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Abstract In order to maximize efficiency and reduce

the risk of failure in operational dams, an effective and

efficient method which employs the inverse analysis

of a dynamic coupled hydro-mechanical problem is

proposed. The numerical model is based on the

extended finite element model. The proposed method

is able to identify cracks which may be detrimental to

structural performance and reliability. An attempt is

made using both deterministic and heuristic based

strategies to solve the ill-posed inverse problem and

identify the location, dimension and orientation of the

crack. More so, the influence of the search space and

conditioning of the cost function in identifying crack

parameters are investigated. The proposed method

shows promising results in the identification of cracks

in a fully operational dam.

Keywords Cracks identification � Inverse

modeling � XFEM � Hydro-mechanical coupling �
Dynamic loading

1 Introduction

Dams are structures used to retain or control the flow

of water in a catchment area, this could be for

agricultural purposes (irrigation), flood prevention or

for electricity generation. Although the demand for

such structures are on the increase to cater for the

increasing population and demand for renewable

energy, building new dams requires lots of resources,

thus the efficiency and operating capacities of existing

dams should be maximized.

Today, most dams have been in operation far

beyond their designed operation period and as such a

decrease in the reliability of such structures is

expected. As much as these structures are of great

value to communities, a failure in such a structure is in

most cases catastrophic, thus great care must be taken

in its design, operation and maintenance. In order to

assess both the structural integrity and reliability of

these structures routine inspections are required.

However as a result of the physical sizes and the

increasing heterogeneity (with aging) in the material

properties of these structures it is often very difficult

and tedious to carry out both a qualitative and

quantitative assessment of the dams. Thus necessitat-

ing the application of numerical methods to simulate

the structural behavior and identify regions of weak-

nesses in the dam. Furthermore, to obtain a more

realistic idea of the dams’ operation state, it is

necessary to consider the effects and interaction of
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other phenomena on the structure. In this case the

hydraulic effect of water seepage into the dam

material. This induces pore pressures in addition to

the mechanical induced deformation thus generating

additional stresses which may impair the safe opera-

tion of the dam.

There are a variety of models proposed to analyze

the damages or cracks in the dams under dynamic

loads. These includes model based on discrete crack

approach (Feltrin et al. 1991; Ayari and Saouma 1990;

Ahmadi et al. 2001; Ingraffea and Saouma 1985),

smeared crack approach (Bhattacharjee and Lger

1994; Lger and Leclerc 1996; Guanglun et al. 2000;

Ghaemian and Ghobarah 1999; Lahmer 2010), plastic

damage model (Lee and Fenves 1998), discontinuous

deformation analysis (DDA) (Jing et al. 2001), mesh-

free cracking particles (Rabczuk and Belytschko

2004; Rabczuk et al. 2010), extended finite element

methods (XFEM) (Belytschko and Black 1999), and

many more. Comparison of cracking process using

some of the aforementioned models with application

to cracks in dams can be obtained in Pan et al. (2011).

The Extended Finite Element Methods (XFEM) is a

widely implemented method which is capable of

efficiently accounting for cracks, voids and inclusions

in the numerical model. Here, nodes of elements

containing cracks, voids or inclusions are enriched

thus cutting down the additional computational cost

required for remeshing (i.e. instead of the calculation

and reassembly of all matrix entries, only the enriched

nodal values are recalculated) as would be required in

standard FEM (Singh et al. 2011). More so, carrying

out an inverse analysis require these models to be

executed over many iterations (the exact number is

influenced by the optimization algorithm selected)

thus the XFEM is preferred since only the damaged

regions require remeshing.

