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Abstract A hybrid genetic algorithm with the com-

plex method is developed for the optimization of the

material composition of a multi-layered functionally

graded material plate with temperature-dependent

material properties in order to minimize the thermal

stresses induced in the plate when it is subjected to

steady-state thermal loads. In the formulation, the

plate is artificially divided into an nl-layered plate, and

a weak-form-based finite layer method is developed to

obtain the displacement and stress components

induced in the nl-layered plate using the Reissner

mixed variational theorem. Two thermal conditions,

namely the specified temperature and heat convection

conditions, imposed on the top and bottom surfaces of

the plate are considered. The through-thickness

distributions of the volume fractions of the con-

stituents are assumed as certain specific/non-specific

function distributions, such as power-law, sigmoid,

layerwise step and layerwise linear function distribu-

tions, and the effective material properties of the plate

are estimated using the Mori–Tanaka scheme. Com-

parisons with regard to the minimization for the peak

values of the stress ratios induced in the FGM plates

with various optimal material compositions are

conducted.

Keywords Finite layer methods � Functionally
graded plates � Genetic algorithm � Optimization �
Reissner’s mixed variational theorem � Thermal stress

1 Introduction

The concept of functionally graded materials (FGMs)

was first proposed by Niino at the National Aerospace

Laboratory of Japan in 1984, in which FGMs were

used for manufacturing thermal barrier materials

(Koizumi 1992, 1993, 1997). Since then, FGMs have

gradually replaced the traditional fiber-reinforced

composite materials (FRCMs), and have been used

to form a variety of beam-, plate- and shell-like

structures with advanced industrial applications, espe-

cially when these structures are used in more severe

high temperature environments.

Numerous articles reported that laminated FRCM

structures often produce high residual stresses at the

interfaces between adjacent layers, when they were

subjected to thermo-mechanical loads. This is mainly

due to the abrupt change in the material properties of

laminated FRCMwhen passing through the interfaces,

while high residual stresses often cause delamination

at the interfaces and transverse cracking occurring in
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the matrix. In contrast, the material properties of FGM

structures gradually and continuously vary through the

thickness direction of these, such that the above-

mentioned failures of laminated FRCM structures can

be overcome. In addition, the material properties of

FGM structures along the thickness direction can be

designed according to the engineering demands by

giving certain specific/non-specific functions of the

volume fractions of constituents. Optimization of the

material composition of FGM structures in order to

enhance their structural performance is thus an

important issue.

Tanigawa and Matsumoto (1997) and Kawamura

and Tanigawa (1998) presented the optimum material

composition to minimize the thermal stresses induced

in a single-layered FGM infinite plate and a single-

layered FGM circular plate, respectively, subjected to

unsteady state thermal loads. For these two FGM

plates, one was composed of zirconium oxide and

titanium alloy, and the other was alumina and

aluminum alloy. The material properties of these

plates were considered to obey a power-law distribu-

tion varying through the thickness direction according

to the volume fractions of the constituents, and the

temperature-dependent material properties were taken

into account. The effective material properties were

estimated using the rule of mixtures (Kerner 1956),

and the coupled thermo-elastic analysis of the ther-

mally-loaded plates was based on the classical lam-

ination plate theory. The power of the material law

was selected as the design variable, and a nonlinear

programming method was used to obtain the optimal

value of the power. Unlike the works of Tanigawa and

Matsumoto (1997) and Kawamura and Tanigawa

(1998), which assumed a specific distribution function

of material composition through the thickness direc-

tion of the FGM plate, Ootao et al. (1998, 2000)

reexamined the above issue by using a step-formed

approach. In their work, the FGM plate was artificially

divided into a multilayered isotropic plate, a layerwise

step function distribution of the volume fractions of

constituents was assumed and undetermined, and a

genetic algorithm (GA) (Gen and Cheng 1997) was

used for the optimization tool in Ootao et al. (1998),

while a neural network algorithm (Hagan et al. 1996;

Zurada 1995) was used in Ootao et al. (2000). This

step-wise approach was extended by Na and Kim

(2009, 2010) to the optimal design of material

composition of a single-layered FGM panel by

considering the reduction of the thermal residual

stress and the enhancement of the critical thermal

loads of the panel. Vel and Pelletier (2007) and

Goupee and Vel (2007) presented a multi-objective

optimization problem for seeking the optimal material

composition of a single-layered FGM shell/plate to

minimize the mass and peak hoop stress induced in

either a metal-ceramic or a metal–metal two-phase

composite plate, when it was subjected to steady state

thermal loads. The volume fractions of the constituent

material phases distributed through the thickness

direction were assumed as a layerwise Hermite cubic

polynomial function (HCPF), and the effective mate-

rial properties were estimated using the Mori–Tanaka

(Mori and Tanaka 1973) and self-consistent (Hill

1965) schemes. In conjunction with the first-order

shear deformation theory and differential quadrature

(DQ) method, Tornabene and Ceruti (2013) carried

out a mixed static and dynamic optimization of four-

parameter FGM doubly curved shells and plates. In

their work, three optimization approaches, namely the

particle swarm optimization algorithm (PSOA),

Monte Carlo algorithm and GA, were used, and the

material properties were assumed to obey a power-law

distribution through the thickness direction of the

shell/plate. Based on Reddy’s refined higher-order

shear deformation theory (HSDT) (Reddy 1984;

Reddy and Phan 1985), Ashjari and Khoshravan

(2014) developed a single-objective optimization of

the material distribution of simply-supported FGM

plates subjected to mechanical loads, in which a

layerwise HCPF interpolation was used to construct

the through-thickness distributions of the volume

fractions of constituents. The effective material prop-

erties were estimated using the rule of mixtures, and

the real-coded GA and PSOA were used to minimize

the weight of the FGM plate with flexibility and stress

constraints.

In addition to the above-mentioned applications,

GA has also been extended to other analyses of beams,

plates and shells. Maletta and Pagnotta (2004) com-

bined GA and the finite element method to identify the

elastic constants of composite laminates using the

vibration test data. Roy and Chakraborty (2009)

developed a GA-based linear quadratic regulator

(LQR) for the optimal vibration control design of

smart fiber reinforced polymer composite shell struc-

tures. The LQR was also used for active vibration

control of thin axially functionally graded beams by
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Bruant and Proslier (2016). Liew et al. (2004)

developed a GA to design the optimal shape control

of FGM plates with surface-bonded piezoelectric

patches and under a temperature gradient. Based on

an HSDT combined with a GA, Zhang et al. (2016a)

studied the optimal shape control of functionally

graded carbon nanotube-reinforced composite

(CNTRC) plates with surface-bonded actuators and

sensors. Zhang et al. (2016b) also presented the

optimization problems for the critical load parameters

of a single-ply CNTRC skew plate on the basis of the

HSDT, in which the optimal orientation angles of

CNTs were searched. Some review articles with

regard to the application of GAs to various physical

problems were carried out, such as the heat transfer

problems (Gosselin et al. 2009) and the stiffness

maximization problems of laminated composite plates

(Potgieter and Stander 1998).

In this article, we aim at developing a hybrid GA

with the complex method (Box 1965) for the opti-

mization of material composition for simply-sup-

ported, single-layered and sandwiched FGM plates

subjected to steady-state thermal loads in order to

minimize the thermal stresses induced in the plates. As

we mentioned above, GA has conventionally been

used for the optimization of the material composition

of FGM structures in order to enhance their structural

performance and reduce the residual stresses induced

in these. Even though GA has proved to be an effective

approach for locating the region in which the global

optimum exists, it converges slowly to the optimal

solution in the explored region. A hybrid GA with the

complex method is thus developed for the current

issue, in which the GA is used to perform global

exploration among many designs (a so-called popula-

tion in GA), while the complex method is used to

perform the local exploitation around a design (a so-

called chromosome in GA), of which the global

optimal solutions existing in the neighborhood, such

that the convergence rate to obtain the global optimal

solutions can be more effective than as usual.

We also extend the Reissner mixed variational

theorem (RMVT)-based (Reissner 1984, 1986) finite

layer methods (FLMs) (Wu and Li 2010; Wu and Liu

2016; Wu and Ding 2017) to the coupled thermo-

mechanical analysis of simply-supported, single-lay-

ered and sandwiched FGM plates, which are involved

in the current optimization analysis, in which the

material properties of the FGM plate are considered to

be temperature- and thickness-dependent. In the

RMVT-based FLMs, the FGM plate is artificially

divided as an nl-layered plate, the displacement and

transverse stress components are regarded as the

primary variables, and are expanded as the double

Fourier series functions and Lagrange polynomials in

the in-plane domain and the thickness direction,

respectively. A heat conduction analysis of the FGM

plate with either the specified temperature or the heat

convection conditions on the top and bottom surfaces

is carried out using the modified Pagano method (Wu

and Huang 2009; Wu and Lu 2009; Wu et al. 2008).

