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Abstract The present work aims at numerically

predicting the current residual strength of large

engineering structures made of ductile metals against

accidental failure. With this aim in view, the challenge

consists in reproducing within a unified finite element-

based methodology the successive steps of micro-

voiding-induced damage, strain localization and crack

propagation, if any. A key ingredient for a predictive

ductile fracture model is the proper numerical treat-

ment of the critical transition phase of damage-

induced strain localization inside a narrow band. For

this purpose, the strong discontinuity cohesive model

and the eXtended Finite Element Method are com-

bined. A propagation algorithm is proposed and

studied in the context of ductile materials. Physics-

motivated criteria to pass from the phase of more or

less diffuse damage to strain localization and from

strain localization to crack propoagation are proposed.

Finally, a 2D numerical example is shown to study the

performance of the failure analysis model when

implemented into an engineering finite element com-

putation code, namely Abaqus.

Keywords Ductile failure � Strain localization �
EXtended Finite Element Method � Cohesive band
model

1 Introduction

This article deals with the design of large engineering

structures made of ductile metals regarding accidental

events, e.g. ships collision, bird strike/ingestion in

aviation or automotive crashworthiness, which may

potentially lead to failure. A local defect can have

catastrophic consequences on the global scale of the

structure. Predicting the current residual strength of

the overloaded structure is of major interest for

preserving the main functions and the integrity of the

sensitive areas. Realizing large-scale experiments is

associated with unacceptable costs. Instead, it is more

favorable to analyze small-scale specimens (coupons)

extracted from the large-scale structure which are

exposed to similar conditions and to identify the

underlying mechanisms which lead to the propagation

of a crack. This work is concerned with the develop-

ment of a unified physics-motivated numerical model
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allowing for virtual failure analysis using the Finite

Element Method (FEM).

Describing the overall process of deformation until

fracture in ductile materials implies accounting for

several interacting mechanisms whose comprehension

remains—to this very day—imperfect. One can typ-

ically distinguish the following successive steps (often

dealt with independently): plastic deformation, diffuse

damage, damage concentration (void coalescence) and

strain localization, and finally crack formation and

propagation.

As a result of void growth induced (diffuse)

damage, the material properties are subjected to a

progressive degradation. In order to reproduce these

effects of ductile damage, several constitutive models

have been proposed, e.g. by Gurson (1977), Lemaitre

(1985), Rousselier (1987) and also Longère et al.

(2012). At an advanced stage of damage evolution, the

global structural response migrates to a softening

regime (in lieu of the preceding hardening regime).

This softening behavior goes along with the concen-

tration of plastic deformation and damage within a

narrow band. When using the standard FEM, strain

localization manifests itself in a spurious mesh

dependence of the structural response. Due to this

pathologic behavior, a reliable prediction of the

residual strength of the structure after failure can not

be provided. Aiming at an estimation which is less

conservative and mesh-dependent, the complementary

modeling of the post-localization phase is inevitable.

A corrective approach consists in controlling the

numerical strain localization in the FEmesh in order to

allow for capturing the genuine physical strain local-

ization. The mesh dependence resulting from strain

localization can be coped with by introducing a

characteristic length into the formulation which serves

as localization limiter. Non-local techniques, see e.g.

Bažant et al. (1984) and Pijaudier-Cabot and Bažant

(1987), can be applied to attenuate the pathology, but

accurate results require a very fine mesh and thus a big

computational effort for large structures. Moreover,

the physical strain localization itself as possible

precursor of crack formation can not be properly

represented. A promising approach consists in using

comparably large FEs and embedding the thin band of

highly localized strain into the FE, e.g. by enriching the

kinematic FE formulation (Ortiz et al 1987;Belytschko

et al 1988) or by enriching thematerial model (Longère

et al 2003). The development of an appropriate

(embedded-band) method capable of reproducing the

physical localization band is discussed in this paper.

An efficient method to model the void coalescence-

induced damage accumulation band in front of the

crack tip, which is also referred to as meso-crack, is the

cohesive zone model. Cohesive zone models were

originally proposed by Barenblatt (1959) and Dugdale

(1960) and further extended by Hillerborg et al.

(1976). Applications to ductile materials which fail

from void nucleation, growth and coalescence were

proposed e.g. by Needleman (1987) and Siegmund and

Brocks (2000). However, instead of describing the

damage mechanisms during strain localization from a

microscopic point of view, the (macroscopic) static

consequences of strain softening are rather described

in a phenomenological way. The degradation process

during strain localization is assumed to be lumped into

a sufficiently thin cohesive band. Indeed, the cohesive

zone allows for a gradual transition between the onset

of localization and the formation of a macro-crack.

The increasing effect of void coalescence, i.e. the

internal necking of the inter-voids bulk material, leads

to a decreasing resistance of the material, see Fig. 1.

Finally, the stress carrying capacity of the material is

completely lost locally and a crack can form.

The X-FEM is considered here as a suitable method

to model the cohesive band in the FE mesh. In contrast

t0

Diffuse 
damage

Void coalescence
(cohesive band)

(Trac�on-free)
macro-crack

Fig. 1 Visualization of the cohesive zone concept: (top) Ductile

fracture model, (bottom) Introduction of cohesive tractions

corresponding to the void coalescence-induced strain

localization
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to other approaches, as e.g. the commonly used inter-

element methods applied in the context of the delamina-

tion of composite materials, see e.g. Camanho andDávila

(2002) and Turon et al. (2007), and in the context of

ductile materials, see e.g. Xu and Needleman (1994) and

Camacho and Ortiz (1996), the X-FEM does not require

the a priori knowledge of the crack path on the one hand

and extra cohesive elements along this crack path on the

other hand. In another context, it does not need expensive

remeshing. Indeed, the X-FEM, by enriching the finite

element formulation, allows for incorporating the cohe-

sive crack into the mesh independently of the mesh

topology. The cohesive band is inserted right at the onset

of decohesion so that the problem of assigning a large

stiffness to the cohesive zone from the very beginning of

the simulation is avoided.

