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Abstract This study investigates vibration charac-

teristics of longitudinally moving sigmoid function-

ally graded material (S-FGM) plates containing

porosities. Two types of porosity distribution, i.e.,

the even and uneven distributions, are taken into

account. In accordance with the sigmoid distribution

rule, the material properties of porous S-FGM plates

vary smoothly along the plate thickness direction. The

nonlinear geometrical relations are adopted by using

the von Kármán non-linear plate theory. Based on the

d’Alembert’s principle, the nonlinear governing equa-

tion of the system is derived. Then, the governing

equation is discretized to a set of ordinary differential

equations via the Galerkin method. These discretized

equations are subsequently solved by using the method

of harmonic balance. Analytical solutions are verified

with the aid of the adaptive step-size fourth-order

Runge–Kutta method. By using the perturbation

technique, the stability of the steady-state response is

highlighted. Finally, both natural frequencies and

nonlinear forced responses of moving porous S-FGM

plates are examined. Results demonstrate that the

moving porous S-FGM plates exhibit hardening spring

characteristics in the nonlinear frequency response.

Moreover, it is shown that the type of porosity

distribution, moving speed, porosity volume fraction,

constituent volume fraction and in-plane pretension all

have significant influence on the nonlinear forced

responses of moving porous S-FGM plates.

Keywords Sigmoid functionally graded material

plate � Porosity � Moving � Vibration � Method of

harmonic balance

1 Introduction

Functionally gradient materials (FGMs) are a new

type of advanced composite materials composed of

two or more phases. FGMs are first introduced by a

group of Japanese scientists for the purpose of

aerospace application. Due to their promising mechan-

ical and material properties such as smooth stress

distribution, less stress concentration and high joint

strength of different materials, FGMs have received

wide applications in modern engineering including

rocket nozzles, turbine blades, power machinery and

electronics. Some available techniques can be used to

synthesize FGMs such as multi-step sequential infil-

tration technique, non-pressure sintering technique

and self-propagating high temperature synthesis

technique.
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Owing to the existence of technical issues in the

process of preparing FGMs, porosities or micro-voids

may happen inside the FGMs. For example, Zhu et al.

(2001) reported that many porosities can happen

inside the materials when preparing FGMs by means

of the non-pressure sintering technique; the existence

of porosities attenuates dramatically the strength of

FGMs. In addition, it was found that (Wat-

tanasakulpong et al. 2012) porosities happen mainly

in the middle zone of the FGMs that are prepared via

the multi-step sequential infiltration technique. This is

because that it is difficult to infiltrate the secondary

material into the middle zone ideally, nevertheless

infiltrating the material into the top and bottom zones

is easier, leading to less porosities in these two zones.

In consideration of the existence of pososities inside

FGMs, it is essential to take into account porosity

effect on dynamic behavior of FGM structures

containing porosities.

Because of the wide application of FGM plates in

various engineering fields, this type of composite

structures has drawn much attention. Most researches

of FGM plates are related to stress and buckling

studies, by contrast, dynamics analyses of FGM plates

are not large (Swaminathan et al. 2015). Some of these

disquisitions are briefly mentioned here. Nguyen

(2015) calculated natural frequencies of FGM plates

by using a higher-order hyperbolic shear deformation

theory. Atmane et al. (2010) analyzed free vibration of

FGM plates on Winkler-Pasternak elastic foundations.

The free vibration problem of variable thickness two-

directional circular FGM plates on elastic foundations

was carried out by Alipour et al. (2010). Gupta et al.

(2016) calculated natural frequencies of a shear

deformable FGM plate with various boundary condi-

tions utilizing the finite element method. Based on the

three dimensional theory of elasticity, Jin et al. (2015)

carried out free vibration analysis of annular sector

FGM plates. The free vibration of FGM sandwich

plates was analyzed by Alibeigloo and Alizadeh

(2015), who considered two types of plate conforma-

tion. Using the third-order shear deformation theory,

Zhang et al. (2010) studied the chaotic motion of

simply-supported thick FGM plates through the

method of multiple scales. Based on the von Kármán

non-linear plate theory, Allahverdizadeh et al. (2014)

analyzed dynamic response of a rectangular FGM

plate considering a single-mode approximation. Thai

et al. (2014) researched the bending, buckling and free

vibration of FGM sandwich plates according to the

first-order shear deformation theory. Utilizing the

Mindlin plate theory along with modified couple stress

theory, Ke et al. (2013) performed the axisymmetric

non-linear free vibration analysis of FGM microplates.

Alijani et al. (2011) adopted the Lagrange method

together with the pseudo-arc-length continuation

technique to obtain non-linear dynamic response of

FGM plates. Hao et al. (2011, 2014) investigated

periodic, quasi periodic and chaotic motions of FGM

plates under various boundary constrains. Yang et al.

(2010) studied the non-linear frequency characteristics

and transient response of cracked FGM plates by using

Reddy third-order shear deformation plate theory.

Recently, based on the classical plate theory, Wang

and Zu (2017c, e) investigated the nonlinear steady-

state response of traveling FGM plates with and

without fluid effect in the von Kármán-type sense.

The foregoing researches all suppose the con-

stituent material of FGMs is perfect without inclusion

or porosities existing inside the materials. A few

studies are carried out on free vibrations of FGM

structures with porosities. Based on the classical beam

theory, Wattanasakulpong and Ungbhakorn (2014)

obtained linear and nonlinear frequencies of FGM

Euler–Bernoulli beams with porosities. Ebrahimi and

Zia (2015) analyzed nonlinear frequency characteris-

tics of FGM Timoshenko beams with porosities using

the method of multiple scales. Ait Atmane et al. (2017)

calculated the natural frequencies of a porous FGM

beam resting on elastic foundations. Considering a

porous FGM nanoplate resting on Winkler–Pasternak

foundations, porosity effect on the free vibration of the

system was shown by Mechab et al. (2016).