The through-thickness distributions of the volume

fractions of constituents are assumed as the specific

function distributions, such as the power-law and

sigmoid ones, and the non-specific function distribu-

tions, such as the layerwise step (also called the step-

formed) and layerwise linear ones. The effective

material properties of the FGM plate are estimated

using the Mori–Tanaka scheme. The accuracies and

convergence rates of the RMVT-based FLMs with

various orders used for expansions of the primary field

variables in the thickness direction for the coupled

thermo-mechanical analysis of the thermally-loaded

plate are assessed by comparing their solutions with

the exact 3D ones available in the literature. Compar-

isons regarding the minimization for the peak values

of the stress ratios induced in the FGM plates with

various optimal material compositions are also

undertaken.

2 RMVT-based FLMs for the thermal stress

analysis of FGM plates

In this section, we extend the RMVT-based FLMs to

the thermal residual stress analysis of a simply-

supported, FGM plate subjected to thermal loads, as

shown in Fig. 1a, in which the material properties of

the plate are considered to be dependent upon the

temperature in the environment. The in-plane dimen-

sions and thickness of the plate are Lx 9 Ly and h,

respectively. In the formulation, the plate is artificially

divided into nl layers with a small thickness for each

layer, as compared with each of the in-plane dimen-

sions. A global Cartesian coordinate system (i.e., x, y

and f coordinates) is placed on the mid-plane of the

plate, and a set of local thickness coordinates

zm ðm ¼ 1; 2; 3; . . .; nlÞ, is placed at the mid-plane
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of each individual layer, as shown in Fig. 1b. The

thicknesses of each individual layer and the plate are

hm ðm ¼ 1; 2; . . .; nlÞ and h, respectively, while

h ¼
Pnl

m¼1 hm. The relationship between the global

and local thickness coordinates in the mth-layer is

f ¼ �fm þ zm, in which �fm ¼ ðfm þ fm�1Þ=2, and

fm and fm�1 are the global thickness coordinates

measured from the mid-plane of the plate to the top

and bottom surfaces of the mth-layer, respectively.

2.1 Material models

The FGM plate is made of a two-phase composite

material, the material properties of which are consid-

ered to be thickness-dependent according to the

volume fractions of constituents through the thickness

coordinate by assuming the specific function distribu-

tions, such as the power-law and sigmoid ones, and the

non-specific function distributions, such as the layer-

wise step and layerwise linear ones. The effective

material properties of the FGM plate are estimated

using the Mori–Tanaka scheme (Mori and Tanaka

1973), and are given as follows:

BðfÞ ¼ VcðfÞ ðBc � BmÞ
1þ ð1� VcðfÞÞ Bc�Bm

Bmþð4=3ÞGm

h iþ Bm; ð1aÞ

GðfÞ ¼ VcðfÞ ðGc � GmÞ
1þ ð1� VcðfÞÞ Gc�Gm

Gmþfm

h iþ Gm; ð1bÞ

aðfÞ ¼ Bc ac � amð Þ
1� B fð Þ�Bc

B fð Þ�Bm

h i
B fð Þ

þ am; ð1cÞ

kðfÞ ¼ VcðfÞ ðkc � kmÞ
1þ ð1� VcðfÞÞ kc�kmð Þ

3 km

h iþ km; ð1dÞ

Vm fð Þ ¼ 1� Vc fð Þ ð1eÞ

where fm ¼ Gm
9Bmþ8Gm

6 ðBmþ2GmÞ, and the subscripts c and m

are defined as the material properties of ceramic (the

particulate-phase) and metal (the matrix-phase) mate-

rials, respectively. Vc fð Þ and Vm fð Þ denote the volume

fractions of the particulate- and matrix-phase materi-

als. B fð Þ; G fð Þ; a fð Þ and k fð Þ are the bulk modulus,

shear modulus, thermal expansion coefficient and

thermal conductivity coefficient of the plate.

(a)

x
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h / 2
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Fig. 1 a The configuration

and coordinates of an FGM

plate; b the local thickness

coordinate and the thickness

for each layer of a ten-

layered FGM plate
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Bc;Gc; ac; kc and Bm;Gm; am; km are those material

properties of the particulate and matrix phases,

respectively. The relationship between the bulk and

shear moduli, as well as Young’s modulus (E) and

Poisson’s ratio (t) are B ¼ E=½3ð1� 2tÞ� and

G ¼ E=½2ð1þ tÞ�.
Vc fð Þ is assumed to be four different functions

distributed through the thickness direction of the plate,

and is given by

(a) The power-law function distribution,

Vc fð Þ ¼ V�
c þ Vþ

c � V�
c

� �
fþ h=2ð Þ½ �=hf gjp

when f0\f\fnl
ði:e:; �h=2\f\h=2Þ;

where jp denotes the material-property gradient

index of the power-law model. Vþ
c and V�

c are

the volume fractions of the particulate-phase

material at the top and bottom surfaces of the

plate, such that Vc ¼ Vþ
c , when f ¼ h=2, and

Vc ¼ V�
c , when f ¼ �h=2.

(b) The sigmoid function distribution,

Vc fð Þ ¼ V�
c þ Vþ

c � V�
c

� �
=2

� �
2fþ hð Þ=h½ �js �h=2� f� 0;

Vþ
c � Vþ

c � V�
c

� �
=2

� �
h � 2fð Þ=h½ �js 0� f� h=2;

�

ð2bÞ

where js denotes the material-property gradient

index of the sigmoid model.

(c) The layerwise step function distribution,

Vc fð Þ ¼ V ðmÞ
c H f� fm�1ð Þ � H f� fmð Þ½ �

when fm�1\f\fm and m ¼ 1� nl;

where V
ðmÞ
c denotes the volume fraction of the

mth-layer, which is taken as a constant, and

H fð Þ is the Heaviside step function. In this

model, the authors set V
ð1Þ
c ¼ V�

c and V
ðnlÞ
c ¼

Vþ
c for the comparison purposes.

(d) The layerwise linear function distribution,

Vc fð Þ ¼ V ðm�1Þ
c ðfm � fÞ=hm½ � þ VðmÞ

c ðf� fm�1Þ=hm½ �
when fm�1\f\fm and m ¼ 1� nl;

ð2dÞ

where V
ðm�1Þ
c fð Þ and V

ðmÞ
c fð Þ stand for the

volume fractions at the interfaces between the

(m - 1)th and mth layers, as well as the mth and

(m ? 1)th layers, respectively, and

V
ð0Þ
c and V

ðnlÞ
c are the volume fractions of

particulate-phase material on the bottom and

top surfaces of the FGM plate, such that V
ð0Þ
c ¼

V�
c and V

ðnlÞ
c ¼ Vþ

c .

2.2 Heat conduction analysis

In the optimization scheme, the heat conduction

analysis of the FGM plate subjected to steady-state

thermal loads is first carried out according to the

predefined through-thickness distribution of volume

fractions of constituents, and the temperature distri-

bution of the plate domain thus determined is then

used to identity the thermal stresses and deformations

induced in the plate. The material properties of the

FGM plate are considered to be dependent upon the

thickness coordinate and temperature. The modified

Pagano method is used for the heat conduction

analysis of the plate, and the solution process is briefly

described as follows.

The steady state heat conduction equation of the

plate without heat generation is given as

Px;x þ Py;y þ Pf;f ¼ 0; ð3Þ

where Pk k ¼ x; y; fð Þ denote the heat fluxes in the

x; y and f directions.
According to Fourier’s law, the relations between

the heat flux and temperature change are

Pk ¼ �kkT;k; ð4Þ

where T is the temperature change measured from

room temperature, which is T̂0 ¼ 300K. In addition, T̂

is defined as the current temperature variable, such

that T ¼ T̂ � 300.

