demonstrated that the dynamic

stiffness of rubber-bushing materials exhibit a strong

dependence on the displacement amplitude. This

observed plastic effect is known as the Payne effect

(1971). Since this effect is particularly observed for

the present rubber material, it became necessary to add

a simple von-Mises plasticity model comprising the

Young’s-modulus parameter E and the yield stress ry
to the constitutive modeling.

3.2 Empirical model

The objective of this section is to find the expression of

the radial dynamic stiffness k̂dyn. Even though the

dynamic stiffness can be directly determined using the

hysteresis curve of the finite element results, an

efficient approach is needed to predict the dynamic

stiffness in wide amplitudinal and frequency ranges.

The FE analysis is one of the available information-

attainment solutions here. Nevertheless, an iterative

finite element analysis requires considerable compu-

tational abilities and time. To supplement this prob-

lem, empirical modeling is needed because it permits a

reduction of the calculation quantity, which requires

Fig. 5 Schematic of an overlay method
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several amplitude- and frequency-independent exper-

iments. The rubber bushing is modeled with the

spring, fractional derivatives, and frictional parts, as

shown in Fig. 6.

First, the radial-equivalent strain is given as follows

to establish the stress–strain modeling (Garcia Tárrago

et al. 2007a):

e tð Þ ¼ x tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2

b4 � a4½ � ln a
b

� �
� a2 � b2½ �2

s
ð5Þ

where x tð Þ is the radial displacement and the harmonic

excitation is x tð Þ ¼ xo sin x0tð Þ. The terms xo and x0

denote the excitation amplitude and frequency,

respectively. Also, a is the inner radius of the rubber

bushing and b is the radius of the outer rubber part, as

shown in Fig. 3a.

Under the radial-loading condition with the large

deformation, the dynamic stiffness showed an increas-

ing tendency with the increasing of the excitation

amplitude, and this tendency is the opposite of the

small-amplitude tendency. This phenomenon

appeared due to the increasing of the compressive

stress between the metal sleeves and the rubber. To

consider the radial-direction characteristics under a

large amplitude, a nonlinear elastic component was

proposed by Dzierzek (2000). In this model, the

nonlinear elastic part is presented by a spring. The

equation for the combining of the nonlinear elastic

stress with the equivalent stiffness is as follows:

re tð Þ ¼ ktb
2dt

p
tan

pe
2dt

ð6Þ

where kt denotes the elastic stiffness and is obtained

using the quasistatic results; the terms dt and b are the

nonlinear weighted parameter and the proportional

constant, respectively; and kt is a function of the

displacement amplitude. The kt is expressed as

follows:

kt ¼ p1x
2 þ p2xþ p3 ð7Þ

where the coefficients p1; p2, and p3 can be deter-

mined using the hysteresis curve that was obtained

from the finite element analysis.

Moreover, a frictional component must be consid-

ered to represent the frictional damping. The frictional

stress depending on the equivalent strain can be

expressed by the following equation (Dzierzek 2000):

rf tð Þ ¼ c1 ktb
2dt

p
tan

pe
2dt

� ktbe

� �c2

þc3

	 

_effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_e2 � e€ej j
p

ð8Þ

where c1 and c2 are dimensionless frictional constants,

and c3 represents a static frictional-stress coefficient.

This complex form permits the representation of

nonlinear frictional damping under a highly nonlinear

hysteresis curve.