Recent works in literature on damage modeling

using XFEM include works by Zhang et al. (2015)

where a dynamic XFEM formulation is applied for

crack identification. Furthermore, Zheng et al. (2011)

used a cohesive crack model (CCM-based XFEM) to

simulate and monitor the cracking process in concrete

arch-dams, and Khoei et al. (2014) modeled crack

growth in saturated porous media based on an

enriched-FEM technique. In Wang et al. (2015),

XFEM and incremental dynamic analysis is used to

analyze potential failure modes of concrete dams

subjected to strong ground motion, noting that as a

result of low tensile resistance of concrete seismic

loads cause internal crack damages. An XFEM

analysis of seismic crack propagation with upstream

and downstream initial cracks was studied by Zhang

et al. (2013).

Strategies based on different concepts are available

for the calibration and optimization of models in

engineering. The aim is to identify model parameters

which enables a numerical model to adequately

simulate an engineering problem or natural phe-

nomenon. The employed strategies may be determin-

istic or random. These include the Gradient/Newton

methods, which are of the descent methods with line

search strategies used in unconstrained nonlinear

optimization that gives very fast results when the

initial guess is close to the minimum. In Jung et al.

(2013) this scheme is implemented in the identifica-

tion of scatters (cracks, void, inclusions) in heteroge-

neous elastic material. The Nelder–Mead method is

one of the direct search or gradient free strategies for

locating the minima of a function. The algorithm was

originally published in 1965 and according to Nelder

and Mead (1965), it is one of the best known

algorithms for multidimensional unconstrained opti-

mization without derivatives. Although strongly

dependent on the initial guess, this method has been

used to successfully identify cyclic constitutive

parameters for unsaturated cyclic macro-element

models in Alalade et al. (2016) and model parameters

necessary in coupled thermo-hydromechanical

(THM) barrier materials for nuclear waste repositories

in Nguyen-Tuan et al. (2009). By re-initializing the

Nelder–Mead algorithm using different initial guesses

enables the method to act like a global optimizer. The

Particle swarm optimization (PSO) is a population

based stochastic optimization technique developed by

Eberhart and Kennedy (1995), inspired by social

behavior of bird flocking or fish schooling. It is a

heuristic based global optimizer easily applicable to a

number of situations. PSO involves distributing a

number of particles in the search space and the

objective function of each particle is calculated and

the best positions (personal and global) is saved at

every iteration. In Nguyen-Tuan et al. (2016), the PSO

algorithm was employed in the identification of buffer

elements in complex thermo-hydro-mechanical anal-

yses. The genetic algorithm (GA) is also an adaptive

global optimizer which draws inspiration from genet-

ics and evolution. Here particles with favorable
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traits/solutions are selected, crossed-over (mutated)

and evolved to the next generation. This continues till

the global optimum is identified. Application of this

algorithm in damage identification can be obtained in

works by Rabinovich et al. (2007), Rabinovich et al.

(2009), Minagawa et al. (2012), Waisman et al.

(2010) and Chatzi et al. (2011). The multilevel

coordinate search is another optimization strategy

used by Nanthakumar et al. (2014) to identify dam-

ages in piezoelectric materials. The algorithm con-

verges to the global minima/maxima by balancing

both heuristic methods and local methods (Nanthaku-

mar et al. 2016).

Other successful identification of crack/fracture in

flat membranes and piezoelectric materials are seen in

works of Béchet et al. (2009) and Nguyen-Vinh et al.

(2012) where dynamic behavior is considered and in

Nanthakumar et al. (2014) where multiple flaws are

detected. In Sun et al. (2014) both heuristic and

gradient based optimization schemes are applied in a

2-step frame work to identify flaws. Additionally,

small scale damages in large structures were identified

using a sweeping window in Sun et al. (2015).

A lot has been done with respect to the modeling of

damages/cracks and its propagation as a result of both

static and dynamic loads on different types of mate-

rials, however not much has been done so far with

regards to the identification of these damages/cracks in

dams considering the hydro-mechanical coupling

effects using XFEM under dynamic load. Therefore,

in order to practically implement any of the previously

discussed damage/fracturing models to dam safety

analysis, it is crucial to first and foremost identify

probable or existing crack/damage zones before

further fracture analysis can be carried out.