The state space equation related to the heat

conduction analysis of the plate is thus given as

T;f

Pf;f

� �

¼ 0 �k�1
f

kxoxx þ kyoyy

� �
0

� �
T

Pf

� �

ð5Þ

Two different thermal conditions imposed on the top

and bottom surfaces of the plate are considered as

follows:

(a) The specified temperature conditions
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The temperature changes on the top and bottom

surfaces of the plate are given as

T ¼ �T� at f ¼ �h=2 ð6aÞ

T ¼ �Tþ at f ¼ h=2 ð6bÞ

(b) The heat convection conditions

The thermal conditions on the top and bottom

surfaces are given as

�T;f þ kaT ¼ ka
�T� at f ¼ �h=2 ð7aÞ

T;f þ kbT ¼ kb
�Tþ at f ¼ h=2 ð7bÞ

where ka and kb denote the surface heat transfer

coefficients at the bottom and top surfaces of the plate,

respectively. �T� and �Tþ are the temperature changes

applied at the bottom and top surfaces of the plate.

The temperature changes prescribed on the top and

bottom surfaces are expanded as the double Fourier

series as �T� ¼
P1

m̂¼1

P1
n̂¼1

�T�
m̂n̂ sin ~m x sin ~n y, in

which ~m ¼ m̂p=Lx, ~n ¼ n̂ p=Ly and m̂ and n̂ are the

half-wave numbers, the values of which are positive

integers. In addition, the thermal conditions at the

edges are T ¼ 0K.

The thermal variables are also expressed as the

double Fourier series in the in-plane domain to exactly

satisfy the edge conditions, as follows:

T x; y; fð Þ ¼
X1

m̂¼1

X1

n̂¼1

Tm̂n̂ fð Þ sin ~mx sin ~ny; ð8Þ

Pf x; y; fð Þ ¼
X1

m̂¼1

X1

n̂¼1

Pfm̂n̂ fð Þ sin ~mx sin ~ny; ð9Þ

where the symbols of double summations will be

omitted in the later work of this paper for brevity.

Substituting Eqs. (8) and (9) in Eq. (5) yields

Tm̂n̂;f
Pfm̂n̂;f

� �

¼ 0 �k�1
f

� kx ~m
2 þ ky ~n

2
� �

0

� �
Tm̂n̂

Pfm̂n̂

� �

ð10Þ

Equation (10) represents a system of two simulta-

neously first-order differential equations in terms of

two variables (i.e., Tm̂n̂ and Pfm̂n̂) and with temper-

ature- and thickness-dependent coefficients. A mod-

ified Pagano method (Wu and Huang 2009) combined

with a successive approximation method (Soldatos

and Hadjigeorgiou 1990) and an iteration process is

used to obtain the through-thickness distributions of

the temperature changes, when the temperature-

dependent material properties are considered. The

solution process can be found in Wu and Huang

(2009), and thus is omitted here for brevity.

2.3 RMVT-based FLMs

In this section, we extend the RMVT-based FLMs to

the 3D coupled analysis of simply supported, single-

layered FGM plates subjected to thermal loads, which

are determined from the above-mentioned heat con-

duction analysis.

2.3.1 The generalized kinematic and kinetic

assumptions

In the formulation of RMVT-based FLMs, the FGM

plate is artificially divided into an nl-layered FGM

plate with equal thickness for each layer. The primary

variables, namely the elastic displacement, transverse

shear stress and transverse normal stress components

of a typical layer of the plate, of which the domains are

in 0� x� Lx, 0� y� Ly and fm�1 � f� fm (i.e.,

�hm=2� zm � hm=2), are thus given by

�f ðmÞ x; y; zmð Þ ¼
Xneþ1

i¼1

wðmÞ
i zmð Þ

h i
f ðmÞ x; yð Þ
h i

i
; ð11Þ

where f ðmÞ ¼ uðmÞ; vðmÞ;wðmÞ; sðmÞ
xf ; sðmÞ

yf and rðmÞ
f , in

which uðmÞ� �
i
, vðmÞ� �

i
and wðmÞ� �

i
are the elastic

displacement components at the ith-nodal plane of the

mth-layer of the plate, while sðmÞ
xf

	 


i
, sðmÞ

yf

	 


i
and

rðmÞ
f

	 


i
are the transverse shear and normal stress

components. wðmÞ
i (i = 1, 2, … and (ne ? 1)) are the

corresponding shape functions, and ne is the related

orders used for expansions of each primary variable

through the thickness direction of each individual

layer.
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For an orthotropic elastic material, the linear

constitutive equations are given by

rðmÞ
x

rðmÞ
y

rðmÞ
f

sðmÞ
yf

sðmÞ
x f

sðmÞ
xy

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

¼

c
ðmÞ
11 c

ðmÞ
12 c

ðmÞ
13 0 0 0

c
ðmÞ
12 c

ðmÞ
22 c

ðmÞ
23 0 0 0

c
ðmÞ
13 c

ðmÞ
23 c

ðmÞ
33 0 0 0

0 0 0 c
ðmÞ
44 0 0

0 0 0 0 c
ðmÞ
55 0

0 0 0 0 0 c
ðmÞ
66

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

eðmÞ
x

eðmÞ
y

eðmÞ
f

cðmÞ
yf

cðmÞ
xf

cðmÞ
xy

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

�

c
ðmÞ
a1

c
ðmÞ
a2

c
ðmÞ
a3

0

0

0

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

T ðmÞ;

ð12Þ

where TðmÞ denotes the temperature change of the mth-

layer; rðmÞ
x ; rðmÞ

y ; . . .; and sðmÞ
xy are the stress compo-

nents, and eðmÞ
x ; eðmÞ

y ; . . .; and cðmÞ
xy are the strain

components; the stress–temperature coefficients

(c
ðmÞ
ai ) are defined as c

ðmÞ
ai ¼ c

ðmÞ
1i aðmÞ

x þ c
ðmÞ
2i aðmÞ

y þ
c
ðmÞ
3i aðmÞ

f ði ¼ 1� 3Þ; c
ðmÞ
ij are the elastic coefficients,

which are variable through the thickness coordinate in

the nl-layered plate, while they are constants in the

homogeneous one.

2.3.2 Reissner’s mixed variational theorem

Reissner’s mixed variational theorem is used to derive

the equilibrium equations of the layer elements

constituting the plate, and the corresponding energy

functional of the plate can be written as follows:

where X denotes the plate domain on the x � y plane,

and Cr and Cu denote the portions of the edge

boundary, in which the surface traction and elastic

displacement components are prescribed, respectively

(i.e., ti ¼ �ti and ui ¼ �ui, in which i = x, y and f); BðrijÞ
is the complementary energy density function.

By means of the generalized kinematic and kinetic

assumptions, which are given in Eq. (11), the first-

order variation of the Reissner energy functional can

be expressed in the following form of

dPR ¼
Xnl

m¼1

Z hm=2

�hm=2

ZZ

X
deðmÞ

p

	 
T

rðmÞ
p þ deðmÞ

s

	 
T

rðmÞ
s þ deðmÞ

f rðmÞ
f

�

þ drðmÞ
s

	 
T

eðmÞ
s � SðmÞrðmÞ

s

	 

þ drðmÞ

f eðmÞ
f � �gðmÞrðmÞ

f

h

þ QðmÞ
a

	 
T

eðmÞ
p � aðmÞ

a T ðmÞ
��

dx dy dzm �
Xnl

m¼1

Z hm=2

�hm=2

Z

Cr

� �tðmÞ
x duðmÞ

x þ �tðmÞ
y duðmÞ

y þ �t
ðmÞ
f du

ðmÞ
f

	 

dC dzm

�
Xnl

m¼1

Z hm=2

�hm=2

Z

Cu

ðuðmÞ
x � �uðmÞ

x ÞdtðmÞ
x þ ðuðmÞ

y � �uðmÞ
y ÞdtðmÞ

y

h

þ u
ðmÞ
f � �u

ðmÞ
f Þdt

ðmÞ
f

	 i
dC dzm;

ð14Þ

where the superscript, T, denotes the transposition of

the matrices or vectors, and

eðmÞ
p ¼ eðmÞ

x eðmÞ
y cðmÞ

xy

h iT

¼ B
ðmÞ
1 uðmÞ;

eðmÞ
s ¼ cðmÞ

xf cðmÞ
yf

h iT

¼ B
ðmÞ
3 uðmÞ þ B

ðmÞ
4 wðmÞ;

eðmÞ
f ¼ B

ðmÞ
6 wðmÞ; rðmÞ

p ¼ rðmÞ
x rðmÞ

y sðmÞ
xy

h iT

¼ QðmÞ
p B

ðmÞ
1 uðmÞ þQðmÞ

a B
ðmÞ
2 rðmÞ �QðmÞ

a T ðmÞ;