The frequency-dependent characteristics of the

rubber bushing were modeled using a fractional

derivative. The fractional derivative was defined using

the Riemann–Liouville integral (Oldham, Spanier

1974). It can be used to accurately predict the dynamic

stiffness of a rubber bushing in a wide range of

frequencies (Sjöberg, Kari 2002). The fractional

model is represented as a discrete time and weighted

form, as follows:

rv ¼ mDae � m
Dt�a

C �að Þ
Xn�1

j¼0

C j� að Þ
C jþ 1ð Þ en�j; 0\a\1

ð9Þ

where m denotes a proportional constant and a
represents a time-derivative order. To satisfy the

equation of the fractional derivative, the a value must

be between 0 and 1. The term Dt is the discrete time
Fig. 6 Proposed empirical rubber-bushing model
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and en is the strain at the time tn ¼ nDt. The Gamma

function is denoted by C and is given by the following

equation:

C uð Þ ¼
Z1

0

xu�1e�xdx;u[ 0 ð10Þ

The behavior of the rubber is described by the

summation of each stress component, as follows:

rtotal tð Þ ¼ re þ rv þ rf ð11Þ

Furthermore, to define the dynamic modulus, the

time domains of the stress and the strain need to be

converted into a frequency domain through an appli-

cation of the Fourier transform, as follows:

l̂ x0ð Þ ¼ r̂total x0ð Þ
2ê x0ð Þ ð12Þ

where r̂total and ê denotes frequency domains of total

stress and strain respectively. l̂ x0ð Þ denotes the

dynamic modulus in the frequency domain.

It is well known that the dynamic stiffness can be

expressed as the ratio of the radial load imposed to the

bushing,W , and the resulting displacement, d. Horton

et al. (2000a) showed that the displacement d can be

calculated by the superposition of the displacements of

two special loading conditions, dA and dB. By

assuming the rubber as homogeneous, isotropic and

incompressible and applying the linear theory of

elasticity, they established a relationship between the

displacements and strains, and thus, they deduced the

expression of d as a function of the dynamic modulus

l̂ as follows:

d ¼ W

k̂redLl̂
¼ W

10pLl̂
7

2
ln

a

b

� �
� 3

2

b2 � a2

b2 þ a2

	 

þ D

� �

ð13Þ

where k̂red is the non-dimensional representation of the

reduced radial stiffness term of cylindrical bushing.

Consequently, the radial dynamic stiffness k̂dyn is

described by combining a reduced radial-equivalent

stiffness term and the dynamic modulus as follows:

k̂dyn x0ð Þ ¼ W

d
¼ 10p

7
2
ln a

b

� �
� 3

2
b2�a2

b2þa2

h i
þ D

0
@

1
A

Ll̂ ¼ k̂redLl̂

ð14Þ

where a, b and L are the dimensions of the cylindrical

bushing, as shown in Fig. 3a. D is expressed by the

application of the modified Bessel function that

satisfies the geometric-boundary condition in the

radial direction, as follows:

D ¼ �aa 3b2 þ a2ð Þ I1 aað ÞK0 abð Þ þ I0 abð ÞK1 aað Þ½ �
a2ba b2 þ a2ð Þ I1 abð ÞK1 aað Þ þ I1 aað ÞK1 abð Þ½ �

þ 4 b2 þ a2ð Þ � ab b2 þ 3a2ð Þ I1 abð ÞK0 aað Þ þ I0 aað ÞK1 abð Þ½ �
a2ba b2 þ a2ð Þ I1 abð ÞK1 aað Þ þ I1 aað ÞK1 abð Þ½ �

ð15Þ

where a2 ¼ 60=L2, In, and Kn represent the modified

Bessel-function terms.

4 Results and discussions

4.1 Finite element implementation

The model parameters of the hyperelastic–viscoplastic

model were determined using the experiment data. The

parameters of theOgden hyperelasticmodelwere fitted

using the uniaxial, biaxial, and shear data of the rubber

material. The parameters of the Prony series were

obtained using the shear–stress relaxation data that

were obtained from different strain levels and show the

rate-dependent effect. The FE code of Abaqusmakes it

possible to evaluate the material behavior and fit the

correct material parameters based on the injected

experimental uniaxial-, biaxial-, and shear–stress–

strain curves and the experimental-relaxation data.