The subject of this article consists in modeling a

strain localization induced cohesive band within a

unified ductile failure model using the X-FEM imple-

mented into the engineering FE computation code

Abaqus.

General considerations necessary for subsequent

developments are outlined in Sect. 2. The numerical

methodology combining the cohesive band model and

the X-FEM to represent the strain localization within

the finite element is explained in Sect. 3. A propaga-

tion algorithm is developed and two applications

considering tensile tests with a single finite element

and then a 2D plate are finally discussed in Sect. 4.

2 General considerations and basic concepts

In this section the material constitutive model, the

cohesive zone model, the applied enrichment method

and the criterion for the onset of strain localization are

introduced.

2.1 Material constitutive model

In this work, materials as metals and alloys are

considered whose failure results frommicro-void growth

induced damage, see e.g. Longère et al. (2012). The

presented constitutive model accounts for the effects of

strain hardening and void growth induced damage.

In order to couple the mechanisms of damage and

plasticity, the micromechanics-based Gurson model,

see Gurson (1977), later extended by Tvergaard

(1981) (also referred to as GTN model) has been

retained here. The damage-plastic potential of the

GTN model reads

UG ¼ req
ry

� �2

þ2q1f cosh � 3

2
q2

pm

ry

� �
� 1� ðq1f Þ2 ¼ 0

ð1Þ

where q1 and q2 are material constants, f is the porosity

and req denotes the equivalent stress

req ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
: ð2Þ

Therein, s is the deviatoric part of the Cauchy stress

tensor r ¼ s� pmd with the mean pressure pm and the

identity tensor d. The yield stress ry in Eq. (1) is

computed from the assumption that only a quasi-static

loading is considered so that the effects of viscoplas-

ticity and thermal softening are neglected in this study.

A Voce-type strain hardening law is used, as proposed

by Longère et al. (2012)

ry ¼ r0 þ rinf 1� expð�kjÞ½ �b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rðjÞ

; ð3Þ

where (r0; rinf ; k; b) are material constants related to

the hardening behavior, j is the accumulated plastic

deformation and rðjÞ is the exponential hardening

function. The evolution of the accumulated plastic

deformation is determined from the equality of the

macroscopic plastic power with the microscopic one

(Gurson 1977) as follows

_j ¼ r : _ep

ð1� f Þry
; ð4Þ

where the plastic strain rate is computed from the

normality rule

_ep ¼ _k
oU
or

¼ _epDPþ 1

3
_epMd; ð5Þ

where _epD ¼ _k oU
oreq

and _epM ¼ � _k oU
opm

represent, respec-

tively, the distortional and dilatational parts of the

plastic strain rate _ep, P ¼ 3
2

s
req

is the direction of

isochoric plastic flow and _k is the plastic multiplier.

The porosity is assumed to evolve from the superposed

effects of the growth of existing voids ( _f g) and the

nucleation of new voids ( _f n): _f ¼ _f g þ _f n. The growth

of voids can be computed from the hydrostatic plastic

deformation
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_f g ¼ ð1� f Þ _epM ð6aÞ

fgð0Þ ¼ f0 ð6bÞ

The nucleation of new voids is described by a

probabilistic function using the Gaussian-type distri-

bution of Chu and Needleman (1980)

_f n ¼ An _j; An ¼
fN

sN
ffiffiffiffiffiffi
2p

p exp � 1

2

j� jN
sN

� �2
" #

ð7aÞ

fnð0Þ ¼ 0 ð7bÞ

with ffN ; sN ;jNg being material parameters. In order

to take into account the experimentally observed void

growth under pure shear loading, an advanced formu-

lation of the plastic potential proposed by Longère

et al. (2012) has been chosen. Therein, a variable

equivalent to a kinematic pressure pr is introduced into

the GTN potential. Instead of using a logarithmic

function, here a linear function is proposed in order to

improve the numerical stability

pr ¼ bðq1f � 1Þ; ð8Þ

with b being a positive material constant. This variable

provokes a shift of the yield surface towards positive

pressures so that the modified potential takes the form

Umod
G ¼ req

ry

� �2

þ 2q1f cosh � 3

2
q2

pm þ pr

ry

� �

� 1� ðq1f Þ2 ¼ 0

ð9Þ

The GTN model involving isotropic strain hardening

is numerically integrated using the radial return

algorithm, see Aravas (1987). The integration is based

on a separate consideration of the deviatoric and the

hydrostatic part.

2.2 Cohesive zone model

Cohesive models are characterized by two constitutive

relations: the classical stress-strain-relation (volumet-

ric) describing the bulk material that remains contin-

uous and an additional cohesive law which relates the

traction force t to the displacement jump u½ �½ � between
the cohesive band faces, see Fig. 2 (explained in detail

below). The cohesive law is defined by the cohesive

strength t0, the decohesion energy per unit areaWc and

its shape.

The initiation of the progressive material separation

(within the X-FEM) is usually triggered when the

maximum tensile stress attains the maximum cohesive

traction t0. In this work, however, decohesion is

assumed to initiate when a stability criterion deduced

from bifurcation analysis is satisfied. In such a case,

the initial cohesive strength is no longer a material

parameter but rather results from the current stress

state at the onset of localization so as to provide a

smooth transition. Thus the activation of the cohesive

band is naturally provided by the material model and

accounts for the loading path. After the onset of

localization, the behavior in the cohesive band is

determined from the traction-separation law. A linear

softening law is adopted here due to its simplicity and

its frequent use in the context of ductile materials, see

e.g. Tvergaard and Hutchinson (1992), Li and Chandra

(2003) and Gullerud et al. (2000).