PR ¼
Xnl

m¼1

Z hm=2

�hm=2

ZZ

X
rðmÞ

x eðmÞ
x þ rðmÞ

y eðmÞ
y þ rðmÞ

f eðmÞ
f þ sðmÞ

xf cðmÞ
xf þ sðmÞ

yf cðmÞ
yf þ sðmÞ

xy cðmÞ
xy

h
�B rðmÞ

ij

	 
i
dx dy dzm

�
Xnl

m¼1

Z hm=2

�hm=2

Z

Cr

�tðmÞ
x uðmÞ

x þ �tðmÞ
y uðmÞ

y þ �t
ðmÞ
f u

ðmÞ
f

	 

dC dzm

�
Xnl

m¼1

Z hm=2

�hm=2

Z

Cu

ðuðmÞ
x � �uðmÞ

x ÞtðmÞ
x þ ðuðmÞ

y � �uðmÞ
y ÞtðmÞ

y þ ðuðmÞ
f � �u

ðmÞ
f ÞtðmÞ

f

h i
dC dzm;

ð13Þ
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rðmÞ
s ¼ sðmÞ

xf sðmÞ
yf

h iT

¼ B
ðmÞ
5 sðmÞ;

rðmÞ
f ¼ B

ðmÞ
2 rðmÞ;

uðmÞ ¼ u
ðmÞ
i

v
ðmÞ
i

" #

i¼1; 2;���;neþ1
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ðmÞ
i

h i
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;

sðmÞ ¼
sðmÞ
13

	 


i

sðmÞ
23

	 


i

2

6
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7
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a
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6
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7
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Q
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6
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Q
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Q
ðmÞ
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66 ; Q
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a c
ðmÞ
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a
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i ¼ c

ðmÞ
i3 =c

ðmÞ
33 ; in which i ¼ 1; 2 and a; �gðmÞ

¼ 1=c
ðmÞ
33 :

2.3.3 System equations and boundary conditions

The loading conditions on the top and bottom surfaces

are specified, as follows:

sxf ¼ syf ¼ rf ¼ 0 on f ¼ � 0:5h ð15aÞ

and

T ¼ �T� x; yð Þ on f ¼ � 0:5h ð15bÞ

The edge boundary conditions of each individual

layer are considered as fully simple supports with free

temperature changes, and the following quantities are

satisfied.

uðmÞ
y ¼ u

ðmÞ
f ¼ rðmÞ

x ¼ T ðmÞ ¼ 0

x ¼ Lx and m ¼ 1; 2; . . .; nl;
ð16aÞ

uðmÞ
x ¼ u

ðmÞ
f ¼ rðmÞ

y ¼ T ðmÞ ¼ 0

y ¼ Ly and m ¼ 1; 2; . . .; nl:
ð16bÞ

The primary field variables of each individual layer

are expanded as the following forms of a double

Fourier series, such that the boundary conditions of the

simply supported edges are exactly satisfied for each

set of fixed values of m̂; n̂ð Þ, and they are given as

u
ðmÞ
x ; sðmÞ

xf

	 

¼ u

ðmÞ
m̂n̂ ; sðmÞ

13m̂n̂

	 

cos ~m x sin ~n y;

ð17Þ

uðmÞ
y ; sðmÞ

yf

	 

¼ v

ðmÞ
m̂n̂ ; s

ðmÞ
23m̂n̂

	 

sin ~m x cos ~n y; ð18Þ

u
ðmÞ
f ; rðmÞ

f ; D
ðmÞ
f ; UðmÞ

	 

¼ w

ðmÞ
m̂n̂ ; r

ðmÞ
3m̂n̂; D

ðmÞ
3m̂n̂; u

ðmÞ
m̂n̂

	 


sin ~m x sin ~n y: ð19Þ

By substituting Eqs. (17)–(19) in the weak form

[i.e. Eq. (14)], the following system equations of the

plate are obtained:
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:

The global stiffness matrices and forcing vector for

the thermally-loaded plate can be assembled using

Eq. (20), and the primary variables induced at each

nodal surfaces of the individual layer can then be

obtained by solving these resulting system equations.

Subsequently, the in-surface stress components at the

nodal surfaces can be obtained using the determined

primary field variables, and these are given by

rðmÞ
x ; rðmÞ

y

	 

¼ rðmÞ

1m̂n̂; rðmÞ
2m̂n̂

	 

sin ~m x sin ~n y;

ð21Þ

sðmÞ
xy ¼ sðmÞ

12m̂n̂ cos ~m x cos ~n y; ð22Þ

where rðmÞ
1m̂n̂ rðmÞ

2m̂n̂ sðmÞ
12m̂n̂

h iT

¼ QðmÞ
p

~B
ðmÞ
1 ~uðmÞþ

QðmÞ
a B

ðmÞ
2 ~rðmÞ �QðmÞ

a T
ðmÞ
m̂n̂ .

3 Optimization problem

3.1 Statement of the optimization problem

In this work, the optimization of the material compo-

sition to minimize the in-plane thermal stresses

induced in a thermally-loaded FGM plate is analyzed,

and the stress ratio fr is defined as follows:

fr fð Þ ¼ rx fð Þ=Yt fð Þ when rx fð Þ� 0;
rx fð Þj j=Yc fð Þ when rx fð Þ� 0;

�

ð23Þ

in which Yt and Yc denote the yielding stresses of the

composite materials in tension and compression,

respectively.

The maximum value of the stress ratio fr fð Þ for a
typical set of design variables is defined as frmax, and a

fitness value is thus defined as 1=frmax used for sorting

process in GA. Four different through-thickness

distributions of volume fractions of constituents (i.e.,

the power-law, sigmoid, layerwise step and layerwise

linear function distributions) and two different thermal

conditions (i.e., the specified temperature and heat

conduction conditions) on the top and bottom surfaces

are considered. The minimization of the maximum

value of the stress ratio induced in the FGM plate can

be accomplished when the prescribed temperature

changes are applied on the top and bottom surfaces.
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3.2 A hybrid GA with the complex algorithm

A hybrid GA with a local search method, the complex

method, is developed for the current optimization

problem, in which GA is used as a global search

method to explore the optimal design variables in the

whole solution space, so that the corresponding peak

values of the stress ratios induced in the plate is

minimized. To speed up the optimization process of

the GA, the authors used the complex method to fine-

tune the optimal solution generated by GA. The flow

charts of the hybrid GA and the complex method are

shown in Figs. 2 and 3.

The GA processes used to accomplish this work are

described as follows:

(a) Initial population The first population consists

of np designs, which is created by repeating a

random generator np times, and np is taken to be

Creation of First Generation

Start

Calculation of Fitness

Evaluation

Convergence 
Check

Selection

Crossover

Mutation

The Complex Method for 
Local Search

End

No

Yes

Yes

Fig. 2 The flow chart of a hybrid GA

Start

Ordering to Find Xh

Reflect Xr with Xh

Constraints 
Satisfied

f(Xr)<f(Xh)

Halve 

Move Xr Halfway 
toward Centroid

Replace Xh with Xr

Yes

Yes

No

No

EndConvergence 
Check

Yes

No

Centroid Xo

Initial Complex

<

= 1

Reflect Xr with Xp

Yes

No

= 1

Fig. 3 The flow chart of the

complex method
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400 in this work. In each design, a ng-digit

number representing a design variable is ran-

domly generated, which is also called a gene,

and a particular combination of these genes

arranged in the order of layers is formed as a

chromosome, which means there are (ng 9 nd)

locuses in a chromosome, in which nd denotes

the number of design variables.

(b) Fitness value As mentioned above, the peak

values of the stress ratio (frmax) induced in the

FGM plate subjected to steady-state thermal

loads is defined as the objective function. The

value of 1=frmax is thus defined as the fitness

value, and is used for the sorting process in GA.

(c) Selection A ranking selection suggested by

Grefenstette and Baker (1989) is adopted. The

chromosomes are sorted according to their

fitness values, such that each chromosome is

assigned as a rank, with the best chromosome

having the rank np, while the worst one the rank

1. The selection probability is linearly assigned

to the ranks, and given as follows:

Ps chromosome jð Þ ¼ 1

np

g� þ gþ � g�ð Þ
np � 1
� � j � 1ð Þ

" #

j ¼ 1� np;

ð24Þ

in which gþ þ g� ¼ 2 and g� � 0. In this work, we let

gþ ¼ 2 and g� ¼ 0, such that the worst chromosome

is eliminated in the next generation.