The parameters of the elastoplastic model were

determined by fitting the hysteresis loops from the

experiment results of the rubber and the FE results by

reducing the gap between the experimental and

numerical force responses. Note that improvements

of the identification procedure could be made by

introducing automation of the procedure together with

a robust identification algorithm. For instance, shape

function method of moving least square fitting is a

promising alternative as it permits to perform the

identification procedure accurately and to make the

response easily reconstructable through regularization,
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refer to Liu et al. (2014) and Li et al. (2016) for

complete details. Time Domain Galerkin Method is

greatly of interest as it permits, by replacing the

weighting function with the shape function in the

residual quantity, to improve the accuracy of the

identification as demonstrated by Liu et al. (2016).

The geometry of the FE analysis was modeled

based on the rubber-bushing specimen. A boundary

condition of the FE model is also the same as the

experimental conditions that are the fixed condition on

the outer sleeve and the applied displacement on the

central point of the inner rubber-bushing sleeve. The

type of mesh is hexahedral and the element number is

4927, as shown in Fig. 7a. Also, the deformed bushing

shape is presented by a combination of the extension

and compression modes, as shown in Fig. 7b. Then, a

comparison of the hysteresis curves of the FE analysis

and the experiments of the rubber was performed for

the parameter identification of the elastoplastic model,

as shown in Fig. 8. Initially, the parameters of the

elastoplastic model were obtained by a fitting of the

hysteresis-loop bandwith between the FE analysis and

the experiments using the least-square regression

method, as shown in Fig. 8a. Subsequently, the

parameters were optimized under various amplitudes,

as shown in Fig. 8b. In the hysteresis curve from the

finite element analysis, the curve bandwidth takes into

account the damping force and is represented by the

viscoelastic and elastoplastic components. Also, the

hysteresis-loop incline indicates a decreased stiffness

that is due to the amplitudinal effect, and its behavior

is represented by the elastoplastic component. The

identified parameters of the hyperelasic–viscoplastic

model are shown in Table 1.

4.2 Parameter identification of the empirical

model

The material parameters of the empirical model were

determined using the FE results. In this process, a

general algorithm for curve fit was the least square

regression model already predefined in Matlab tool-

box. In addition, the polynomial and sinusoidal cost

function were used to minimize the error vector

between the input and observed output data. There-

fore, all of the parametes, p1, p2, p3, b, kt, dt, c1, c2, c3,
m and a, were identified by the least square regression
algorithm. First, the parameters of the elastic and

frictional elements were determined using the qua-

sistatic responses that are amplitude-dependent and

frequency-independent results. In the elastic part of

the numerical model, the subvariables p1, p2, and p3
are determined using the initial stiffness as shown in

Fig. 9. Since b and kt was formulated using Eq. (6)

and the quadratic form of Eq. (7), respectively,

involving p1, p2, and p3, they are then deduced

simultaneously from these equations. The initial

stiffness was identified using the quasistatic simula-

tions at a frequency of 0.1 Hz, for which the ampli-

tudes were varied from 0.2–2.4 mm, as shown in

Fig. 9a. In this case, kt denotes only the decreasing

stiffness tendencies as the amplitude was increased.

Fig. 7 a Geometry of the

finite element model and the

b deformed shape under

radial loading
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To represent the increasing tendencies that are due to

the occurrence of the compressive stress under the

large amplitude, the nonlinearity of the hysteresis

curve needs to be considered; accordingly, the

parameter dt, which represents the nonlinearity

weight, was adopted. This parameter was determined

by fitting nonlinearity of curve under the maximum-

Fig. 8 Parametric identification of an elastoplastic model, a initial determination of the parameters, and b parametric optimization

under various amplitudes

Table 1 Material

parameters for the

hyperelastic–viscoelastic

model

Ogden model

l1 (MPa) l2 (MPa) l3 (MPa) a1 a2 a3
- 116.557 53.445 64.092 3.814 4.189 3.423

Prony series Von-mises plasticity model

g1 g2 s1 s2 E (MPa) ry(MPa)

0.26 0.16 0.015 70.3 3.78 0.03

Fig. 9 Parametric identification of the nonlinear elastic component. a Determination of kt and b, and b Determination of dt
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displacement amplitude of 2.4 mm and at 0.1 Hz

results, as shown in Fig. 9b.