This paper aims to efficiently identify cracks in

dynamically excited gravity dams using a coupled

hydro-mechanical extended finite element model

(XFEM). Synthetic measurements taken at different

sensitive points on the dam as a result of the dynamic

excitation are used in the inverse analysis model to

identify the location of the crack in the dam geometry.

In the absence of a priori information a 2-step analysis

may be required to fine-tune the identified parameters

thus increasing the methods’ robustness. Both deter-

ministic and random search strategies are employed in

the inverse analysis and the results obtained show a

promising application of this method to the structural

health monitoring of dams.

2 Numerical models

2.1 Coupled hydro-mechanical model

Fluid flow through a porous medium is assumed to be

incompressible with constant material densities along

the motion of the fluid through varying pressure points

in the domain. Material permeability is assumed to be

isotropic, with displacement, u describing the main

variable for the mechanical process and pore water

pressure, pw describing the main variable for the

hydraulic process.

The mathematical modeling of the fluid flow

structure interaction is described combining the linear

momentum balance equation for the mixture solid/

water, the general form of the effective stress princi-

ple, the constitutive relationship for solid phase

relating effective stresses to strains, and the compat-

ibility equation that links strains to displacements. The

mass balance equation for water is combined with the

general form of Darcys law to describe the flow

behavior of the porous medium under the influence of

the solid skeleton deformation (Segura and Carol

2008).

The effective stress concept in Eq. 1 explains the

characteristics of the effects of fluid saturated fractures

on the solid phase. That is, the hydraulic effects of the

pore pressures on the normal components of the

mechanical stresses. When considering that negative

stresses describes the compression state and positive

stress the tension state, the effective stress is written

differently as would be expected in soil mechanics. A

quasi-static stress equilibrium problem is considered

for scenarios where the fluid movement in the porous

media is slow. Thus the linear momentum balance

equation is expressed in Eq. 2, where qa is the density

of the porous medium and comprises of both the solid

and liquid phase (Zienkiewicz and Shiomi 1984).

r0 ¼ rþ abmpw; ð1Þ

r � r�rpw þ qa g ¼ 0

qa ¼ ð1 � nÞ qs þ n qw
ð2Þ

where

• r is the macroscopic total stress tensor (N/m2)

• r0 is the effective stress tensor (N/m2)

• g is the acceleration due to gravity (m/s2)
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• qa is the density of porous medium (kg/m3)

• qs is the density of solids (kg/m3)

• qw is the density of water (kg/m3)

• n is the porosity

• pw is the water pore pressure vector (N/m2)

• ab is the Biot’s constant (usually a ¼ 1)

• m is a particular tensor which introduces the

influence of fluid pressure in the direction normal

to the discontinuity axis (m ¼ ½1; 1; 1; 0; 0; 0�T )

Fluid flow in deformable, saturated porous media is

described by the following volume balance equation

(Eq. 3) based on mass balance equations of both liquid

and solid phases in porous medium.

ab � n

Ks

þ n

Kw

� �
dpw
dt

þ ar � du
dt

þr � q̂ ¼ 0 ð3Þ

where

• Ks and Kw are the bulk modulus of solid and water

(N/m2),

• u is the mechanical displacement vector (m).

• q̂ is the fluid flux in (m/s)

When considering a single phase flow with the

assumption that the internal fluid friction is less when

compared to the friction on the solid-fluid interface

and neglecting the turbulence effects, the value of q̂ is

assumed to follow Darcy’s law in Eq. 4.

q̂ ¼ � j
lw

ðrpw � qwgÞ; ð4Þ

where

• j is the intrinsic permeability (m2)

• lw is the fluid dynamic viscosity (Ns/m2)

Applying standard FEM procedures found in liter-

ature on fluid flow in porous media (Zienkiewicz and

Shiomi 1984; Zienkiewicz et al. 1990; Coussy 1995;