Additionally, longitudinally moving structures can

be found in many engineering applications such as

deployment of appendages in aerospace, robotic

manipulators, transmission belts and satellite tethers.

Longitudinally moving beams, plates and shells made

of metal materials have been studied extensively

(Ding and Chen 2010; Ding et al. 2012; Marynowski

and Kapitaniak 2014; Wang et al. 2013; Yang et al.

2016a, b; Yang and Zhang 2014; Zhang et al. 2014).

Recently, Wang et al. (2015, 2016a, b) and Wang and

Zu (2017a, b) considered moving metallic plates in

contact with liquid; they reported a series of work on

various aspect of the coupled structure including

natural frequencies, mode functions, critical speed,

stability, internal resonance and parametric resonance.

474 Y. Q. Wang, J. W. Zu

123



The concept of the sigmoid functionally graded

materials (S-FGMs) is introduced by Chi and Chung

(2006a) in 2006. The advantage of S-FGMs is that they

can reduce stress concentration more effectively (Chi

and Chung 2006a). For instance, it is reported that (Chi

and Chung 2002) the usage of S-FGMs can dramat-

ically reduce the stress intensity factors in a cracked

structure. Some investigations have been conducted

on bending, stress, and free vibration analyses of

S-FGM structures. Ben-Oumrane et al. (2009) per-

formed static deformation and stress analyses of

S-FGM beams. Bending and stresses of S-FGM plates

are studied by several researchers by means of various

methods (Chi and Chung 2006b; Fereidoon et al. 2011;

Han et al. 2009). Atmane et al. (2011) investigated the

free vibration of S-FGM beams with variable cross-

section, where three boundary conditions were con-

sidered. Due to the complexity of constituent distri-

bution of S-FGMs, there are still no studies on large-

deflection vibrations of S-FGM plates.

In this paper, the vibration characteristics are inves-

tigated on longitudinal moving S-FGM plates with

porosities for the first time. Two types of porosity

distribution, i.e., even and uneven distributions, are

taken into account. In accordance with the sigmoid

distribution rule, the material properties of porous

S-FGM plates vary smoothly along the plate thickness

direction. The nonlinear geometrical relations are

adopted by using the von Kármán non-linear plate

theory. Based on the d’Alembert’s principle, the

governing equation of moving porous S-FGM plates is

derived. Then, the governing equation is discretized to a

set of ordinary differential equations via the Galerkin

method. These discretized equations are subsequently

solved by using the method of harmonic balance.

Analytical solutions are verified with the aid of the

adaptive step-size fourth-order Runge–Kutta method.

By using the perturbation technique, the stability of the

steady-state response is highlighted. Finally, the present

study examines both natural frequency and nonlinear

forced response characteristics for longitudinally mov-

ing S-FGM plates with porosities.

2 Problem formulation

Consider a rectangular porous S-FGM plate with

length a, width b, thickness h and Cartesian coordinate

system ðO; x; y; zÞ where the origin O is at one of the

plate corners as shown in Fig. 1a. The plate moves

longitudinally in the x-axis direction at a constant

velocity V. The S-FGM is a mixture of metal and

ceramic, in which the top surface of the plate is pure

metal and the bottom surface is pure ceramic. The

S-FGM contains porosities and Fig. 1b shows two

types of porosity distribution, i.e., evenly distributed

porosity (Porosity-I for short) and unevenly dis-

tributed porosity (Porosity-II for short). Displacement

components of points in the mid-plane of the plate are

denoted by u, v and w in the x, y and z directions from

the static equilibrium, respectively. Besides, there is

pretention applied on the plate in the x-axis direction,

which is denoted by N0.

Supposing porosities disperse equally among the

metal and ceramic phases, the effective material

(a)

(b)

Fig. 1 Schematic of a

moving rectangular S-FGM

plate with porosities:

a Cartesian coordinate

system; b plate cross-

sections for two types of

porosity
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properties of the imperfect FGM plate, with a porosity

volume fraction a (a � 1), are given by the modified

form:

P zð Þ ¼ Pm Vm zð Þ � a
2

h i
þ Pc Vc zð Þ � a

2

h i
ð1Þ

where Pm and Pc are, respectively, the material

properties of metal and ceramic; and Vm and Vc are

their volume fractions, respectively.

The volume fraction relations of constituents are

given by Vm þ Vc ¼ 1 (Wattanasakulpong and

Chaikittiratana 2015). For the purpose of realizing

the smooth distribution of stresses, Chi and Chung

(2006a) proposed a sigmoid FGM (S-FGM), which is

defined as

Vc1 zð Þ ¼ 1 � 1

2

h=2 � z

h=2

� �N

0� z� h=2

Vc2 zð Þ ¼ 1

2

h=2 þ z

h=2

� �N

� h=2� z� 0

8>>><
>>>:

ð2Þ

in which N denotes the power-law index which is

nonnegative real number, Vci (i = 1, 2) the volume

fractions of ceramic in different areas.