It is well known that ductile damage is driven by

void growth (favored by hydrostatic tension) and the

ultimate stage of damage occurs in the form of void

coalescence (favored by both hydrostatic tension and

deviator). Therefore the propagation of the process of

localization involves a cohesive law which accounts

for a normal and also a (in-plane) shear component,

i.e.

t ¼ tnnþ tmm; ð10Þ

where n and m denote, respectively, the normal and

tangential vector of the cohesive band.

Figure 3 shows a post-mortem tension specimen

made of ductile material. It can be seen that the

opening Mode I is predominant in the specimen width

whereas the shearing Mode II is predominant in the

thickness. While numerically simulating such a ten-

sion test assuming 2D conditions for e.g. assessing the

performance of a new development (of a constitutive

model, of a numerical methodology, etc.), plane stress

Wc Wc

Wc

(b)(a)

Fig. 2 Applied linear softening cohesive laws in the a normal

and b tangential direction
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hypothesis (small thickness, as for the left picture of

Fig. 3) is expected to activate Mode I crack propaga-

tion, and plane strain hypothesis (large thickness, as

for the right picture of Fig. 3) is expected to activate

Mode II crack propagation.

Under the 2D-plane strain condition assumed in the

present work (thick plate, corresponding to the right

picture of Fig. 3), the cohesive band is supposed to

cross the plate entirely in its thickness (i.e. the width of

the tension specimen in Fig. 3). In order to be able to

describe both effects of hydrostatic tension and shear

on void coalescence (in the form of void impingement

and localized shearing), the cohesive law has to take

into account tension and shear components, see Fig. 2.

The cohesive law considered here is expressed as

tm ¼ t0m � signðt0mÞ
t20m
2Wc

j½½u��mj ð11Þ

tn ¼ t0n �
t20n
2Wc

u½ �½ �n; ð12Þ

where it is tentatively assumed that the work of

separation per unit area Wc is the same in tension and

shear. The maximum tractions t0n and t0m are evalu-

ated at the onset of localization from the current stress

state. The unloading behavior is not particularly

treated here as the applications considered in this

work refer mostly to monotonically increasing loading

path.

2.3 Enrichment method

The principles of the classical X-FEM reproducing a

stress-free crack and the adopted approach in the

present work are presented in the following section.

2.3.1 Principle of the X-FEM

Instead of refining the mesh around the crack lips and

tip to resolve the singular stress field, the displacement

field is enriched by a priori defined functions which

represent the crack discontinuity and singular stress

field. Thus, the crack is expected to propagate

independently of the mesh.

The X-FEM is used to embed a discontinuity

function into the element formulation by adding to the

regular displacement field ureg(x) enrichment func-

tions which represent the kinematical consequences of

the entity at the origin of the discontinuity

uðxÞ ¼ uregðxÞ þ udisðxÞ þ usingðxÞ; ð13Þ

where ureg represents the regular (standard) finite

element displacement, udis the discontinuous displace-

ment field across the discontinuity and using the crack

tip displacement field resulting from a singular stress.

These three terms can be interpolated as follows

uregðxÞ ¼
X
i2I

NiðxÞai ð14Þ

udisðxÞ ¼
X
j2J

NjðxÞHðxÞbj ð15Þ

usingðxÞ ¼
X
k2K

NkðxÞ
X4
l¼1

clkFlðr; hÞ
 !

ð16Þ

where I, J, K represent the set of all nodes belonging

to, respectively, the structure mesh/ the cut elements/

the elements containing the crack tip. The degrees of

freedom ai, bj and ck correspond to the regular,

discontinuous and singular displacement field and

generally are the unknowns of the FE analysis. H(x) is

the Heaviside function, which is determined from the

signed distance function from the crack d(x) such that

HðxÞ ¼ signðdðxÞÞ. The Heaviside function takes the

value þ1 for a point which is located above the crack

and�1 for a point which is located below the crack. Fl

are the asymptotic crack tip functions, formulated

using the polar coordinates r (distance from crack tip)

and h (polar angle), see Fig. 4. Under the hypothesis of
an elastic or quasi-brittle material behavior, these

enrichment functions can be derived analytically from

the Westergaard solutions, see Westergaard (1939)

and Belytschko and Black (1999),

Fig. 3 Rupture of a ductile plate during a uni-axial tensile test:

(left) rupture in the predominant opening mode in the plate

width and (right) rupture in the predominant shear mode in the

plate thickness
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Flðr; hÞ ¼
ffiffi
r

p
sin

h
2
;
ffiffi
r

p
cos

h
2
;
ffiffi
r

p
sin h sin

h
2
;
ffiffi
r

p
sin h cos

h
2

� �

ð17Þ

where the term
ffiffi
r

p
leads by differentiation to a

singular strain and stress field involving the term 1ffiffi
r

p ,

which converges to infinity when approaching the

crack tip r ! 0. It should be noted that only the nodes

belonging to the elements which are fully cut (enrich-

ment with Heaviside function) or contain the crack tip

(enrichment with singular functions) are enriched.

2.3.2 Adopted approach

In the case of a strongly non-linear elasto-plastic

ductile material, as it is the case in this work, the

singular terms in the enhanced displacement formu-

lation can be neglected, see Crété et al. (2014).