Lewis and Schrefler 1998; Khoei 2014), the coupled

hydro-mechanical behavior of a porous material is

expressed thus:Z
X
BT
ur

0dX�Qpw ¼ fðtÞ ð5Þ

S
dpw
dt

þHpw þQ
du

dt
¼ qðtÞ ð6Þ

where

The coupling matrix, Q ¼
Z
X
BT
uamNp dX ð7Þ

The permeability matrix, H¼
Z
X
ðrNpÞT jrNp dX

ð8Þ

The compressibility matrix,

S ¼
Z
X
NT

p

a� n

Ks

þ n

Kw

� �
Np dX

ð9Þ

The fluid flux vector, q ¼
Z
C
rNT

p q̂ dC ð10Þ

However, from the constitutive law for stress-strain

behavior, r0 ¼ D� and � ¼ Bu, r0 can be substituted in

Eq. 5. Thus the first term in (5) can be expressed as the

traditional stiffness matrix, K ¼
R
X Bu

TDBu dX as

obtained in Eq. 11. To consider the effect of a time

varying force fðtÞ on the analysis, (11) is extended

considering the inertia term and in line with Newtons

law of motion leading to the expression in Eq. 12. An

explicit derivation of 12 is found in Zienkiewicz and

Shiomi (1984).

Ku�Qpw ¼ fðtÞ ð11Þ

M€uþ C _uþKu�Qpw ¼ fðtÞ ð12Þ

M ¼
Z
X
NT

uqNu dX
e; ð13Þ

f ¼
Z
X
NT

uqab dXþ
Z
Ct

NT
u
�tdC ð14Þ

where

• M is the mass matrix

• C is the damping matrix expressed in Eq. 15

• Nu is the displacement shape function

• Np is the pressure shape function

• B is a matrix containing the derivatives of the

shape function

• D is a stress/strain matrix which is a function of the

materials Youngs’ modulus, E and Poisson’s ratio,

m
• f is the external force vector

• b is the vector of body force

• €u and _u are the acceleration and velocity vector

• �t is the surface traction vector
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C ¼ aMþ bK: ð15Þ

The a and b coefficients in Eq. 15 are the Rayleigh

damping coefficients. These can be obtained from

experiments or through other methods proposed in

literature. The method proposed by Chowdhury and

Dasgupta (2003) was used to calculate a and b with a

damping ratio of 2and5% considering the first 3

modes. The Newmark scheme Chopra (1995) is

applied in solving the dynamic mechanical system

such that the values of the nodal displacements,

velocities and accelerations are obtained. Depending

on the b� and c� values used to implement the scheme,

it is necessary that the time step dt chosen is less than

the critical time step Tc to ensure stability. The

resulting displacements obtained are used to compute

the strains and stresses as done in standard FEM

calculations. The hydraulic effect of water seepage

into the dam material causes an increase in the pore

pressures and in addition to the mechanical induced

deformation this generates additional stresses in the

dam.

M 0

0 0

� �
€uðtÞ
€pðtÞ

� �
þ

C 0

QT S

� �
_uðtÞ
_pðtÞ

� �

þ
K �Q

0 H

� �
uðtÞ
pðtÞ

� �

¼
fðtÞ
qðtÞ

� �
ð16Þ

The coupled dynamic hydro-mechanical model

expressed in Eq. 16 can be solved simultaneously

(monolithic) for the resulting displacements and pore

water pressures or in a staggered procedure. In the

staggered procedure each equation is solved (probably

using different solvers) at each time step and the

solution of one parameter is used to ‘drive’ the

solution for the other parameter at the next time step.

2.2 Dam crack modeling

The extended finite element method (XFEM) intro-

duced by Belytschko and Black (1999) is capable of

incorporating the local enrichment into the approxi-

mation space within the framework of finite elements.