The general material properties Pi (i = 1, 2), for the

S-FGM plate with evenly distributed porosities

(Porosity-I), are stated as

P1 zð Þ ¼ Pc � Pmð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ Pm � a
2

Pc þ Pmð Þ;

ð0� z� h=2Þ

P2 zð Þ ¼ Pc � Pmð Þ 1

2

h=2 þ z

h=2

� �N

þPm � a
2

Pc þ Pmð Þ;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

Accordingly, the general Young’s modulus Ei,

Poisson ratio mi and mass density qi (i = 1, 2) of the

Porosity-I S-FGM plate take the form

E1 zð Þ ¼ Ec � Emð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ Em � a
2

Ec þ Emð Þ;

ð0� z� h=2Þ

E2 zð Þ ¼ Ec � Emð Þ 1

2

h=2 þ z

h=2

� �N

þEm � a
2

Ec þ Emð Þ;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

m1 zð Þ ¼ mc � mmð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ mm � a
2

mc þ mmð Þ;

ð0� z� h=2Þ

m2 zð Þ ¼ mc � mmð Þ 1

2

h=2 þ z

h=2

� �N

þmm � a
2

mc þ mmð Þ;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

q1 zð Þ ¼ qc � qmð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ qm � a
2

qc þ qmð Þ;

ð0� z� h=2Þ

q2 zð Þ ¼ qc � qmð Þ 1

2

h=2 þ z

h=2

� �N

þqm � a
2

qc þ qmð Þ;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

For the S-FGM plate with unevenly distributed

porosities (Porosity-II), on the other hand, the material

properties in Eqs. (4–6) can be replaced by (Wat-

tanasakulpong and Chaikittiratana 2015)

E1 zð Þ ¼ Ec � Emð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ Em � a
2

Ec þ Emð Þ 1 � 2 zj j
h

� �
;

ð0� z� h=2Þ

E2 zð Þ ¼ Ec � Emð Þ 1

2

h=2 þ z

h=2

� �N

þEm � a
2

Ec þ Emð Þ 1 � 2 zj j
h

� �
;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

m1 zð Þ ¼ mc � mmð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ mm � a
2

mc þ mmð Þ 1 � 2 zj j
h

� �
;

ð0� z� h=2Þ

m2 zð Þ ¼ mc � mmð Þ 1

2

h=2 þ z

h=2

� �N

þmm � a
2

mc þ mmð Þ 1 � 2 zj j
h

� �
;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

q1 zð Þ ¼ qc � qmð Þ 1 � 1

2

h=2 � z

h=2

� �N
" #

þ qm � a
2

qc þ qmð Þ 1 � 2 zj j
h

� �
;

ð0� z� h=2Þ

q2 zð Þ ¼ qc � qmð Þ 1

2

h=2 þ z

h=2

� �N

þqm � a
2

qc þ qmð Þ 1 � 2 zj j
h

� �
;

ð�h=2� z� 0Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ
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where the Poisson ratio is additionally treated as

variable in comparison with Ref. (Wattanasakulpong

and Chaikittiratana 2015).

In this study, the S-FGM is made of Alumina

(ceramic) and Nickel (metal) whose material proper-

ties at room temperature are obtained as:

Alumina: Ec ¼ 3:2023 � 1011N m�2;

mc ¼ 0:26 and qc ¼ 3950 kg m�3

Nickel: Em ¼ 2:05098 � 1011N m�2;

mm ¼ 0:31 and qm ¼ 8900 kg m�3

To demonstrate the mechanics characteristics of the

S-FGM plate with porosities, the change rules of

Young’s moduli along with the thickness are plotted

for perfect and porous S-FGM plates in Fig. 2. The

porosity volume fraction is chosen as a = 0.1 and

three constituent volume fractions, namely,N = 0.3, 3

and 5, are taken into account. From the figure, one can

find the Young’s moduli show sigmoid distributions,

thus the FGM is termed as S-FGM.

Additionally, one can find that the perfect S-FGM

has the biggest Young’s modulus while the Porosity-

I (even distribution) S-FGM has the smallest one;

the Porosity-II (uneven distribution) S-FGM pos-

sesses Young’s modulus that is in the middle of the

two previously mentioned. Besides, the Young’s

modulus of Porosity-II S-FGM is piecewise smooth;

it has the same value as that of Porosity-I S-FGM at

the middle plane of the plate, and has the same value

as that of perfect S-FGM at the top and bottom

surface.

Based on the classical thin plate theory, the strain

relations of a thin porous S-FGM plate are stated as

(Amabili 2008)

ex ¼ e0
x þ zvx ð10Þ

ey ¼ e0
y þ zvy ð11Þ

cxy ¼ c0
xy þ 2zvxy ð12Þ

in which ex, ey and cxy are strain components at an

arbitrary point of the plate, vx, vy and vxy the changes

in the curvature and torsion of the middle surface, e0
x ,

e0
y and c0

xy the middle surface strains, z the distance of

an arbitrary point to the middle surface of the porous

S-FGM plate.

According to the von Kármán non-linear plate

theory, the stain-displacement relations are written as

(Amabili 2008)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

2.0

2.5

3.0

z/h

E
 (P

a)

 even distribution
 uneven distribution
 perfect

x1011

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

2.0

2.5

3.0

 even distribution
 uneven distribution
 perfect

z/h

x1011

E 
(P
a)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

2.0

2.5

3.0

z/h

E 
(P
a)

 even distribution
 uneven distribution
 perfect

x1011

(a)

(b)

(c)

Fig. 2 Change rule of Young’s moduli of perfect and porous

S-FGM plates with different constituent volume fractions:

a N = 0.3; b N = 1; c N = 5
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e0
x ; e

0
y ; c0

xy

n o
¼ ou

ox
þ 1

2

ow

ox

� �2

;
ov

oy
þ 1

2

ow

oy

� �2

;
ov

ox

(

þ ou

oy
þ ow

ox

ow

oy

�

ð13Þ

vx; vy; vxy
� �

¼ � o2w

ox2
; � o2w

oy2
; � o2w

oxoy

� �
ð14Þ

The stress–strain relations for a porous S-FGM

plate, under plane stress condition, are given by

rx

ry

sxy

8>><
>>:

9>>=
>>;
¼

Q
ðiÞ
11 Q

ðiÞ
12 0

Q
ðiÞ
21 Q

ðiÞ
22 0

0 0 Q
ðiÞ
66

2
664

3
775

ex

ey

cxy

8>><
>>:

9>>=
>>;

ð15Þ

in which rx, ry and sxy denote the in-plane stress

components; Q
ðiÞ
jk (i = 1, 2; j; k ¼ 1; 2; 6) are the

reduced stiffnesses in the following form for an

isotropic material (i = 1 for 0� z� h=2; i = 2 for

�h=2� z� 0)

Q
ð1Þ
11 ¼ Q

ð1Þ
22 ¼ E1 zð Þ

½1 � m1 zð Þ2�
; ð0� z� h=2Þ ð16aÞ

Q
ð2Þ
11 ¼ Q

ð2Þ
22 ¼ E2 zð Þ

½1 � m2 zð Þ2�
; ð�h=2� z� 0Þ ð16bÞ

Q
ð1Þ
12 ¼ Q

ð1Þ
21 ¼ E1 zð Þ � m1 zð Þ

½1 � m1 zð Þ2�
; ð0� z� h=2Þ ð17aÞ

Q
ð2Þ
12 ¼ Q

ð2Þ
21 ¼ E2 zð Þ � m2 zð Þ

½1 � m2 zð Þ2�
; ð�h=2� z� 0Þ ð17bÞ

Q
ð1Þ
66 ¼ E1 zð Þ

2½1 þ m1 zð Þ� ; ð0� z� h=2Þ ð18aÞ

Q
ð2Þ
66 ¼ E2 zð Þ

2½1 þ m2 zð Þ� ; ð�h=2� z� 0Þ ð18bÞ

The stress and moment resultants of a porous

S-FGM plate are stated as

Nx;Ny;Nxy

� �
¼
Z h=2

�h=2

rx; ry; sxy
� �

dz ð19Þ

Mx;My;Mxy

� �
¼
Z h=2

�h=2

rx; ry; sxy
� �

zdz ð20Þ

Applying Eqs. (10) (11) (12) and (15) in Eqs. (19–20)

results in the constitutive relation:

N ¼ S � e ð21Þ

where N and e are defined, respectively, as

NT¼ Nx Ny Nxy Mx My Mxy½ � ð22Þ

eT¼ e0
x e0

y c0
xy vx vy vxy

� 	
ð23Þ

and S is given by

S ¼

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66

2
6666664

3
7777775

ð24Þ

in which Ajk, Bjk and Djk (j; k ¼ 1; 2; 6) denote,

respectively, the extensional, coupling and bending

stiffness coefficients, which are calculated by

Ajk;Bjk;Djk

� �
¼
Z h=2

0

Q
ð1Þ
jk 1; z; z2
� �

dzþ
Z 0

�h=2

Q
ð2Þ
jk 1; z; z2
� �

dz

ð25Þ

Employing the d’Alembert’s principle, the nonlin-

ear equation of motion describing out-of-plane vibra-

tion of a longitudinally moving porous S-FGM plate is

derived as

Z h
2

0

q1

d2w

dt2
dzþ

Z 0

�h
2

q2

d2w

dt2
dz� o2Mx

ox2
� 2

o2Mxy

oxoy
� o2My

oy2
�

Nx þ N0ð Þ o
2w

ox2
� Ny

o2w

oy2
� 2Nxy

o2w

oxoy
þ c

ow

ot
þ V

ow

ox

� �

þ Fðx; y; tÞ ¼ 0

ð26Þ

where c denotes the damping coefficient, and the total

derivative in the first two terms takes the form

d2w

dt2
¼ o2w

ot2
þ 2V

o2w

oxot
þ V2 o

2w

ox2
ð27Þ

In Eq. (26), F denotes the lateral excitation and is

considered as practical point excitation with the form

(Wang 2014; Wang et al. 2010; Wang and Zu 2017d)

Fðx; y; tÞ ¼ F0 cos xtð Þd x� x0ð Þd y� y0ð Þ ð28Þ

where F0 is the force amplitude, d the Dirac delta

function, x the circular frequency of the force, x0 and

y0 the in-plane coordinates in x- and y- direction,
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respectively. In this paper, the excitation is applied at

the center of the plate, i.e., x0¼a=2 and y0¼b=2.

Inserting Eqs. (10–12), (15), (19–20) (27) and (28)

into Eq. (26) gives the partial differential equation in

term of transverse displacement:

D11

o4w

ox4
þ ð2D12 þ 4D66Þ

o4w

ox2oy2
þ D22

o4w

oy4

� N0

o2w

ox2
þ c

ow

ot
þ V

ow

ox

� �

þ 1

2
�A22

o2w

oy2

ow

oy

� �2

�A12

o2w

ox2

ow

oy

� �2

�A12

o2w

oy2

ow

ox

� �2
"

� A11

ow

ox

� �2
o2w

ox2
� 2B22

o3w

oy3

ow

oy
� 2B11

ow

ox

o3w

ox3

#

þ 1

2
ð4B12 � 4B66Þ

o2w

ox2

o2w

oy2
þ 1

2
ð�2B12 � 4B66Þ

ow

oy

o3w

ox2oy

þ 1

2
ð4B66 � 4B12Þ

o2w

oxoy

� �2

þ 1

2
ð�2B12 � 4B66Þ

ow

ox

o3w

oxoy2

þ
Z h

2

0

q1

o2w

ot2
þ 2V

o2w

oxot
þ V2 o

2w

ox2

� �
dz

þ
Z 0

�h
2

q2

o2w

ot2
þ 2V

o2w

oxot
þ V2 o

2w

ox2

� �
dz

� 2A66

ow

ox

ow

oy

o2w

oxoy
þ F0 cos xtð Þd x� x0ð Þd y� y0ð Þ ¼ 0

ð29Þ

in which the normal and shear stresses resulting from

in-plane deformation are neglected due to the fact that

natural frequencies of in-plane oscillation are much

higher than those of out-of-plane oscillation, as shown

in (Yang et al. 2011).