According to Eq. (24), np chromosomes can be

reproduced from the current population into the

mating pool for the consequent evolution processes.

(d) Crossover Every two chromosomes are ran-

domly selected from the mating pool to decide

whether to conduct the uniform crossover

operator on the basis of a given crossover

probability Pc, which is taken to be Pc = 0.6 in

this work. Amask pattern with (ng 9 nd) locuses

is used to randomly generate either ‘‘0’’ or ‘‘1’’

digits in each locus. The crossover process

between each selected pair of chromosomes is

achieved by exchanging the characters in the

locuses of these two chromosomes when the

corresponding digit in the mask pattern is the

digit ‘‘1’’, and otherwise they remain

unchanged.

(e) Mutation Mutation occurs in each locus of each

chromosome in a population when the randomly

generated number between 0 and 1 for each

locus is greater than the given probability of

mutation (Pm), which is taken to be Pm = 0.01

in this work.

(f) Elitist strategy Two chromosomes with the best

fitness values are defined as the elites, and they

are preserved and copied completely unchanged

into the next population by replacing the worst

two chromosomes in the current population.

In this article, the complex method is used for a

local search to find the minimization of a function of

f ðXÞ ¼ frmax in terms of nd design variables and with

(nd ? 1) test points (or chromosomes in GA), in which

X 2 Rnd . The relevant processes are described as

follows:

(a) Ordering An initial complex consists of nk

feasible points (i.e., nk chromosomes), in which

nk � nd þ 1ð Þ. In this analysis, nk is taken to be

nk ¼ 2nd, which are selected from the first 2nd

high fitness values of the chromosomes in the

final population. The feasible points are sorted

according to their fitness values, and the vertex

Xh represents a set of design variables with the

largest fitness value

(b) Centroid The centroid of all feasible points (X0)

except Xh is calculated by averaging the

coordinates in the form of

X0 ¼
1

nk � 1ð Þ
Xnk

k¼0
k 6¼h

Xk: ð25Þ

(c) Reflection The reflection point Xr is calculated

as Xr ¼ X0 þ a X0 � Xhð Þ; where a� 1, while

a is taken to be a ¼ 1 in this analysis.

(d) Feasibility study If Xr is feasible and

f Xrð Þ\ f Xhð Þ, the worst point Xh is replaced

by Xr, and the complex is modified. If

f Xrð Þ � f Xhð Þ, the value of a is halved and a

new reflection point found. This procedure of

finding a new Xr with a reduced a is repeated

until the relation f Xrð Þ\ f Xhð Þ is satisfied.

However, if Xr, which satisfies f Xrð Þ\ f Xhð Þ,
cannot be found even if the value of a became a

very small number (e), say e = 10-6, the point

is aborted. The reflection process is then
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restarted by using the point Xp, which has the

second-highest fitness value, instead of Xh.

(e) Stopping criteria The algorithm is stopped

when the fitness values of the vertices are close

enough or the number of the iteration steps is

large enough. In this analysis the stopping

criteria is given as

f Xhð Þ � f Xlð Þ
f Xhð Þ

�
�
�
�

�
�
�
�\10�5; ð26Þ

where Xl is the point with the lowest function value.

It is noted that in the GA there are three parameters

to be determined, which are the population size np, the

crossover probability Pc and the mutation probability

Pm, and the selected parameters will substantially

affect the performance of the GA. Taking a greater

value of np will expand the searching range, such that

it will ensure to have an efficient GA not converging to

a local optimal solution or stucking in its neighbour-

hood, while it is also time-consuming. Taking a

greater value of Pc or Pm will lead to a poor

performance of the GA, because it will produce many

designs far away the mating designs, while taking a

less value of Pc or Pm will result in the searching

process stagnant, and finding the reasonable values of

Pc and Pm is thus the key to the success of the GA. A

guidance for the reasonable values of these parameters

has been followed in a general case (De Jong 1975,

Goldberg 1989), which are np = 30–200,

Pc = 0.5–1.0 and Pm = 0.001–0.05, even though

these values might be sensitive with the physical

problems considered. After repeatedly testing of the

GA and adjustments of the values of these parameters,

the authors finally selected np = 400, Pc = 0.6 and

Pm = 0.01 in this work to ensure the optimal solutions

found are the global optimal ones.

4 Illustrative examples

In the formulation a notation LMne
(ne ¼ 1; 2 and 3)

is defined to represent various RMVT-based FLMs, in

which the in- and out-of-plane displacement, as well

as transverse shear and normal stress components are

expanded as the ne-order Lagrange polynomials in the

thickness coordinate of each layer in the following

examples.

4.1 Coupled thermo-mechanical analysis

of single-layered FGM plates

For comparison purposes, the exact 3D solutions, as

obtained by Vel and Batra (2002) using the power

series method and Kulikov and Plotnikova (2015)

using the sampling surface (SaS) method for the

coupled thermo-elastic analysis of a simply-sup-

ported, single-layered FGM plate, are used to validate

the accuracy and convergence of the current RMVT-

based FLMs, in which the specified temperature

conditions are applied on the top and bottom surfaces

of the plate. The plate is composed of the metal (Al)

and ceramic (SiC), and its material properties obey the

power-law distribution along the thickness direction

according to the volume fractions of the constituents.

The material properties of the Al and SiC are given

as follows:

For Al (metal); Em ¼ 70 GPa, tm ¼ 0:3; am

¼ 23:4� 10�6=K, km

¼ 233W=mK;

ð27a� dÞ

For SiC (ceramic); Ec ¼ 427 GPa, tc ¼ 0:17; ac

¼ 4:3� 10�6=K, kc

¼ 65W=mK;

ð28a� dÞ

where the subscripts m and c denote the metal (matrix-

phase) and ceramic (particulate-phase) materials.

The volume fractions of the SiC (ceramic) and Al

(metal) materials are given as Eqs. (2a) and (1e), in

which Vþ
c ¼ 0:5; V�

c ¼ 0 and jp ¼ 2.

The temperature changes applied on the top and

bottom surfaces of the plate are given as

�Tþ ¼ �Tþ
0 sin px=Lxð Þ sin py=Ly

� �
; ð29aÞ

�T� ¼ �T�
0 sin px=Lxð Þ sin py=Ly

� �
: ð29bÞ

A set of dimensionless variables is given as
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Tables 1 and 2 show various RMVT-based FLM

solutions of elastic and thermal field variables,

induced in the simply-supported, single-layered

FGM plate with the specified temperature and heat

convection conditions applied on the top and bottom

surfaces of the plate, respectively, in which Lx ¼ Ly

�T ¼ T 0:5Lx; 0:5Ly; f
� �

= D�T0ð Þ; �pf ¼ �pf 0:5Lx; 0:5Ly; f
� �

h= km D�T0ð Þ;
�ux �uy

 �
¼ ux 0; 0:5Ly; f

� �
uy 0:5Lx; 0; fð Þ

 �
10= am D�T0 Lxð Þb c; �uf ¼ 100 h uf 0:5Lx; 0:5Ly; f

� �
= am D�T0 L2

x

� �
;

�rx �ry �sxy

� �
¼ rx 0:5Lx; 0:5Ly; f

� �
ry 0:5Lx; 0:5Ly; f
� �

sxy 0; 0; fð Þ
� �

10= am D�T0 Emð Þ½ �;
�sxf �syf

 �
¼ sxf 0; 0:5Ly; f

� �
syf 0:5Lx; 0; fð Þ

 �
100 Lx= am D�T0 Em hð Þb c;

�rf ¼ 100 L2
x rf 0:5Lx; 0:5Ly; f

� �
= am D�T0 Em h2
� �

and D�T0 ¼ �Tþ
0 � �T�

0 :

ð30a� hÞ

Table 1 Results of convergence and accuracy studies for the displacement and stress components induced in a single-layered FGM

plate with the specified temperature conditions on the top and bottom surfaces of the plate

Lx=h Theories �ux 0:5 hð Þ �uf 0:5 hð Þ �rx 0:5 hð Þ �sxy 0:5 hð Þ �sxf 0:25 hð Þ �rf 0ð Þ �T 0ð Þ �pf �0:5 hð Þ