The enriched approximation of the extended finite

element method for the displacement field u can be

written according to Belytschko et al. (2009) in

Eq. 17.

uðx; tÞ � uhðx; tÞ ¼
X
I2@

Nu IðxÞ�uIðtÞ

þ
X
J2@dis

Nu JðxÞðHðuðxÞÞ � HðuðxJÞÞÞ; �aJðtÞ

þ
X
G2@tip

Nu GðxÞ
X4

a¼1

ðbaðxÞ � baðxGÞÞ; �baGðtÞ ð17Þ

where

• @ is the set of all nodal points

• @dis is the set of enriched nodes whose support is

bisected by the crack

• @tip is the set of nodes which contain the crack-tip

in the support of their shape functions enriched by

the asymptotic functions

• �uIðtÞ are the unknown standard nodal displace-

ments at Ith node

• �aJðtÞ are the unknown enriched nodal degrees of

freedom associated with the Heaviside at node

J enrichment function at node J

• �baGðtÞ are the additional enriched nodal degrees of

freedom associated with the asymptotic functions

at node G

• NuðxÞ are the standard displacement shape

functions

• HðuðxÞÞ is the Heaviside jump function used to

model the discontinuity due to different displace-

ment fields on either sides of the crack

• baðxÞ are the asymptotic functions extracted from

the analytic solution and used to model the

displacement field at the crack-tip region

HðuðxÞÞ is defined in Eq. 18 and baðxÞ in Eq. 19

HðuðxÞÞ ¼
þ1 uðxÞ� 0

0 uðxÞ\x

�
ð18Þ

bðr; hÞ ¼ fb1; b2; b3; b4g

¼
ffiffi
r

p
sin

h
2
;

ffiffi
r

p
cos

h
2
;

ffiffi
r

p
sin

h
2
sinh;

ffiffi
r

p
cos

h
2
sinh

� �

ð19Þ

The signed distance function uðxÞ in Eq. 18 is

defined based on the absolute value of level set

function as uðxÞ ¼ minkx� x�k signððx� x�Þ � nCd
Þ.
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Where x� is a point on the discontinuity, which has the

closest distance from the point x and nCd
. The

interchangeability of the Heaviside function and the

sign of the level-set function though common in

literature, leads to similar results (Borst et al. 2006).

The approximation of the pressure field in XFEM is

dependent on the type of discontinuity being consid-

ered. In cases where a void is encountered, the

discontinuity is weak because the domain does not

impose any discontinuity in the fluid flow thus

standard FEM shape functions without any enrichment

are adequate for the approximation. However, cracks

introduce strong discontinuities in the fluid flow hence

the standard shape functions and also Heaviside

enrichment are required to approximate the pore

pressure. Thus the enriched approximation of the

pressure field p can be expressed according to R éthoré

et al. (2007) in Eq. 20.

pðx; tÞ � phðx; tÞ ¼
X
I2@

Np IðxÞ�pIðtÞ

þ
X
J2@dis

Np JðxÞðwðxÞ � wðxJÞÞ�cJðtÞ
ð20Þ

where

• �pIðtÞ is the unknown nodal pressure at the Ith node

• �cJðtÞ is the unknown enriched nodal degree of

freedom associated with the level-set function at

node J

• NpðxÞ are the standard pressure shape functions

• wðxÞ is the modified level set function given as

wðxÞ ¼
X
I2@dis

Np IðxÞjuI j � j
X
I2@dis

Np IðxÞuI j:

ð21Þ

The level set functions are applied in the enriched

shape functions to enable numerical computation

involving curved objects and surfaces on a fixed

grid without having to parameterize the objects

(Osher and Sethian 1988). In order to take into

consideration the discontinuity in the fluid pressure

gradient on elements the relation in (21) is applied.

It has a ridge centered on the interpolated interface

and vanishes in elements not containing the material

interface. This results in the enrichment function

being zero in the blending elements and the

unwanted terms appearing in the approximating

space of the blending elements are avoided. Thus,

the enrichment function is continuous across the

fracture, while its gradient is discontinuous in the

normal direction to the discontinuity. Possessing

this desirable property, the enrichment function

enables the approximate pressure field to be dis-

continuous in its normal derivative across the

discontinuity, accounting for the leak-off of the

fluid from the discontinuity (Khoei 2014). A

detailed description of the implementation of this

enrichment technique is obtainable in Zlotnik et al.