Therefore the number of degrees of freedom can be

drastically reduced without losing accuracy. Then the

enriched displacement field can be rewritten as

follows

uðxÞ ¼
X
i2I

NiðxÞai þ
X
j2J

HðxÞNjðxÞbj: ð18Þ

The shifted basis formulation is applied here, origi-

nally proposed by Zi and Belytschko (2003). By using

the shifted basis formulation, the enrichment term

vanishes at the nodes and thus avoids the cumbersome

use of blending elements (transition elements between

the enriched elements and the standard finite elements)

leading to an optimal convergence rate. In the shifted

basis approach, the Heaviside function at the nodes Hj

is taken into account and thus only the cut elements are

enriched

uðxÞ ¼
X
i2I

NiðxÞai þ
X
j2J

HðxÞ � Hj

� 	
NjðxÞbj: ð19Þ

The enrichment functionH is calculated from the level

set function / which captures the crack trajectory and

needs to be updated when the crack propagates.

2.4 Onset and direction of the strain localization

band

It is assumed here that strain localization is induced by

void coalescence and that its initiation can be deter-

mined from bifurcation analysis which is adapted for

rate-independent materials considered in this work.

Thus the transition from diffuse damage to the

formation of a localization band relies on finding a

condition for the spontaneous occurrence of an

inhomogeneous strain mode within a homogeneous

material. The elaboration of such a condition is the

fruit of the early works of Hadamard (1902), Thomas

(1957), Hill (1958) and Mandel (1966). The bifurca-

tion analysis consists in evaluating the orientation of

the localization band n for which the determinant of

the acoustic tensor Q becomes zero (or numerically

negative) for the first time, i.e.

detQðnÞ ¼ detðn � Dt � nÞ ¼ 0; ð20Þ

Normally, two solutions for n are found.

3 Combining cohesive models and X-FEM

The principle of combining a strong discontinuity

cohesive model within the X-FEM framework is

discussed in this section.

The developed set of discrete linearized equations

of the X-FEM including a cohesive band, see e.g.

Wells and Sluys (2001), is given in the following

incremental form

K
da

db


 �
¼

fexta

fextb


 �
� f inta

f intb

( )
; ð21Þ

where the tangent stiffness matrix K is computed as

follows

K ¼
R
X BTDtB dX

R
X BTDtB� dXR

X B�TDtB dX
R
X B�TDtB� dXþ 4

R
CD

NTTN dC

" #
;

ð22Þ

Therein, the B-matrix contains the spatial derivatives

of the shape functionsN, i.e. B ¼ LNwith L being the

matrix differential operator

Crack �p

r

Fig. 4 Crack surface characterized by the normal vector n at

point x� on the crack and the crack tip at point x0 using a polar

coordinate system
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L ¼
o=ox 0

0 o=oy

o=oy o=ox

2
64

3
75 ð23Þ

and B� ¼ LN� with N� containing the entries N�
j ¼

ðHðxÞ � HjÞNj for each node j of the enriched element.

Furthermore, Dt denotes the elastic-plastic tangent

operator of the microporous plasticity GTNmodel, see

e.g. Huespe et al. (2009), and CD represents the

cohesive band discontinuity. The elastic-plastic tan-

gent operator can be deduced from the rate form of the

stress-strain relation

_r ¼ Dt : _e: ð24Þ

The components of the internal and external force

vectors fext and f int are calculated from

fexta ¼
Z
Ct

NT t� dC ð25aÞ

fextb ¼
Z
Ct

N�T t� dC ð25bÞ

f inta ¼
Z
X
BTr dX ð25cÞ

f intb ¼
Z
X
B�Tr dXþ 2

Z
CD

NT t dC; ð25dÞ

where the volume forces have been neglected.

Therein, t� are external traction forces applied at the

boundary Ct and t is the traction vector determined

from the enriching degrees of freedom

_t ¼ T _u½ �½ � ¼ 2TN _b; ð26Þ

where T is the cohesive tangent modulus as detailed in

Eq. (28) below.

It should be noted that the cohesive tangent

modulus T as well as the tractions t are defined in

the local coordinate system of the oriented cohesive

band. Therefore it is necessary to perform a transfor-

mation from the local to the global system. This is

done by taking into account the rotation matrix R such

that

tg ¼ RT tl and Tg ¼ RTTlR ; with

R ¼
cos h sin h

� sin h cos h

� �
;

ð27Þ

where g denotes the global, l the local coordinate

system and h is the angle according to Fig. 5.

Using the linear softening traction-separation law

from Sect. 2.2 yields the following (local) cohesive

tangent modulus

Tl ¼ otl

o u½ �½ �l
¼

otlm

o u½ �½ �lm

otlm

o u½ �½ �ln
otln

o u½ �½ �lm

otln

o u½ �½ �ln

2
6664

3
7775 ¼

Tl
m 0

0 Tl
n

" #
;

ð28Þ

where the normal and tangential traction components

are assumed to be uncoupled from each other. That

means that a separation in normal direction does not

have an influence on the tangential direction.

The contribution of the continuum domain to the

equilibrium equations of an element which is crossed

by the localization band is tentatively integrated by

subdividing the element into 16 rectangles which are

themselves integrated by a standard 4-point Gauss

rule. This 64-fixed points scheme, see also Elguedj

et al. (2006), Crété et al. (2014) and Fig. 6, is

especially adapted to strongly non-linear ductile

materials so as to avoid the cumbersome and numer-

ically error-prone projection of loading- and history-

dependent internal variables inherent to the classical

subtriangulation methods, see e.g. Moës et al. (1999).

This method will be used tentatively. Later on, a

different method is considered which is particularly

efficient when further dealing with large engineering

structures.

The integration of the contributions of the cohesive

band to the equilibrium equations, i.e. the terms

involving a line integral over CD, is effectuated by a

standard 2-point Gauss rule, see Fig. 6. Two integra-

tion points are necessary, because the displacement

jump along the cohesive band is described by a linear

interpolation function provided by the X-FEM. As

FE
Cohesive band

Fig. 5 Global and local coordinate systems of the cohesive

band within the FE
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opposed to that, the E-FEM (elemental enrichment

FEM), see e.g. Oliver (1996), Huespe et al. (2009),

requires only one integration point as the enriching

degree of freedom is constant over the enhanced

element.