5 LM1 (nl ¼ 4) -1.1464 5.6021 -4.7493 -6.1393 5.2461 -10.987 0.39478 0.73574

LM1 (nl ¼ 8) -1.1827 4.8669 -4.4226 -6.3338 4.4137 -9.4191 0.39402 0.73265

LM1 (nl ¼ 16) -1.2019 4.5435 -4.2502 -6.4364 4.2753 -8.8839 0.39382 0.73186

LM1 (nl ¼ 32) -1.2079 4.4456 -4.1958 -6.4688 4.2388 -8.7344 0.39377 0.73166

LM1 (nl ¼ 64) -1.2095 4.4198 -4.1813 -6.4775 4.2295 -8.6959 0.39376 0.73162

LM2 (nl ¼ 4) -1.1728 5.5972 -4.5122 -6.2804 4.4398 -9.1478 0.39478 0.73574

LM2 (nl ¼ 8) -1.1984 4.7722 -4.2815 -6.4178 4.2815 -8.8100 0.39402 0.73265

LM2 (nl ¼ 16) -1.2070 4.5067 -4.2044 -6.4637 4.2403 -8.7156 0.39382 0.73186

LM2 (nl ¼ 32) -1.2093 4.4354 -4.1835 -6.4761 4.2299 -8.6911 0.39377 0.73166

LM3 (nl ¼ 4) -1.2108 4.9192 -4.1704 -6.4839 4.1771 -8.7757 0.39478 0.73574

LM3 (nl ¼ 8) -1.2121 4.4611 -4.1582 -6.4912 4.2360 -8.6967 0.39402 0.73265

LM3 (nl ¼ 16) -1.2108 4.4165 -4.1703 -6.4840 4.2280 -8.6856 0.39382 0.73186

LM3 (nl ¼ 32) -1.2103 4.4119 -4.1747 -6.4814 4.2267 -8.6835 0.39377 0.73166

SaS method -1.2101 4.4111 -4.1763 -6.4804 4.2264 -8.6829 0.39375 0.73160

Exact solution -1.2101 4.4111 -4.1764 -6.4804 4.2264 -8.6829 0.3938 0.7316

10 LM1 (nl ¼ 4) -1.1516 4.7764 -4.7022 -6.1673 5.5593 -11.643 0.42479 0.81127

LM1 (nl ¼ 8) -1.1864 4.0691 -4.3895 -6.3535 4.6652 -9.9284 0.42421 0.80844

LM1 (nl ¼ 16) -1.2046 3.7599 -4.2255 -6.4511 4.5209 -9.3694 0.42406 0.80772

LM1 (nl ¼ 32) -1.2104 3.6665 -4.1738 -6.4819 4.4831 -9.2151 0.42402 0.80754

LM1 (nl ¼ 64) -1.2119 3.6420 -4.1601 -6.4900 4.4735 -9.1755 0.42401 0.80750

LM2 (nl ¼ 4) -1.1756 4.7607 -4.4870 -6.2954 4.6902 -9.6339 0.42479 0.81127

LM2 (nl ¼ 8) -1.2009 3.9773 -4.2587 -6.4314 4.5269 -9.2917 0.42421 0.80844

LM2 (nl ¼ 16) -1.2094 3.7247 -4.1830 -6.4764 4.4846 -9.1955 0.42406 0.80772

LM2 (nl ¼ 32) -1.2116 3.6568 -4.1624 -6.4887 4.4739 -9.1706 0.42402 0.80754

LM3 (nl ¼ 4) -1.2128 4.0954 -4.1523 -6.4947 4.4237 -9.2412 0.42479 0.81127

LM3 (nl ¼ 8) -1.2142 3.6774 -4.1395 -6.5023 4.4792 -9.1744 0.42421 0.80844

LM3 (nl ¼ 16) -1.2130 3.6381 -4.1501 -6.4960 4.4717 -9.1646 0.42406 0.80772

LM3 (nl ¼ 32) -1.2126 3.6343 -4.1540 -6.4937 4.4706 -9.1627 0.42402 0.80754

SaS method -1.2124 3.6337 -4.1555 -6.4928 4.4703 -9.1622 0.42401 0.80748

Exact solution -1.2124 3.6337 -4.1555 -6.4928 4.4703 -9.1622 0.4240 0.8075
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and Lx=h ¼ 5 and 10. It can be seen in Table 1 that

the convergent solutions of LM1, LM2 and LM3 are

obtained at nl = 64, 32 and 16, respectively, for a

thick FGM plate (Lx/h = 5), and the relative errors

between these convergent solutions and the 3D

solutions obtained by Vel and Batra (2002) and

Kulikov and Plotnikova (2015) are less than 0.2% in

the cases of the specified temperature conditions.

Table 2 shows the RMVT-based FLM solutions of

various elastic and thermal field variables of the FGM

plate in the cases of heat convection surface condi-

tions. The results also show that the convergence rates

of the results in these cases are fast, with that of a

moderately thick FGM plate ((Lx/h = 10) being faster

than that of a thick FGM plate (Lx/h = 5) on the basis

of the same order of the FLMs. In addition, the

convergence rates of the FLMs were

LM3 [LM2 [LM1, in which the symbol ‘‘[’’ means

having a faster convergence rate. The LM3 method is

thus used for the optimization of material composition

of single-layered FGM plates in the next section.

4.2 Optimization of material composition

for asymmetrically single-layered FGM plates

In this section, the authors carry out the optimization

of material composition to minimize the peak values

of the stress ratios induced in a simply-supported,

asymmetrically single-layered FGM plate subjected to

the specified temperature and heat convection condi-

tions on the top and bottom surfaces, and with

thickness- and temperature-dependent material prop-

erties using the above-developed hybrid GA with the

complex method. The temperature changes on the top

Table 2 Results of convergence and accuracy studies for the displacement and stress components induced in a single-layered FGM

plate with the heat convection conditions on the top and bottom surfaces of the plate

Lx=h Theories �ux 0:5 hð Þ �uf 0:5 hð Þ �rx 0:5 hð Þ �sxy 0:5 hð Þ �sxf 0:25 hð Þ �rf 0ð Þ �T 0ð Þ �pf �0:5 hð Þ