(2007).

Considering the necessary shape function enrich-

ment as a result of voids and cracks in the structure,

each constituent of the coupled hydro-mechanical

matrix in (16) is extended to include both the crack tip

and Heaviside enrichment as obtained in Eq. 22 for the

mechanical part considering damping, and (23) for the

pore water pressure part. These enrichment are imple-

mented for elements that contain crack tips and also for

elements completely cut through by a crack. In

situations where nodes belong to a set of elements

enriched with the crack-tip asymptotic function and

Heaviside enriched element, the crack tip enrichment

is used.

Muu Mua Mub

Mau Maa Mab

Mbu Mba Mbb

2
64

3
75

€u

_�a
_�b

8><
>:

9>=
>;þ

Cuu Cua Cub

Cau Caa Cab

Cbu Kba Cbb

2
64

3
75

_u

_�a
_�b

8><
>:

9>=
>;

þ
Kuu Kua Kub

Kau Kaa Kab

Kbu Kba Kbb

2
64

3
75

u

�a

�b

8><
>:

9>=
>;

¼
fu

fa

fb

8><
>:

9>=
>;þ

Qup Quc

Qap Qac

Qbp Qbc

2
64

3
75 �p

�c

� �
;

ð22Þ

Spp Spc

Scp Scc

� �
_p

_�c

� �
þ

Hpp Hpc

Hcp Hcc

� �
p

�c

� �
¼

qp

qc

� �

�
QT

up QT
ap QT

bp

QT
uc QT

ac QT
bc

" # _u

_�a
_�b

8><
>:

9>=
>;

ð23Þ

The XFEM mass matrix M, stiffness matrix K,

coupling matrix Q, compressibility matrix S, perme-

ability matrix H and force f and fluid flux q vectors are

defined in (24)–(30) respectively.
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M#- ¼
Z
X
ðN#

uÞ
Tqa N

-
u dX ð24Þ

K#- ¼
Z
X
ðB#

uÞ
TD B-

u dX ð25Þ

Q#- ¼
Z
X
ðB#

uÞ
Tam N-

u dX ð26Þ

fa ¼
Z
X
ðNa

uÞ
Tqab dXþ

Z
Ct

ðNa
uÞ

T�tdC ð27Þ

Sdc ¼
Z
X
ðNd

pÞ
T a� n

Ks

þ n

Kw

� �
Nc

p dX ð28Þ

Hdc ¼
Z
X
ðrNd

pÞ
Tj rNc

p dX ð29Þ

qd ¼
Z
X
ðNd

pÞ
Tj � qwb dX�

Z
Cw

ðNd
uÞ

T q̂dC ð30Þ

where # and - denote standard and enriched (i.e.

Heaviside or asymptotic-tip) displacements functions,

whereas d and c denote standard and enriched pressure

functions. Detailed information on the integration of

(24)–(30) for each term in the matrix of (22) and (23)

are obtained in Zhang et al. (2015) and Nanthakumar

et al. (2014). To take into account discontinuity on the

enriched elements during numerical integration, polar

integration approach proposed in Chahine et al.

(2007) is applied for these enhanced shape functions.

The coupled hydro-mechanical XFEM model can

be solved in the time and frequency domain, thus

generating the dam response as a function of time as

given in (31) or frequency as in (32).