In order to update the cohesive tractions at the two

Gauss points, the radial return method can be applied

in the same way as in the context of plasticity, see e.g.

Belytschko et al. (2003) and Simo and Hughes (2006).

The normal cohesive tractions are computed accord-

ing to Algorithm 1.

In case of contact, i.e. u½ �½ �kþ1
n � 0, the cohesive

band is inactive and the material behavior is computed

using the equations of motion (Belytschko et al 2003).

The tangential tractions are calculated in the same way

(index n replaced by m), however the contact condi-

tion is not necessary as the shearing can take place in

the positive and negative direction. The effect of

friction during contact and gliding motion is tenta-

tively neglected.

4 Application

The previous parts have introduced the methodology

of coupling a cohesive band method within the

X-FEM allowing for dealing with the progressive

transition phase of strain localization. The difficulty of

applying the method to non-linear ductile materials

was carved out and appropriate numerical tools were

proposed. The objective of this section is to apply the

elaborated combination of cohesive band model and

X-FEM to two test cases in order to assess its

performance with regard to numerical simulations.

In the following, two different 2D models are

studied. The first one is a simple test case using one

single FE which serves as means to better understand

the methodology and analyze potential occurring

numerical issues. The second test case concerns a

parametric study of a plate which is loaded in tension.

An advanced method for the propagation of the

cohesive band and crack is proposed and implemented

as user element (UEL) in the commercial FE compu-

tation software Abaqus (implicit integration scheme).

The 2D models are implemented assuming plane

strain conditions. The small strain hypothesis is

assumed here. The quasi-static loading is applied by

displacement control. The modified GTN model

detailed in Sect. 2.1 is used. The parameters of the

material model are given in the Tables 1 and 2. Therein

E denotes the Young’s modulus and m the Poisson’s

ratio characterizing the elastic material behavior.

4.1 Tensile test using a single 2D FE

Consider the single 2D FE in Fig. 7. Prior to

localization, the stress and deformation are uniformly

distributed over the element. The onset of localization

is detected by using bifurcation analysis evaluated at

the Gauss points. If the bifurcation criterion (20) is

satisfied, a cohesive band is embedded into the

element and assumed to pass through the element

center.

The internal forces at the onset of localization read

f int;0b ¼
Z
X
B�Tr dX

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fxfem;0
b

þ 2

Z
CD

NT tg dC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fcoh;0
b

:
ð29Þ

In order to ensure a smooth transition at the onset of

localization, f int;0b is enforced to be zero, so that

follows: fcoh;0b ¼ �fxfem;0b . This implies that the initial

tractions are not calculated directly, but rather the

A

B
A B

‘Bulk‘ integra�on point (64)

‘Cohesive‘ integra�on point (2) 

Cohesive band (Real length )

Fig. 6 Tentative integration scheme for a 2D quadrilateral

element crossed by a cohesive band: (left) FE with 64 fixed

Gauss points for the bulk part and 2 Gauss point for the cohesive

part, (right) Transformed cohesive line element in the natural

(local) coordinate n
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internal cohesive force which compensates the inter-

nal force of the bulk associated to the enriching

degrees of freedom in order to entirely cancel out the

liberty provided by the X-FEM. In order to provide

such a condition, the cohesive law has to be shifted to

negative tractions, so that the initial cohesive traction

vanishes, i.e. t0 ¼ 0. Finally, the internal force of the

cohesive band reads

fcohb ¼ �fxfem;0b þ Dfcohb ; with Dfcohb ¼ 2

Z
CD

NTtg dC

ð30Þ

4.2 Tensile test of a 2D plate

In this section a 2D plate specimen is considered

which is subjected to a quasi-static tension loading.

The objective of this test case is to propose and test an

algorithm for cohesive band propagation and crack

formation.

4.2.1 Problem statement

Consider the plane specimen in Fig. 8 which is fixed at

the bottom and loaded in tension at the top (in red).

The imposed displacement is increased quasi-stati-

cally up to a value Umax. The thickness of the plate is

1 mm. The plate is free of pre-cracks so that a strategy

will be proposed which identifies the position of the

first nucleation of the localization band. Plane strain

conditions are assumed here. The illustrations of the

results are restricted to the area of interest (see the

dashed box in Fig. 8) where the propagation of the

cohesive band takes place.

Ten different simulations are conducted, see

Table 3. In the table short cuts are assigned to the

simulations (first column) serving as references for

later discussion. In order to analyze the sensitivity to

the mesh size, two different element sizes are used:

about 0.5 mm element size for the coarse mesh and

0.25 mm for the fine mesh. Furthermore, the cohesive

tangent moduli Tl
m ¼ Tl

n in Eq. (28) are varying. And

then, in the next section, a new propagation method

combined with a 4-point Gauss rule is presented, so

that simulations with 64 and also 4 GP are employed

and compared. Furthermore, two simulations are

employed with the GTN model without discontinuity.

Finally, two simulations are conducted—one with a

fine mesh and one with a coarse mesh—using the

X-FEM only, i.e. without a cohesive zone model

(CZM).