3 Solution techniques

It is well known that the low order modes are dominant

in vibrations of moving plates. The displacement

function containing the lowest two modes that satisfies

exactly the simply supported boundary condition is

given by

wðx; y; tÞ ¼ A �m; �nðtÞ sin
�mpx
a

� �
sin

�npy
b

� �

þ A�j; �kðtÞ sin
�jpx
a

� �
sin

�kpy
b

� �
ð30Þ

where �m and �j are the half-wave numbers in the length

direction and �n and �k are half-wave numbers in the

width direction of the plate; A �m; �nðtÞ and A�j; �kðtÞ stand

for generalized coordinates of the lowest two modes

with respect to time t.

By using the Galerkin method, the governing

partial differential equation can be discretized to a

set of ordinary differential equations (ODEs), which

are obtained by the following calculation

ODEsf g ¼
Z b

0

Z a

0

Eq: ð29ÞFgðx; yÞdxdy ð31Þ

where Fg (g = 1, 2) are proper weight functions

defined as

Fg x; yð Þ ¼
sinð �mpx=aÞ sinð�npy=bÞ g ¼ 1

sinð�jpx=aÞ sinð�kpy=bÞ g ¼ 2

(
ð32Þ

The derivation of Eq. (31) is tedious and has been

conducted by employing the Mathematica software

(Wolfram 1999). Eventually, one can obtain three

non-linear second order ordinary differential equa-

tions with respect to generalized coordinates:

�J1
€A �m; �nðtÞ þ �J2

_A �m; �nðtÞ þ �J3
_A�j; �kðtÞ þ �J4A �m; �nðtÞ

þ �J5A�j; �kðtÞ þ �J6A
3
�m; �nðtÞ þ �J7A �m; �nðtÞA2

�j; �kðtÞ
þ �J8A

2
�m; �nðtÞ þ �J9A

2
�j; �kðtÞ þ �J10 cosðxtÞ ¼ 0

�K1
€A�j; �kðtÞ þ �K2

_A �m; �nðtÞ þ �K3
_A�j; �kðtÞ þ �K4A �m; �nðtÞ

þ �K5A�j; �kðtÞ þ �K6A
3
�j; �kðtÞ þ �K7A

2
�m; �nðtÞA�j; �kðtÞ

þ �K8A �m; �nðtÞA�j; �kðtÞ ¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð33Þ

in which the over-dot denotes derivative with respect

to t; �Ji and �Kj (i ¼ 1; 2; . . .; 10, j ¼ 1; 2; . . .; 8) are the

integral coefficients related to the geometrical and

material properties of the system. In Appendix, their

analytic formulations are presented.

Let us introduce the following non-dimensional

variables to simplify the calculation:

s¼x �m; �nt; X¼x=x �m; �n; q1ðsÞ¼A �m; �nðtÞ=h;
q2ðsÞ¼A�j; �kðtÞ=h

ð34Þ

in which x �m; �n defines the lowest natural frequency of

the longitudinally moving porous S-FGM plate.

Applying Eq. (34) in Eq. (33) leads to the follow-

ing non-dimensional ordinary differential equations
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J1€q1ðsÞ þ J2 _q1ðsÞ þ J3 _q2ðsÞ þ J4q1ðsÞ þ J5q2ðsÞ þ J6q
3
1ðsÞ

þ J7q1ðsÞq2
2ðsÞ þ J8q

2
1ðsÞ þ J9q

2
2ðsÞ þ J10 cosðXsÞ ¼ 0

K1€q2ðsÞ þ K2 _q1ðsÞ þ K3 _q2ðsÞ þ K4q1ðsÞ þ K5q2ðsÞ
þK6q

3
2ðsÞ þ K7q

2
1ðsÞq2ðsÞ þ K8q1ðsÞq2ðsÞ ¼ 0

8>>>>>><
>>>>>>:

ð35Þ

where Ji and Kj (i ¼ 1; 2; . . .; 10, j ¼ 1; 2; . . .; 8) are

new integral coefficients resulting from the above

dimensionless transformation.

By using the method of harmonic balance, we

express the solutions of Eq. (35) as the following

truncated Fourier series forms

q1ðsÞ ¼ A0 þ
XH
n¼1

½A2n�1cosðnXsÞ þ A2nsinðnXsÞ�

ð36Þ

q2ðsÞ ¼ B0 þ
XH
n¼1

½B2n�1cosðnXsÞ þ B2nsinðnXsÞ�

ð37Þ

in which An and Bn (n ¼ 0; 1; . . .;H) define the Fourier

coefficients, H the total of harmonics maintained in the

truncated Fourier series.