5 LM1 (nl ¼ 4) -0.82604 1.1971 -3.5861 -4.4237 3.4979 -7.3259 0.50016 0.082063

LM1 (nl ¼ 8) -0.83320 0.90298 -3.3348 -4.4620 2.7727 -6.0974 0.49029 0.080783

LM1 (nl ¼ 16) -0.83376 0.76645 -3.2130 -4.4650 2.6929 -5.6828 0.48466 0.079938

LM1 (nl ¼ 32) -0.83166 0.72309 -3.1674 -4.4538 2.6635 -5.5543 0.48165 0.079464

LM1 (nl ¼ 64) -0.82979 0.71058 -3.1505 -4.4438 2.6517 -5.5126 0.48010 0.079213

LM2 (nl ¼ 4) -0.84325 1.2157 -3.4312 -4.5159 2.8309 -6.0170 0.50016 0.082063

LM2 (nl ¼ 8) -0.84136 0.86799 -3.2614 -4.5057 2.7248 -5.6954 0.49029 0.080783

LM2 (nl ¼ 16) -0.83628 0.75223 -3.1903 -4.4785 2.6802 5.5754 0.48466 0.079938

LM2 (nl ¼ 32) -0.83232 0.71911 -3.1614 -4.4573 2.6602 -5.5270 0.48165 0.079464

LM3 (nl ¼ 4) -0.86134 0.94268 -3.2685 -4.6128 2.7293 -5.7556 0.50016 0.082063

LM3 (nl ¼ 8) -0.84765 0.73970 -3.2048 -4.5394 2.7079 -5.6214 0.49029 0.080783

LM3 (nl ¼ 16) -0.83800 0.71511 -3.1749 -4.4877 2.6756 -5.5564 0.48466 0.079938

LM3 (nl ¼ 32) -0.83276 0.70951 -3.1575 -4.4597 2.6591 -5.5222 0.48165 0.079464

10 LM1 (nl ¼ 4) -0.94735 -0.71858 -4.1204 -5.0734 4.1844 -8.7638 0.69531 0.12221

LM1 (nl ¼ 8) -0.95773 -0.88723 -3.8895 -5.1289 3.2696 -7.2525 0.68668 0.12126

LM1 (nl ¼ 16) -0.95997 -0.96959 -3.7889 -5.1409 3.2078 -6.7912 0.68199 0.12057

LM1 (nl ¼ 32) -0.95911 -0.99356 -3.7532 -5.1363 3.1859 -6.6580 0.67954 0.12017

LM1 (nl ¼ 64) -0.95802 -0.99900 -3.7405 -5.1305 3.1773 -6.6181 0.67829 0.11996

LM2 (nl ¼ 4) -0.96390 -0.70105 -3.9716 -5.1619 3.3134 -7.1025 0.69531 0.12221

LM2 (nl ¼ 8) -0.96477 -0.91231 -3.8262 -5.1666 3.2305 -6.7764 0.68668 0.12126

LM2 (nl ¼ 16) -0.96209 -0.97996 -3.7698 -5.1523 3.1975 -6.6666 0.68199 0.12057

LM2 (nl ¼ 32) -0.95967 -0.99648 -3.7482 -5.1393 3.1832 -6.6265 0.67954 0.12017

LM3 (nl ¼ 4) -0.97949 -0.88373 -3.8313 -5.2454 3.2341 -6.7850 0.69531 0.12221

LM3 (nl ¼ 8) -0.96998 -1.0023 -3.7793 -5.1945 3.2165 -6.6900 0.68668 0.12126

LM3 (nl ¼ 16) -0.96350 -1.0062 -3.7571 -5.1598 3.1937 -6.6445 0.68199 0.12057

LM3 (nl ¼ 32) -0.96003 -1.0033 -3.7450 -5.1412 3.1823 -6.6209 0.67954 0.12017

540 S. Ding, C.-P. Wu

123



and bottom surfaces are given as �Tþ ¼ �Tþ
0 sin

px=Lxð Þ sin py=Ly

� �
and �T� ¼ �T�

0 sin px=Lxð Þ
sin py=Ly

� �
, in which �Tþ

0 ¼ 500K and �T�
0 ¼ 0K,

and h ka ¼ 0:1 and h kb ¼ 0:1 are used for the cases of

the heat convection conditions. The FGM plate is

considered as a two-phase composite one consisting of

the metal (titanium alloy, Ti–6Al–4V) and ceramic

(zirconium oxide, ZrO2) materials. The ZrO2 is the

particulate phase, and Ti–6Al–4V the matrix phase.

The volume fractions of the particulate phase on the

top and bottom surfaces of the plate are taken as Vþ
c ¼

1 and V�
c ¼ 0, and these are assumed to vary along the

thickness direction of the plate with the specific

function distributions, such as the power-law (Eq. 2a)

and sigmoid (Eq. 2b) ones, and the non-specific

function distributions, such as the layerwise step

(Eq. 2c) and layerwise linear (Eq. 2d) ones. The

effective material properties of the plate are estimated

using the Mori–Tanaka micromechanics scheme,

given in Eqs. (1a)–(1d). The explicit formulas for

determinations of the temperature-dependent material

properties of the metal (Ti–6Al–4V) and ceramic

(ZrO2) are given in Ootao et al. (2000) and listed as

follows:

For the material Ti–6Al–4V,

For the material ZrO2,

E¼132:2�50:3�10�3T�8:1�10�6T2 GPa,

t¼0:333;

a¼13:3�10�6�18:9�10�9Tþ12:7�10�12T2 1=K;

k¼1:71þ0:21�10�3Tþ0:116�10�6T2 W=mK;

Yt ¼148:1þ1:184�10�3T�31:4�10�6T2 MPa;

Yc¼ 3136:0=146:0ð ÞYt: ð32a�fÞ

The geometric parameters of the plate are consid-

ered as Lx ¼ Ly and Lx=h ¼ 10 in the following

analysis, and the temperature distributions of the

assorted material properties of the Ti–6Al–4V and

ZrO2 from the room temperature (T̂ ¼ 300K) to T̂ ¼
1100K are shown in Fig. 4.

Figures 5a and 6a show the optimal material

compositions of the asymmetrically single-layered

FGM plate with the specified temperature and heat

convection surface conditions, respectively, and using

the power-law and sigmoid material models. The

corresponding through-thickness distributions of the

in-plane stress (rx) and stress ratio (fr) induced in the

plate are shown in Figs. 5b, c and 6b, c. The material-

property gradient indexes jp and js for these two

material models are selected as the design variables.

jp and js are represented as a set of four decimal

digits, and the ranges of jp and js are thus limited to

00.00 B (jp or js) B 100.00. By means of the cur-

rent hybrid GA with the complex method, the

maximum stress ratios (frmax) induced in the plate

composed of the optimal material compositions for the

power-law and sigmoid material models are given in

Table 3.

It can be seen in Figs. 5b, c, 6b, c and Table 3 that

in the cases of specified temperature conditions the

optimal results for the through-thickness distributions

of the stress ratios induced in the plate with the power-

law model are significantly less than those induced in

the plate with the sigmoid model, even though their

maximum values and the through-thickness distribu-

tions of the in-plane stress are close to each other,

while in the cases of the heat conduction surface

conditions, the improvement of the optimal results for

the stress ratios induced in the plate with the power-

E ¼ 122:7� 0:0565 T GPa,

t ¼ 0:2888þ 32:0� 10�6T ;

a ¼ 7:43� 10�6 þ 5:56� 10�9T � 2:69� 10�12T2 1=K when 300K� T � 1100K;

a ¼ 10:291� 10�6 1=K when 1100K� T � 1300K;

k ¼ 1:1þ 0:017 T W=mK;

Yt ¼ Yc ¼ 1252:0� 0:8486 T MPa;

ð31a� fÞ
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law model is minor as compared with those induced in

the plate with the sigmoid material model.

Figures 7a and 8a show the optimal material

composition of the asymmetrically single-layered

plate with the specified temperature and heat convec-

tion surface conditions, respectively, in which the

layerwise step and layerwise linear material models

are used. In the layerwise step material model, the

volume fractions from 2nd-layer to (nl-1)th-layer

(i.e., V
ðmÞ
c ; in which m ¼ 2� nl � 1ð Þ and nl =

10) are selected as the design variables subject to

Fig. 4 Variations of the material properties with the temper-

ature, a Ti–6Al–4V, b ZrO2

Fig. 5 Optimal results for the asymmetrically single-layered

FGM plate with the specified temperature surface conditions

and using the power-law and sigmoid material models, a the

through-thickness distributions of the volume fractions of the

particulate-phase material, b the through-thickness distributions

of the in-plane stress, c the through-thickness distributions of the
stress ratio
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V
ð1Þ
c ¼ 0 and V

ðnlÞ
c ¼ 1; while in the layerwise linear

material model, the volume fractions at the interfaces

between adjacent layers (i.e., V
ðmÞ
c ; in which m ¼

1� nl � 1ð Þ and nl = 10) are selected as the design

variables subject to V
ð0Þ
c ¼ 0 and V

ðnlÞ
c ¼ 1. The cor-

responding optimal results for the through-thickness

distributions of the in-plane stresses and stress ratios

induced in the plate with the specified temperature and

heat convection conditions are shown in Figs. 7b, c

and 8b, c, respectively, as well as the corresponding

maximum stress ratios (frmax) of the plate composed of

the optimal material compositions for the layerwise

step and layerwise linear material models are also

given in Table 3. The results show the optimal results

for the through-thickness distributions of the in-plane

stresses obtained using the layerwise step and layer-

wise linear material models are close to each other.

The through-thickness distribution of the in-plane

stress induced in the plate with the optimal material

composition of the layerwise linear material model

gradually and continuously vary through the thickness

direction of the plate, while the in-plane stress induced

in the plate with the optimal material composition of

the layerwise step material model is discontinuous at

the interfaces between adjacent layers due to the

material properties suddenly changing at those places.

The layerwise linear material model is thus superior to

the layerwise step one for the optimization of material

composition of FGM plates.

4.3 Optimization of material composition

for symmetrically sandwiched FGM plates

In this section, the authors study the optimization of

material composition to minimize the peak values of

the stress ratios induced in a simply-supported,

symmetrically sandwiched FGM plate subjected to

the specified temperature conditions on the top and

bottom surfaces, and with thickness- and temperature-

dependent material properties using the current GA.