4.2.2 Description of the propagation algorithm

The propagation of the cohesive band, then the crack

formation, is accomplished by the sequence of the

following four steps

1. Onset and direction of propagation of the cohesive

band

2. Determination of the propagation length

3. Propagation of the cohesive band

4. Onset of the macro-crack in the cohesive band

wake

The methodology is explained below step by step. It is

assumed that only one cohesive band can propagate

throughout the structure. Branching can occur in

Table 1 Parameters related to the elastic and strain hardening

laws

E m r0 rinf k b

200 GPa 0.33 300 MPa 350 MPa 4.4 0.5

Table 2 Parameters related to the microporous plasticity GTN

model

q1 q2 f0 fN sN jN b

1 1 10�3 0.04 0.05 0.3 100 MPa

100mm

100mm

1 2

34

θ
Cohesive

band

Thickness
t = 5mm

m

n

Fig. 7 Tensile loading of a single 2D FEwith a slanted cohesive

zone inserted at the onset of strain localization
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ductile materials, but it is not considered here. A flow

chart of the propagation algorithm is given at the end

of this section in Fig. 12.

4.2.2.1 Onset and direction of propagation of the

cohesive band The bifurcation condition (20) is

evaluated locally at an additional Gauss point which is

inserted at the element center and does not contribute

to the global equation system, i.e. its weight is

negligibly small. The space between 1 and 180

degrees is swept by increments of 1 degree. For each

orientation the bifurcation criterion is checked. If this

criterion is fulfilled, the angle is added to a list. Then,

within this list the propagation angle corresponding to

the smallest determinant value is chosen. Various

criteria are checked to verify if that angle is

numerically and physically appropriate (e.g. if the

direction would lead to overlapping of the existing

band or if a crossed element would be cut twice). If the

propagation angle does not fulfill these criteria, the

angle with the second smallest determinant value is

selected and so on until an appropriate angle is found.

The cohesive band is inserted only once the

porosity at the center GP exceeds a critical value.

This criterion is necessary to ensure that already some

damage has evolved in the element before it is

localized and thus prevents from premature artificial

localization. Based on purely numerical reasons, its

value is set to fini ¼ 0:03 which is found to be a good

compromise between numerical and physical aspects.

A double criterion has thus to be satisfied for the

cohesive band activation:

1. the bifurcation condition is met at the center GP of

the element located in front of the current

cohesive band

2. the central porosity has reached a critical value at

the center GP.

This is a tentative approach as it is well known that a

local evaluation of the initiation criterion may lead to

pathological mesh dependence, see e.g. Longère et al.

(2012). A more appropriate (non-local) methodology

for ductile material has been proposed by Crété et al.

(2014) and may be implemented in future works.

Due to the fact that the specimen is initially free of

defects or cracks, an approach is proposed which

allows to find the element where the cohesive band

nucleates, see Fig. 9. A loop over all elements

identifies all those which fulfill the aforementioned

criteria. If several such elements are found (what is

normally the case), the cohesive band nucleates in the

element with the largest porosity at the center GP.

4.2.2.2 Propagation of the cohesive band When the

cohesive band is inserted into the element, the initial

cohesive tractions of the cohesive law are not

computed from the stress state, but the third

approach at the end of Sect. 4.1 is applied to avoid

6 mm

42 mm

6 mm

R = 6 mm

R = 6 mm

18 mm

Umax = 20 mm

Area 
of interest

Fig. 8 Model of the plane uncracked specimen subjected to a

quasi-static displacement loading Umax

Table 3 Configurations of the employed simulations

Short cut Mesh No. of GP Tl
n=T

l
mðN=mm3Þ

Sim1 Fine 4 �25:0

Sim2 Fine 4 �12:5

Sim3 Coarse 64 �25:0

Sim4 Coarse 64 �12:5

Sim5 Coarse 4 �25:0

Sim6 Coarse 4 �12:5

Sim7 Fine 4 No discontinuity

Sim8 Coarse 4 No discontinuity

Sim9 Fine 4 X-FEM without CZM

Sim10 Coarse 4 X-FEM without CZM
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serious convergence problems. Instead of prescribing

the fracture energy, the cohesive moduli are given due

to a better numerical performance. The normal and

tangential cohesive moduli in Eq. (28) are assumed to

be equal, i.e. Tl
m ¼ Tl

n.

Several modifications of the constitutive bulk

behavior are made in order to better agree with

physics and improve numerical performance. First of

all, the void growth is enforced to stagnate at the

continuum GPs in the elements which are crossed by

the cohesive band. This can be justified physically

because the cohesive band is assumed to be the narrow

zone where all the damage and plasticity processes are

henceforth concentrated. It corresponds also to the

experimental observations which suggest that around

the meso-crack there are only a few small voids, see

also Longère et al. (2012). Therefore, the void growth

is reduced to the elements in the process zone. This has

also an important numerical advantage as it turned out

that the simulation suffers from convergence problems

if the void growth is not restricted.

4.2.2.3 Determination of the propagation

length How far does the localization band

propagate during one displacement increment of the

monotonic loading? The characteristics of the

propagation velocity for fatigue loading are well

studied, see e.g. Pugno et al. (2006), Sukumar et al.

(2003) and Krupp (2007). However, in the case of a

monotonically increasing loading, far less research

can be found. For a slow, quasi-static loading1,

experiments with the ductile material DH36 suggest

that the meso-crack propagates intermittently by the

length of the mesocrack (about 200� 300lm, see

Longère et al. (2012)). Modeling such a propagation

length with FEs would require a prohibitively small

element size compared to the structure dimensions.

Therefore, the length of the intermittently propagation

cohesive segment has to be adapted to the FE mesh.

The procedure of that so-called exhaustion method is

described below. It corresponds to the approach

proposed by Crété et al. (2014) in the context of

crack propagation.

The cohesive band is propagating element by

element and its orientation does not change within

an element. The front of the cohesive band is assumed

to be located always on an edge. At first, the cohesive

band propagates within the element in front of the

current cohesive band as soon as it fulfills the

propagation criteria. Then, still in the same increment

and without recalculating the equilibrium, the band

propagates in the next element if the criteria are

fulfilled until exhaustion is attained. Due to conver-

gence issues, the equilibrium is not recalculated when

a cohesive band propagates through several elements,

as it is done e.g. in the approach proposed by

Pourmodheji and Mashayekhi (2012).