Substituting Eqs. (36–37) into Eq. (35) and then

gathering each harmonic components including

cos nXsð Þ and sin nXsð Þ (n ¼ 0; 1; . . .;H) in the result-

ing equations, one may obtain 4H þ 2 algebraic

equations related to Fourier coefficients An and Bn

(n ¼ 0; 1; . . .;H). These equations are expressed for

H = 1 as

Funk Ai;Bi;Xð Þ ¼ 0 k ¼ 0; 1; . . .; 6; i ¼ 0; 1; 2

ð38Þ

where Funk stand for algebraic expressions associated

to unknowns Ai, Bi (i ¼ 0; 1; 2) and X; these expres-

sions are quite cumbersome and omitted here. From

Eq. (39), Ai and Bi can be calculated for a given X;

thus one can obtain solutions of q1 and q2 with the aid

of Eqs. (36–37).

4 Stability of steady state response

For the purpose of distinguishing the stable and

unstable vibration responses in the analytical solu-

tions, let us introduce the perturbation terms as follows

q1

q2

� �
¼

A0 þ DA0ðsÞ þ ½A1 þ DA1ðsÞ�cosðXsÞ
þ½A2 þ DA2ðsÞ�sinðXsÞ
B0 þ DB0ðsÞ þ ½B1 þ DB1ðsÞ�cosðXsÞhfill
þ½B2 þ DB2ðsÞ�sinðXsÞ

8>>><
>>>:

9>>>=
>>>;

ð39Þ

where DAiðsÞ and DBiðsÞði ¼ 0; 1; 2Þ denote the

perturbance of steady-state response.

Applying Eq. (39) in (35) and then gathering the

harmonic components containing trigonometric func-

tions cosðnXsÞ and sinðnXsÞðn ¼ 0; 1Þ, one may get a

set of perturbation equations with respect to perturba-

tion terms. These equations are stated as:

_X ¼ WðX,Y,sÞ ð40Þ

where

X¼ DA0ðsÞ D _A0ðsÞ DB0ðsÞ D _B0ðsÞ � � � DAkðsÞ D _AkðsÞ
DBkðsÞ D _BkðsÞ

" #T

ðk ¼ 0;1;2Þ

ð41Þ

Y ¼ A0 B0 A1 B1 A2 B2½ �T ð42Þ

W ¼ W1 X;Y; sð Þ W2 X;Y; sð Þ � � � Wj X;Y; sð Þ½ �T
J ¼ 1; . . .; 12ð Þ

ð43Þ

The performance of the Taylor series expansion for

W at X = 0 yields

_X ¼ PX ð44Þ

where P stands for the Jacobian matrix which is given

by

P ¼

P11 P12 . . . P1J

P21 P22 . . . P2J

..

. ..
. . .

. ..
.

PI1 PI2 . . . PIJ

0
BBB@

1
CCCA

12�12

ð45Þ

where I = J=12, and the inside elements are

(i ¼ 1; 2; . . .; I):

Pi1 ¼ oWiðX;Y;sÞ
oDA0ðsÞ






X¼0

Pi2 ¼ oWiðX;Y;sÞ
oD _A0ðsÞ






X¼0

Pi3 ¼ oWiðX;Y;sÞ
oDB0ðsÞ






X¼0

Pi4 ¼ oWiðX;Y;sÞ
oD _B0ðsÞ






X¼0

Pi5 ¼ oWiðX;Y;sÞ
oDA1ðsÞ






X¼0

Pi6 ¼ oWiðX;Y;sÞ
oD _A1ðsÞ






X¼0

Pi7 ¼ oWiðX;Y;sÞ
oDB1ðsÞ






X¼0

Pi8 ¼ oWiðX;Y;sÞ
oD _B1ðsÞ






X¼0

Pi9 ¼ oWiðX;Y;sÞ
oDA2ðsÞ






X¼0

Pi10 ¼ oWiðX;Y;sÞ
oD _A2ðsÞ






X¼0

Pi11 ¼ oWiðX;Y;sÞ
oDB2ðsÞ






X¼0

Pi12 ¼ oWiðX;Y;sÞ
oD _B2ðsÞ






X¼0

ð46Þ
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Stable responses require that all the eigenvalues of

Eq. (45) possess negative real part. By contrast, the

existence of one or more positive real part in

eigenvalues will correspond to the instable responses.

5 Results and discussion

For the sake of validating the analysis, we first

consider a simply-supported rectangular homoge-

neous plate with a = 0.515 m, b = 0.184 m,

h = 0.0003 m, E ¼ 69 � 109 Pa, q ¼ 2700 kg=m3

and m ¼ 0:33, which has been studied by Amabili

(2004). The natural frequencies of the plate can be

obtained by neglecting the nonlinear, damping and

external excitation terms in Eq. (33). The natural

frequencies obtained by means of the present method

are compared with those given in (Amabili 2004), as

seen in Table 1, where m and n are the half-wave

numbers in the length and width direction. It is clear

that good agreement between the present results and

those in the literature has been achieved.

To further validate the present analysis, a simply-

supported FGM rectangular plate composed of

SUS304 and Si3N4 is considered here, which has been

investigated by Alijani et al. (2011). This plate has the

following geometry: length a = 0.2 m, width

b = 0.2 m and thickness h = 0.025 m. The Poisson

ratio is considered as a constant l ¼ 0:28. The

frequency parameter x� ¼ xa2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmð1 � l2Þ=Em

p
of the FGM plate is obtained and the results are listed

together with those calculated by using Kirchhoff

plate theory (Alijani et al. 2011), as can be seen in

Table 2. Also, very good agreement between the

present results and those in the literature is achieved.

Next, the study is related to a simply-supported

longitudinally moving Nickel/Alumina S-FGM plate

with porosities, whose geometrical parameters are:

length a = 0.4 m, width b = 0.1 m and thickness

h = 0.001 m. It is obvious that this is a thin plate due

to the width-to-thickness ratio being b/h = 100.