S _pþHpþQT _u ¼ q

M€uþ C _uþKu�Qp ¼ f
ð31Þ

pðxÞ ¼ ixSþHð Þ�1 qðxÞ

uðxÞ ¼ �x2Mþ ixCþK
	 
�1

fðxÞ þQpðxÞ
ð32Þ
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Fig. 1 Effect of cost function definition on the identification of

the global minima. In (a) the contour plot is very flat with many

minimum points, however using the log of the cost function in

(b) accentuates the cost function values thus increasing the

probability of converging to the global minima

Table 1 Dam properties

H ðmÞ B ðmÞ L ðmÞ E ðMPaÞ m q ðkg/m3Þ

28 19 0.1 24 � 103 0.15 24 � 102

a b b� c� dt T ðsÞ

�0:354 0.0162 0.5 0.25 0.1 4

Table 2 Hydro-mechanical dam properties

qw ðkg/m3Þ Kw ðN/m2Þ n

1000 2:2 � 106 1 � 10�6

n l ðN/s2Þ j ðm2Þ

1 � 10�3 1 � 10�18 1:12 � 10�12
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In this work a staggered procedure incorporating the

Newmark time integration scheme and the forward

finite difference method is used to solve the mechan-

ical and pore pressure part of the coupled hydro-

mechanical equation.

3 Inverse analysis

The objective of the inverse analysis is to obtain

reliable model input values by minimizing the error

between experimental data (describing in most cases a

phenomena) and numerical results obtained from a

mathematical model developed to simulate (as close as

possible) the natural phenomena. With the solution

obtained from the inverse analysis, it is possible to

ascertain and monitor the ‘health’ (state) of the

structure or also to simulate the response of the

structure during extreme conditions. The parameters

obtained can also give an idea of the location of

heterogeneity and damages.

If the location of the crack is well parameterized a

priori, local and global search methods in the context

of non-linear optimization can be applied. One of such

global strategies is the particle swarm optimization

(PSO) developed by Eberhart and Kennedy (1995) and

inspired by social behavior of bird flocking or fish

schooling. It is a heuristic based global optimizer

easily applicable to a number of situations. It consists

of generating random particles in the search space, and

at each time step, changing the velocity of

(accelerating) each particle toward its personal best,

Pbest and local best, Lbest locations. Acceleration is

weighted by a random term, with separate random

numbers being generated for acceleration toward Pbest

and Lbest locations. Particle velocity is calculated in

Eq. 33 and the updated particle position is calculated

from Eq. 34.

v ¼ vcur þ c1 WðPbest � PcurÞ þ c2 WðGbest � PcurÞ
ð33Þ

where W contains random numbers between 0 and 1,

and c1 and c2 are learning factors.

Pnew ¼ Pcur þ vcur ð34Þ

Other options include the use of local optimizer such

the Nelder–Mead method, which is one of the direct

search or gradient free strategies for locating the

minima of a function. According to Nelder and Mead

(1965), it is one of the best known algorithms for

multidimensional unconstrained optimization without

derivatives.

The objective function being minimized (Eq. 35) is

the sum of squared error between the dam response

recorded by the sensors and the numerical response

generated by the coupled hydro-mechanical XFEM.

The response may either be in the frequency or time

domain. Quiet a number of methods for the error

minimization exists in literature (such as the previ-

ously mentioned algorithms). However, to efficiently

obtain reliable solutions a deep understanding of the

model behavior is required in order to select an
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appropriate method. In the case where the problem is

ill-posed (which is generally encountered in engineer-

ing), convexification of the objective function is

necessary by the use of a regularization strategy as

applied in Alalade et al. (2015) if a deterministic

optimization method is employed.

Cf ðpÞ ¼
Xn
i

Xs

j

ð €Umod
ðj;ti;pmÞ � €Uexp

ðj;tiÞÞ
2 þnRðji; ti; pmÞ

ð35Þ

where

• Cf is the cost function to be minimized.

Cf : R
n � Rs ! R

• €Umod
ðj;ti;pÞ is the dam response recorded during the

numerical simulation at each sensor

• €Uexp

ðj;tiÞ is the dam response recorded at each sensor

on the dam site (e.g. accelerometer)

• pm is a vector of M; K; C; Q; HandS, p 2 R~c

• ~c is the number of crack descriptors

• R is regularizing term and n[ 0

• ti is the time step at each point

• s is the total number of sensors

• n is the total number of data points

To further improve the chances of identifying the

global minima, certain constraints imposed on the

analysis include:
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1. Reduction of the search space since cracks are

assumed to be common and more critical in the

lower 5m of the dam. This region is considered

critical due to the fact that higher pressures are

expected, abrasion from sediments may be pro-

nounced and also difficult to visually inspect. In

addition, the dam is equipped with an inspection/

drainage canal through which damages above

5m can be noticed by the amount of water seeping

into the canal from above.