4.2.2.4 Onset of the macro-crack in the cohesive band

wake Instead of waiting until the residual strength of

the cohesive band is completely lost, i.e. both the

tractions tm and tn are zero, the crack is formed already

before. This has two reasons. First of all, this

corresponds to the assumption that the interrelating

bonds of the coalescing voids can only stand a certain

critical or rupture traction. Exceeding this traction

leads to a sudden rupture of this ligament and so to the

formation of new crack surfaces. Secondly, this

approach improves the convergence rate. An

effective traction in the local coordinate system teff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tl2m þ tl2n

p
is computed and compared to a critical

value, here the—up to now—arbitrary value of 100

MPa is chosen.

4.2.2.5 Considerations on the integration

scheme Realizing that a relatively fine mesh has to

be used to get reliable results, using 64 Gauss points in

each FE from the beginning of the simulation (Elguedj

et al 2006; Crété et al 2014) tremendously slows down

the calculation time, especially with regard to large

structures. Also the subsequent numerical tests have

revealed that using 64 GP in combination with a very

fine mesh may lead to divergence of the solution.

Therefore a different strategy is used here which

allows reducing the number of GP tremendously and

at once maintaining a still acceptable accuracy.

Here it is proposed to use the standard 4-point Gauss

rule. In order to guarantee that at least one Gauss point

1 In the case of a dynamic load case, the propagation length can

be e.g. controlled by empirical laws. Kanninen and Popelar

(1985) proposed a power law for elastic matrials. This was

extended to elasto-plastic materials by Haboussa et al. (2011)

and to void-induced ductile fracture by Crété et al. (2014) using

the stored plastic energy in front of the meso-crack tip. One

difficulty for the treated ductile materials in this work is the

lacking amount of experimental data in the case of dynamic

loading.
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is on both sides of the cohesive band, the new cohesive

segment is forced to traverse the center of an edge.

Depending on the bifurcation angle, the propagation

angle can only take three possible values determined by

the geometry of the element, see Fig. 10.

The question arises in how far the accuracy of the

proposed method is impaired compared to the previ-

ously recommended 64-point integration scheme. In

the following, the propagation algorithm presented in

this chapter is applied to the plate specimen in Fig. 8.

In accordance with the objectives of this work, a rather

coarse FE mesh is used (element size 0.5 mm). For

each method two different values for the cohesive

tangent modulus are considered. The results are shown

in Fig. 11.

It can be observed that the difference between the

global responses of the two approaches is slight and

independent of the cohesive law. This startling finding

implies that the costly use of the 64-point Gauss rule in

each FE from the beginning of the simulation can be

replaced by the standard 4-point rule without losing

any accuracy. Although the propagation algorithm has

to be slightly modified, this seems to be an efficient

approach applicable to large engineering structures

requiring a coarse mesh. The advantages of using 4

Gauss points instead of 64 Gauss points can be

summarized as follows:

Ini�al cohesive band segment

Center Gauss point

Elements fulfilling the propaga�on criteria

Loop over all elements

det(Q) ≤ 0?

Add porosity of element i to list
L[i] = f

Last element?

Cohesive band inserted into 
element for which f = max(L[i])

No

No

Yes

Yes

f ≥ fini? No

Yes

(a) (b)

Fig. 9 Strategy to set the

initial cohesive band:

a situation in the FE mesh,

b algorithm to determine the

element containing the

initial cohesive band

Propagated cohesive band segment

Propaga�on direc�on determined
from bifurca�on analysis

Bulk Gauss point

Cohesive Gauss point

Fig. 10 Modified propagation algorithm using 4 GP in the

continuum
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Fig. 11 Evolution of the reaction force with coarse mesh for

Sim3, Sim4, Sim5 and Sim6, see Table 3 for the nomenclature
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– It is considerably faster.

– It requires much less storage for the state variables

on each Gauss point and thus much less time for

post-processing.

– It is numerically more stable, because simulations

with the 64-point rule has revealed convergence

problems when applied to a very fine mesh.

– It provides still a good prediction of the global

response.

The 4-point Gauss integration in combination with the

described propagation algorithm is therefore used in

the following.

4.2.2.6 Summary of the algorithm The algorithm is

summarized as a flow chart in Fig. 12. The propagation

of the cohesive band and/or the crack is done at the end

of a displacement increment. Therefore the

introduction of a discontinuity into the unbalanced

Cohesive band ini�ated?

Loop over elements

Element crossed by 
cohesive band?

Element in front of 
cohesive band?

Resolu�on of the global system of 
equa�ons

Yes

No

Propaga�on criteria 
verified?

No

No

Yes

Calculate propaga�on angle &
propagate the cohesive band

Last element?
No

Yes

New increment

Yes

Determine element containing 
the ini�al cohesive segment

Yes

No

Yes

Propaga�on algorithm

Update state variables (UEL)

Problem treatment

Rupture criterion sa�sfied?

Deac�vate cohesive law

Fig. 12 Flow chart of the

propagation algorithm
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system during iteration can be avoided and the optimal

convergence rate of the Newton-Raphson solution

scheme can be maintained.

4.2.3 Results

The results of the simulations in Table 3 are discussed

here. The visualization of the simulations is

employed with the software Gmsh (Geuzaine and

Remacle 2009). According to the 2D-plane strain

condition assumed here, the band which will later

give birth to the crack is expected to propagate

following Mode II, i.e. with an angle of around 45�

with respect to the normal of the loading direction, as

for the right picture of Fig. 3 (see comments above that

figure).