Table 3 lists the first two natural frequencies of the

moving Porosity-I S-FGM plate for various power-

low indices and porosity volume fractions, where

V = 10 m/s and N0 = 1000 N/m. One may find that

the natural frequencies decrease as the porosity

volume fraction increases for small power-law index.

However, this trend is inverted under relatively large

power-law index, for exampleN = 6, as can be seen in

the table. Besides, it is noted that at a given porosity

volume fraction, the natural frequencies of the system

reduce with the increase of the power-law index.

Depicted in Fig. 3 is the variation of the first two

natural frequencies of the moving Porosity-I S-FGM

plate along with speed under different constituent

volume fractions, where a = 0.1 and N0 = 1000 N/

m. Based on this figure, it is found that as the moving

speed increases, the natural frequencies of the plate

decrease gradually. Moreover, the impact of power-

law index gets great on natural frequencies when its

value is relatively large. For instance, the natural

frequencies change more when N alters from 5 to 6, as

compared with N altering from 0.3 to 5.

The frequency-response relationships of the mov-

ing Porosity-I S-FGM plate are shown in Fig. 4, where

V = 10 m/s, a = 0.1, N0 = 1000 N/m, F0 = 5 N,

c ¼ 30 Ns=m3 and N = 5. The figure gives the

maximum amplitudes of each generalized coordinates

during the vibration period. The steady-state responses

are examined for their stability and the stable and

unstable responses are described by solid and dashed

lines, respectively. From the figure, it can be found

that both the first and second modes are different from

zero in the vicinity of the lowest natural frequency.

This indicates that the two modes are both excited near

Table 1 Comparison of natural frequencies of a simply-sup-

ported rectangular homogeneous plate (n = 1) (in Hz)

m Present Amabili (2004)

1 24.26 24.26

2 32.50 32.53

3 46.23 46.89

4 65.47 66.10

5 90.19 91.30

Table 2 Comparison of frequency parameter x� ¼
xa2=h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmð1 � l2Þ=Em

p
for a SUS304/Si3N4 FGM plate at

room temperature

N Present Alijani et al. (2011)

Ceramic 13.175 13.173

0.5 9.111 9.068

1 7.985 7.948

2 7.205 7.140

Metal 5.699 5.698
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Table 3 Natural

frequencies of simply-

supported moving Porosity-

I S-FGM plate (in rad/s)

Power-law index Porosity volume fraction 1st natural frequency 2nd natural frequency

N = 0.3 0 2019.8 2378.1

0.1 2003.3 2359.3

0.2 1989.3 2343.3

N = 1 0 2018.6 2376.8

0.1 2002.2 2358.0

0.2 1987.9 2342.0

N = 3 0 2017.7 2375.6

0.1 2001.2 2356.9

0.2 1986.9 2340.8

N = 5 0 1933.9 2277.2

0.1 1921.6 2263.3

0.2 1910.9 2251.5

N = 6 0 1315.8 1550.9

0.1 1535.9 1575.4

0.2 1552.3 1595.8
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Fig. 3 Variation of natural frequencies of the moving Porosity-

I S-FGM plate under different constituent volume fractions:

a the fundamental natural circular frequency; b the second-order

natural circular frequency
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Fig. 4 Frequency-response curves of the moving Porosity-I S-

FGM plate: a maximum of q1ðsÞ; b maximum of q2ðsÞ

482 Y. Q. Wang, J. W. Zu

123



the fundamental mode. Additionally, different from

the general frequency response, the present frequency-

response curves possess two peaks for each general-

ized coordinate. That is because the additional peak

comes from the nonlinear modal interaction between

the two modes. On the frequency-response curves of

each generalized coordinate, four stable branches are

detected by the stability analysis; they are denoted by

S1, S2, S3 and S4, as seen in the figure. Furthermore,

one may find that the frequency-response relationships

exhibit hardening-spring characteristics for the longi-

tudinally moving Porosity-I S-FGM plate.

In order to verify the analytical method developed

in the present study, numerical solutions are per-

formed by using the adaptive step-size fourth-order

Runge–Kutta method. The numerical solutions are

obtained via direct integration of ordinary differential

Eqs. (35), where the initial condition is assumed as

q1ð0Þ ¼ q2ð0Þ ¼ _q1ð0Þ ¼ _q2ð0Þ ¼ 0. In Fig. 5, the

results from the approximate analytical method and

those from the Runge–Kutta method are presented

together. It is seen that the agreement between

numerical and approximate analytical solutions is

quite good, demonstrating the method developed in

the present study is valid and accurate.

Figures 6 and 7 show the frequency-response

relationships of the moving Porosity-I S-FGM plate

for the speed V = 3 m/s and V = 30 m/s, respec-

tively. The other parameters are kept the same as those

in Fig. 4. It should be noted that these curves also

contain stable and unstable solutions. However, our

concentration here is on the general characteristics

thus the stability is not shown for brevity. From Fig. 4

(V = 10 m/s), Figs. 6 and 7, it is found the moving

speed affects the response characteristics dramati-

cally. When the speed is slow, as seen in Fig. 6 for
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Fig. 5 Comparison of the harmonic balance method and

Runge–Kutta method: a maximum of q1ðsÞ; b maximum of

q2ðsÞ
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Fig. 6 Frequency-response curves of the moving Porosity-I S-

FGM plate for V = 3 m/s: a maximum of q1ðsÞ; b maximum of

q2ðsÞ
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V = 3 m/s, the two modes are uncoupled thus there

exists only one peak for each mode. With the increase

of moving speed, the nonlinear mode interaction

phenomenon appears between the two modes and thus

another peak emerges for each mode. Moreover, the

second peak of each generalized coordinate shrinks

when the speed increases from V = 10 m/s (Fig. 4) to

30 m/s (Fig. 7); it is interesting that for the general-

ized coordinate q2, the smaller peak moves from the

front to the back of the larger peak, as seen in Figs. 4

and 7.