The prescribed temperature changes on the top and

bottom surfaces are the same as those used in

Sect. 4.2, in which �Tþ
0 ¼ 500K and �T�

0 ¼ 0K. The

symmetrically sandwiched FGM plate is composed of

the homogeneous ceramic face sheets and the sym-

metrical FGM core, and the core is made of a two-

phase composite material consisting of the metal

(titanium alloy, Ti–6Al–4V) and ceramic (zirconium

Fig. 6 Optimal results for the asymmetrically single-layered

FGM plate with the heat convection surface conditions and

using the power-law and sigmoid material models, a the

through-thickness distributions of the volume fractions of the

particulate-phase material, b the through-thickness distributions

of the in-plane stress, c the through-thickness distributions of the
stress ratio
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oxide, ZrO2) materials, the material properties of

which are the same as those used in the Sect. 4.2. The

volume fractions of the particulate phase of the core

( Vc fð Þ½ �core) are symmetric with respect to its mid-

surface, and these on the top surface and mid-surface

the core are taken as Vc f ¼ hc=2ð Þ ¼ 1 and

Vc f ¼ 0ð Þ ¼ 0, respectively, as well as these of the

face sheets are Vc fð Þ½ �face sheets¼ 1 when �
h=2� f� � hc=2 and hc=2� f� h=2, in which hc

denotes the thickness of the core. The values of Vc of

the upper half layer of the core are assumed to vary

along the thickness direction of the core with a variety

of material models, such as the power-law, sigmoid,

layerwise step and layerwise linear ones, as well as

they are given as follows:

(a) The power-law function distribution,

Vc fð Þ ¼ V0
c þ Vþ

c � V0
c

� �
f= hc=2ð Þ½ � jp when

0\f\fnl
ði:e:; 0\f\hc=2Þ;

ð33aÞ

where Vþ
c and V0

c denote the volume fractions of the

particulate-phase material at the top and mid-surface

of the core, and in this work Vc ¼ Vþ
c ¼ 1, when

f ¼ hc=2, and Vc ¼ V0
c ¼ 0, when f ¼ 0. The value of

nl is defined as the total number of divided layers in the

upper half layer of the core in this case, and nl = 10.

(b) The sigmoid function distribution,

Vc fð Þ ¼ V0
c þ Vþ

c � V0
c

� �
=2

� �
4f=hcð Þjs 0� f� hc=4;

Vþ
c � Vþ

c � V�
c

� �
=2

� �
hc � 2fð Þ= hc=2ð Þ½ �js hc=4� f� hc=2;

�

ð33bÞ

(c) The layerwise step function distribution,

Vc fð Þ ¼ V ðmÞ
c H f� fm�1ð Þ � H f� fmð Þ½ � when

fm�1\f\fm and m ¼ 1� nl; (33c)

where V
ð1Þ
c ¼ V0

c and V
ðnlÞ
c ¼ Vþ

c , as well as the values

of V
ðmÞ
c m ¼ 2; 3; . . .; nl � 1ð Þð Þ are to be

determined.

(d) The layerwise linear function distribution,

Vc fð Þ ¼ V ðm�1Þ
c ðfm � fÞ=hm½ � þ VðmÞ

c ðf� fm�1Þ=hm½ �
when fm�1\f\fm and m ¼ 1� nl; (33d)

where V
ðm�1Þ
c fð Þ and V

ðmÞ
c fð Þ stand for the volume

fractions at the interfaces between the (m-1)th and

mth layers, as well as the mth and (m ? 1)th layers,

respectively, and V
ð0Þ
c and V

ðnlÞ
c are the volume frac-

tions of particulate-phase material on the mid-surface

and top surfaces of the FGM core, such that V
ð0Þ
c ¼ V0

c

and V
ðnlÞ
c ¼ Vþ

c , as well as the values of

V
ðmÞ
c m ¼ 1; 2; . . .; nl � 1ð Þð Þ are to be

determined.

Figures 9a and 10a show the optimal material com-

position of the symmetrically sandwiched FGM plate

with the specified temperature surface conditions, in

which the material models of specific function distribu-

tions (i.e., power-law and sigmoid function ones) and

non-specific function distributions (i.e., the piecewise

step and piecewise linear ones) are used, respectively, as

well as hc ¼ 0:8 h: The corresponding optimal results

for the through-thickness distributions of the in-plane

stresses and the stress ratios induced in the plate with

various material models are shown in Figs. 9b, c and

10b, c, and the corresponding maximum stress ratios

(frmax) induced in the plate are given in Table 4.

Table 3 Maximum stress ratios induced in the asymmetrically single-layered FGM plates composed of the optimal material

compositions for different material models and surface conditions

Material models Surface boundary conditions Optimal results

Power-law Specified temperature rx=Ycð Þmax ¼ 0:04976 occurring at f ¼ 0:5 h

Heat convection rx=Ycð Þmax ¼ 0:02364 occurring at f ¼ �0:333 h

Sigmoid Specified temperature rx=Ycð Þmax ¼ 0:05121 occurring at f ¼ 0:477 h

Heat convection rx=Ycð Þmax ¼ 0:02549 occurring at f ¼ �0:0433 h

Layerwise step Specified temperature rx=Ycð Þmax ¼ 0:04521 occurring at f ¼ 0:5 h

Heat convection rx=Ycð Þmax ¼ 0:01931 occurring at f ¼ 0:4 h

Layerwise linear Specified temperature rx=Ycð Þmax ¼ 0:04491 occurring at f ¼ 0:5 h

Heat convection rx=Ycð Þmax ¼ 0:01963 occurring at f ¼ �0:5 h
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Fig. 7 Optimal results for the asymmetrically single-layered

FGM plate with the specified temperature surface conditions

and using the material model of layerwise step and linear

functions, a the through-thickness distributions of the volume

fractions of the particulate-phase material, b the through-

thickness distributions of the in-plane stress, c the through-

thickness distributions of the stress ratio

Fig. 8 Optimal results for the asymmetrically single-layered

FGM plate with the heat convection surface conditions and

using the material model of layerwise step and linear functions,

a the through-thickness distributions of the volume fractions of

the particulate-phase material, b the through-thickness distri-

butions of the in-plane stress, c the through-thickness distribu-
tions of the stress ratio
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It can be seen in Fig. 9b, c and Table 4 that the

deviation between the results of optimal stresses

induced in the plate with the power-law model and

the sigmoid material model is minor, even though the

maximum stress ratio obtained using the power-law

model is less than that obtained using the sigmoid

model.

Again, the results of Fig. 10b, c and Table 4 show

the optimal results for the through-thickness distribu-

tions of the in-plane stresses and stress ratios induced

in the plate using the layerwise step and layerwise

linear material models are close to each other. The

maximum stress ratios obtained using the layerwise

step and layerwise linear material models are slightly

less than that obtained using the power-law one, while

these are much less than that obtained using the

sigmoid one.

It can be concluded that the maximum stress ratios

induced in the FGM plates with the optimal material

composition of the material model of non-specific

functions, such as layerwise step or layerwise linear

ones, are always less than those values obtained using

the material models of specific functions, such as

power-law or sigmoid ones. The through-thickness

distribution of the in-plane stress induced in the plate

obtained using the layerwise linear material model

gradually and continuously vary through the thickness

direction of the plate, while the in-plane stress induced

in the plate obtained using the layerwise step material

model is discontinuous at the interfaces between

adjacent layers due to the material properties suddenly

changing at those places. Thus, using the layerwise

linear material model for the current issue produces

more satisfactory results, as compared with those

obtained using other material models, such as the

power-law, sigmoid and layerwise step ones, and thus

this approach is recommended.

5 Concluding remarks

In this article, the authors develop a hybrid GA with

the complex method for the optimization of the

material composition of a simply-supported, asym-

metrically single-layered FGM plate and a symmetri-

cally sandwiched FGM one with four material models,

such as the power-law, sigmoid, layerwise step and

layerwise linear ones, and two thermal surface condi-

tions, such as the specified temperature and heat

Fig. 9 Optimal results for the symmetrically sandwiched FGM

plate with the specified temperature surface conditions and

using the power-law and sigmoid material models, a the

through-thickness distributions of the volume fractions of the

particulate-phase material, b the through-thickness distributions

of the in-plane stress, c the through-thickness distributions of the
stress ratio
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convection ones. A unified weak-form formulation of

various RMVT-based FLMs is developed for the

coupled thermo-elastic analysis of simply-supported,

multi-layered FGM plates. The layerwise linear

material model is recommended, because the

through-thickness distribution of the in-plane stress

induced in the FGM plate gradually and continuously

varied through the thickness direction of the FGM

plate, and the corresponding maximum stress ratios

induced in the FGM plate are always less than those

obtained using the power-law and sigmoid material

models.

The current hybrid GA with the complex method is

developed and coded by the authors, and this can be

extended to examine constrained multi-objective

optimization problems in the continued work. As

noted above, in this work a layerwise linear material

model is recommended for the current optimization

problem. It is thus be expected that a lower value of the

maximum stress ratio and a more smooth stress

distribution along the thickness coordinate of the

FGM plate might be obtained when using certain

layerwise higher-order function material models,

which also becomes a potential issue in the continued

work.
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