4.2.3.1 Localization of damage and specimen necking

using the GTN model If the GTN model is used

throughout the entire simulation without numerically

treating the phase of strain localization, the damage

and plasticity concentrates within a few FEs located in

the center of the specimen, see Fig. 13. The latter

shows specimen necking and no thin band of

heterogeneous deformation, which is clearly in

contradiction with the experimental results (see right

picture of Fig. 3). As a consequence, the use of only a

continuous model throughout the entire failure process

Fig. 13 Localization of

damage f with Sim7, see

Table 3 for the

nomenclature, at different

loading states: a
U ¼ 7:1mm, bU ¼ 8:2mm,
c U ¼ 9:9mm

Fig. 14 Propagation angle

of the cohesive band at an

early stage of localization

(U ¼ 7:8mm): a Sim1,

b Sim2, c Sim5, d Sim6, see

Table 3 for the nomenclature
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does not allow for reproducing the phase of void

coalescence-induced localization band and further

Mode II-crack propagation in the specimen thickness.

4.2.3.2 Comparison of the propagation angle At the

onset of localization, the cohesive band is inserted into

the structure. It is observed that in all simulations the

cohesive band nucleates in the very center of the

structure and then propagates towards both sides, see

Fig. 14.

The first two simulations a) and b) show the

propagation within a fine mesh but different

tangent moduli. The cohesive band propagates as

one line through the structure and with an angle of

58� with respect to the horizontal axis as the result of

the bifurcation criterion. This numerical value of 58�

has to be compared with the experimental value of 45�

reported previously (see above and right picture of

Fig. 3). This discrepancy may be explained by the

hypothesis of 2D-plane strain condition assumed for

the numerical simulations while not being satisfied for

the real loading case (the width of the tension

specimen is not large enough for the plane strain

condition to be met). Changing the stiffness of

cohesive band does not have an influence on the

propagation angle. In contrast to the fine mesh, the

propagation pattern for the coarse mesh looks different

and reminds of a cup and cone failure mode. These

differences can be justified by the fact that the decision

of the bifurcation angle in an element is purely based

on the numerical determinant value of Q. A better

choice may be provided by using the method of Crété

et al. (2014) where the angle is chosen which yields

the maximum plastic deformation.

4.2.3.3 Comparison of the evolution of the reaction

force First of all it is worth analyzing the global

response for the case when only the X-FEM, i.e.

without incorporating a cohesive law (t ¼ 0), in

comparison to the case when the X-FEM is

combined with a cohesive law. The evolution of the

reaction force is shown in Fig. 15. In the case of using

only the X-FEM without cohesive law, it can be

observed that right at the onset of strain localization

the structure is subjected to an abrupt drop in load to

zero, i.e. an immediate formation of a crack leading to

the total rupture of the structure. If the X-FEM is
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Fig. 15 Evolution of the reaction force for Sim2, Sim6, Sim9

and Sim10, see Table 3 for the nomenclature
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Fig. 16 Evolution of the reaction force for Sim2, Sim6, Sim7

and Sim8, see Table 3 for the nomenclature
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Fig. 17 Evolution of the reaction force for Sim1, Sim2, Sim5

and Sim6, see Table 3 for the nomenclature
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combined with a cohesive law, this sudden drop can be

retarded and the transition to crack formation takes

places in a progressive manner. Then, when the critical

rupture traction is reached, the propagation of a

macro-crack occurs in the wake of the cohesive band

and the load drops to zero almost abruptly.

It should also be paid attention to the fact that a

smooth transition from the pre- to the post-localization

regime can be achieved—even for the coarse mesh—

mainly by computing the internal cohesive force

vector from the nodal bulk forces at the onset of

localization.

It was already reported that the mesh size influences

the direction of propagation. Now, the effect of the

mesh size on the global response is examined, see

Fig. 16. It can be observed that the pure use of the GTN

model leads to severe mesh dependence of the global

response. By contrast, the proposed cohesive band

propagation method in the context of the X-FEM is

nearly insensitive to the mesh size what concerns the

global response.

The final Fig. 17 shows the evolution of the

reaction forces for different slopes of the cohesive

law, which can be well represented for the fine and

coarse meshes. Due to the fact that a critical rupture

traction has been used, the simulation fails earlier in

the case of a larger slope.

5 Concluding remarks

In this chapter a methodology to couple a strain

localization induced cohesive band with the X-FEM

was proposed and assessed. This approach allows for

passing progressively from the phase of void-growth

induced damage to crack propagation in ductile

materials.

An algorithm was proposed to activate and prop-

agate a cohesive band within the structure until

rupture. This model was implemented as a UEL in

the commercial FE computation code Abaqus. This

methodology was applied to a 2D tensile-loaded plate.

It could be shown that using the 4-point Gauss rule for

the integration of the bulk part in the enriched

elements merely impairs the accuracy of the simula-

tion compared to using an expensive 64-point Gauss

rule - even in a coarse mesh. The propagation method

has been modified to optimally work with the new

integration scheme. The calculation time and storage

space can thus be drastically reduced. It was further

observed that the propagation path differs between the

two simulations. This may be traced back to the mere

use of the value of the determinant as decision basis for

the propagation angle. In the future, a more sophis-

ticated methodology can be implemented, see e.g.

Crété et al. (2014). Regarding the global response, the

cohesive law allows passing progressively from

diffuse damage to crack propagation and thus avoids

the sudden drop in load when only using the standard

X-FEM. Then it could be shown that the model

behaves nearly mesh independent. Also it could be

shown that the transition from diffuse damage to the

onset of localization is smooth and without numerical

difficulties.

Although some issues still remain to be addressed,

the cohesive band methodology in combination with

a physics-motivated propagation method has been

shown to produce first convincing results. In a

prospective work, the parameters of the cohesive

law need to be adapted to experimental results for

further being used for failure analysis of engineering

structures.
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