Second, the parameters of the frictional component,

which represent the amplitudinal dependence, were

also identified using the quasi-static results under the

excitation frequency of 0.1 Hz. The term c3, which

represents the general hysteresis-loop bandwidth, was

calibrated by a fitting with the bandwidth of the

hysteresis curve under the minimum excitation dis-

placement, as shown in Fig. 10a. Also, c1 and c2 were

obtained by a fitting with the hysteresis curve under

the maximum displacement, as shown in Fig. 10b. The

edge shapes of the hysteresis loops of Fig. 10a, b are

different. The edge of the hysteresis loop of the FE

model is sharper than that of the hysteresis loop of the

empirical model; this can be explained by the contri-

bution of the term _e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_e2 � e€ej j

p
of Eq. (8) that acts on

the effect of the frictional part. This term produced the

frictional part depending on the deformation-speed

profile and resulted in the round shape at the edge of

the hysteresis loop.

Finally, the parameters of the fractional derivative

were obtained using the dynamic results. The terms m

and a were determined by fitting the dynamic stiffness

with the changing frequencies at the minimum exci-

tation amplitude of 0.2 mm, as shown in Fig. 11. In

this case, the tendencies of the stiffness increase are

due to the viscoelastic effect in the rubber materials.

The parameters of the proposed empirical model are

summarized in Table 2.

4.3 Amplitude- and frequency-dependent

dynamic stiffness

To establish the proposed empirical model, the model

parameters were determined based on the finite

element results. In this section, to validate the

proposed approach, the results of the experiments that

were performed on the lower control arm bushings are

compared with the results of the proposed hybrid

method. The experiments were conducted under the

radial-loading condition, as shown in Fig. 3b. The

three specimens of the lower control arm cylindrical

bushing that were used are shown in Fig. 3a. The

loading conditions in terms of the excitation ampli-

tudes and frequencies are the same as those of the

Fig. 10 Parametric identification of the frictional component. a Determination of c3 and b determination of c1 and c2

Fig. 11 Parametric identification of the fractional-derivative

components for m and a
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experimental section. To determine the deviation of

the measurements, the standard deviation and average

values are presented together with the numerical

results in Figs. 12 and 13.

Typically, under a small deformation, the dynamic

stiffness of a rubber isolator is decreased with the

growth of the amplitude due to the disintegration of the

filler-matrix structure that is called the Fletcher-Gent

or Payne effect, as mentioned previously. However,

under a large deformation in the radial direction, the

dynamic stiffness shows an increasing tendency with

the increasing of the amplitude because of the

generated compressive stress between the rubber

material and the metal sleeves. The amplitude-

Table 2 Parameters of the

proposed empirical model
Nonlinear elastic

p1 N=m3ð Þ p2 N=m2ð Þ p3 (N=mÞ b (1/mÞ dt

93.683 - 424.39 1563.8 1.75 �10�3 1.41

Fractional derivative Friction

mðNsa=m2Þ a c1 c2 c3 N=m2ð Þ
1.08 �10�1 0.31 9.88 �10�2 6.10 �10�1 2.70 �10�2

Fig. 12 Comparison of the dynamic stiffness according to the amplitude under the frequencies of: a 1 Hz, b 5 Hz, c 10 Hz, and

d 15 Hz
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dependent behaviors under different frequencies are