Increasing the in-plane pretension from N0 =

1000 N/m (Fig. 4) to N0 = 10,000 N/m and then to

N0 = 100,000 N/m, Figs. 8 and 9 are generated; the

other system parameters are the same as those in

Fig. 4. Comparing Figs. 4, 8 and 9 reveals that the

nonlinear mode interaction can be uncoupled by

increase the in-plane pretension. It is seen the

additional peak nearly vanishes when

N0 = 10,000 N/m and N0 = 100,000 N/m in Figs. 8

and 9; only very small peak occurs additionally for

the generalized coordinate q2, showing the effect of

nonlinear mode interaction is insignificant when the

in-plane pretension is at a large value.

In Fig. 10, the effect of porosity is studied on

frequency-response relationships of the moving

Porosity-I S-FGM plate; three porosity volume frac-

tions are considered here, i.e., a = 0 (perfect S-FGM),

a = 0.1 and a = 0.2. The parameters in the figure are

V = 10 m/s, N0 = 1000 N/m, F0 = 5 N, c ¼
30 Ns=m3 and N = 5. From the figure, an obvious

trend is detected that as the porosity volume fraction

increases, the response amplitudes of each generalized

coordinate increase too. The perfect S-FGM plate has

the lowest response amplitude compared with porous

ones. Besides, the frequency-response curves move
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Fig. 7 Frequency-response curves of the moving Porosity-I S-

FGM plate for V = 30 m/s: a maximum of q1ðsÞ; b maximum

of q2ðsÞ
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Fig. 8 Frequency-response curves of the moving Porosity-I S-

FGM plate for P = 10000 N/m: a maximum of q1ðsÞ; b
maximum of q2ðsÞ
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slightly to the low frequency region with the raise of

porosity volume fraction.

Figure 11 shows the effect of constituent volume

fraction on the frequency-response relationships of the

moving Porosity-I S-FGM plate. Three power-law

indexes are considered here, i.e., N = 0.3, N = 3 and

N = 5. The other parameters are set as V = 10 m/s,

N0 = 1000 N/m, F0 = 5 N, c ¼ 30 Ns=m3 and

a = 0.1. It is clear that the power-law index affects

the dynamic response characteristics of the moving

porous S-FGM plate. With the increasing of power-

law index, the resonant response amplitudes of each

mode first decrease and then increase. Additionally,

one can find an obvious phenomenon that the

resonance domain of the system moves to the low

frequency region when the power-law index increases

to N = 5. This is because the larger power-law index

leads to the lower natural frequency of the system, as

discussed before in Fig. 3.

Figure 12 gives the frequency-response relation-

ships of the moving Porosity-II S-FGM plate. Three

porosity volume fractions, i.e., a = 0, a = 0.1 and

a = 0.2, are compared. The selected parameters are the

same as those in Fig. 10 for comparison purpose. For

the Porosity-II S-FGM plate, the frequency response

relationships also show hardening spring characteris-

tics, and there exists two peaks for each generalized

coordinate. These characteristics are the same as those

for Porosity-I plate. However, the effect of porosity

volume fraction is different on Porosity-I and Porosity-

II plate. In the Porosity-II plate, the resonance domain

moves to the higher frequency region and the resonant

amplitudes decrease when the porosity volume fraction

rises, as seen in Fig. 12. This tendency is totally

opposite compared with that in Porosity-I plate

(Fig. 10), showing the two types of porosity distribution

have different influences on the resonance domain and

resonant amplitude of the moving S-FGM plate.
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Fig. 9 Frequency-response curves of the moving Porosity-I S-

FGM plate for P = 100000 N/m: a maximum of q1ðsÞ; b
maximum of q2ðsÞ
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Fig. 10 Frequency-response curves of the moving Porosity-I

S-FGM plate with different porosity volume fractions: a
maximum of q1ðsÞ; b maximum of q2ðsÞ

Vibration characteristics of moving sigmoid functionally graded plates 485

123



6 Concluding remarks

Vibration characteristics are investigated on longitu-

dinal moving S-FGM plates with porosities. Two

types of porosity distribution, i.e., even and uneven

distributions, are taken into account. In accordance

with the sigmoid distribution rule, the material prop-

erties of porous S-FGM plates vary smoothly along the

plate thickness direction. Based on the d’Alembert’s

principle, the nonlinear governing equation of moving

porous S-FGM plates is derived incorporating the von

Kármán non-linear geometrical relations. The gov-

erning equation is discretized via the Galerkin method

and then solved by using the method of harmonic

balance. Analytical solutions are verified with the aid

of the adaptive step-size fourth-order Runge–Kutta

method. Additionally, the stability of the steady-state

response is highlighted. For the longitudinally moving

porous S-FGM plate, the frequency-response relation-

ships exhibit hardening-spring characteristics. More

than one resonance peak can happen for the first two

modes due to the nonlinear mode interaction. Addi-

tionally, both moving speed and in-plane pretention

affect the vibration characteristics and they can change

the mode interaction situation of the system. More-

over, the large-deflection forced response of the

structure can be influenced by the constituent volume

fraction. It is further observed that the Porosity-I and

Porosity-II have different effects on the resonance

domain and resonant amplitude of the moving S-FGM

plate.
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Appendix

The coefficient formulations in Eq. (33) are as follows
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2

0
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R 0
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