presented in Fig. 12. Within the small amplitudinal

range, the dynamic stiffness was decreased rapidly

with the increasing of the amplitude due to the

development of the damage of the filler-matrix

structure. Contrarily, within the large amplitudinal

range, the dynamic stiffness was increased after

1.8 mm with the increasing of the amplitude due to

the dominance of the compressive stress rather than

the shear stress. In this case, the hysteresis loop

showed a bent shape, as shown in Fig. 4. Also, the

dynamic stiffness was increased with the increasing of

the frequency. The dynamic stiffness under 15 Hz, as

shown in Fig. 12d, is larger than those under 1, 5, and

10 Hz.

To investigate the frequency effects, the dynamic

stiffness according to the frequencies are presented in

Fig. 13. The initial dynamic stiffness was increased

sharply with the frequency up to 5 Hz due to the abrupt

occurrence of a delayed reorganization time in the

polymer structure. However, the dynamic stiffness

was increased linearly after 5 Hz, and this is because

the long polymer chains of the rubber that were

deformed by the loading conditions were not imme-

diately rearranged into the original state. A compar-

ison of the Fig. 13a, b, and c shows that the frequency

effects are similar under the small-amplitude

(0.7 mm) and large-amplitude (2.4 mm) excitations.

Based on the previously described study, the

amplitude- and frequency-dependent dynamic stiff-

ness of the carbon-black filled rubber bushing is

Fig. 13 Comparison of the dynamic stiffness according to the frequency under the amplitudes of: a 0.7 mm, b 1.4 mm, and c 2.4 mm
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presented in Fig. 14. The amplitudinal dynamic stiff-

ness was decreased under the small amplitude, but it

tended to increase under the large amplitude. Also, the

frequency dynamic stiffness tended to increase readily

under the 5-Hz frequency, and then it was increased

linearly. These tendencies are commonly observed in

terms of the radial-loading conditions of carbon-black

filled rubber bushings, and they are well described by

the proposed method. It is therefore possible to predict

a wide dynamic-stiffness range in consideration of

both the amplitudinal and frequency effects of the

carbon-black filled rubber bushing by utilizing the

proposed hybrid method.

5 Conclusion

In this study, a hybrid method is proposed using the FE

analysis and empirical modeling to obtain the dynamic

stiffness of a carbon-black filled rubber bushing within

wide ranges of excitation frequencies and amplitudes.

In the FE analysis, an overlay method for which the

hyperelastic, viscoelastic, and elastoplastic elements

are combined was used to obtain the hysteresis curve,

which was used for the parametric identification of the

empirical model. In the empirical model, the nonlinear

elastic, viscoelastic, and frictional components are

proposed to explain the frequency- and amplitude-

dependent behaviors of the filled rubber bushing. The

parameters of the frictional component and the

nonlinear elastic component were determined using

a quasistatic FE analysis. The two parameters of the

viscoelastic component were determined using the

hysteresis stiffness with the minimum amplitude under

different excitation frequencies. The proposed model

was validated in a comparison of rubber-isolator

experiments that were conducted in the radial direc-

tion and under ranges of the excitation amplitudes

from 0.2–2.4 mm and the excitation frequencies from

0.1–20 Hz. The dynamic stiffness of the rubber

bushing was increased as the frequency was increased;

however, it was decreased as the amplitude was

increased within a small amplitudinal range, whereas

it was increased as the amplitude was increased within

a large amplitudinal range. The amplitudinal and

frequency dependence of the dynamic stiffness of the

filled rubber bushing are clearly evident. The dynamic

stiffness that was predicted using the empirical model

correlated well with the experiment results. The

proposed hybrid method can be used to predict the

dynamic stiffness of filled rubber bushings without the

need to conduct iterative experiments and the incur-

rence of a high computational cost. Approximately,

using the finite element method only, the equivalent

dynamic stiffness of rubber bushing has to be defined

by performing simulations in the range of 0.2–2.4 mm

amplitudes and 1–20 Hz frequencies. Therefore, for

each increment of 0.1 mm of amplitude and 1 Hz of

frequency, a table size of 12 9 20 (240 simulations)

has to be entirely defined knowing that each simula-

tion usually takes 20–30 min. However, if the empir-

ical model is combined to this approach, the dynamic

stiffness table data can be filled from less than 15 cases

of simulations. Therefore, the hybrid method is

applicable to analyses of full vehicles with numerous

bushings under various vibrational loadings.
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