2. Using the log of the cost function for the

parameter search. It should be noted here that

negative values in the contour plot results from the

log of values less that 1 being negative.

3. Using multiple excitation points instead of a

single point for the analysis. This is done by

carrying out the excitation at various points

sequentially thus leading to the new cost function

in Eq. 36 which is a function of all the excitation

points. Where m is the number of excitation

sources and Cf ðpÞ has been defined in Eq. 35

Cf ðmÞ ¼
Xm
i

Cf ðpÞi ð36Þ

The effect of these constraints can first be seen in the

contour plots of Fig. 1. These plots show points of

local and global minima with respect to the crack

parameters. It can be seen from the comparison that

using the log of the cost function makes some of the

local minima less pronounced. This makes the contour

plot smoother and increases the chances of conver-

gence to a global minima.

4 Numerical simulation

4.1 Forward model

A masonry gravity dam (similar to the Fuewigge dam)

with mechanical and hydraulic properties in Tables 1

and 2 is used for the numerical simulation. Plane stress

problem is considered here and the dam thickness, L is

taken as 0.1m In order to validate the numerical model

and to investigate the influence of the hydraulic

coupling on the dam structure, the dam is dynamically

excited at the top of the upstream face in Fig. 2a and at

multiple points in Fig. 2b and the response at selected

points (sensor location) are recorded. The input force

amplitude is obtained from the hydrostatic force acting

at the node on the top of the dam upstream face. The

force and its resulting acceleration and displacement

time histories are obtained in Fig. 3. This excitation is

applied for both the mechanical case and also the

coupled hydro-mechanical case i.e. without and with

the influence of pore water pressure on the displace-

ments. To obtain the generated stresses and strains

induced on a dynamically excited dam considering the

hydraulic coupled effect on the dam response (i.e.

solving the coupled HM problem in Eqs. 22 and (23))

and two different cracks patterns (horizontal and
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inclined) with coordinates (0, 5), (5, 5) and

(0, 3.5), (7, 5) as obtained in Fig. 4, it is necessary

to solve the coupled hydro-mechanical equation

derived in Eq. 16. There exists several ways of solving

this equation, here it is solved by splitting the matrix

into two equations as obtained in Eq. 31. First the pore

pressures are obtained using the forward difference

method, then the mechanical equation is updated with

the values of p and solved using the Newmark time

integration scheme to obtain the coupled hydro-

mechanical displacements. Results obtained in Fig. 5

show the damping effect of water on the dynamic

behavior of the dam (undamaged) both with and

without the consideration of structural damping.

Furthermore, as a result of stiffness degradation due

to damages/crack in the structure, an increase in the

response amplitude and also a corresponding reduc-

tion in fundamental frequency of the dam would be

expected. This can be observed in Fig. 6 where a

comparison is made between the response of the dam

when damaged (i.e. XFEM simulation) and also

undamaged (i.e. homogeneous material FEM simula-

tion) for both the mechanical and coupled cases. The

stresses induced on the dam due to the dynamic loads
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at point E1 in Fig. 2b and the presence of a horizontal

crack is obtained in Fig. 7.

4.2 Crack identification

In practice the acquisition of the needed data is done

via acceleration sensors (Geo-phones) or other types

of sensors instrumented on the dam to record various

types of vibrations which after undergoing processing

is used for the inverse modeling. However in this case,

the data used for the damage identification is numer-

ically generated i.e. for a known crack location

responses of sensor nodes from the implementation

of the forward problem is used. This has the advantage

of providing more information on the applied opti-

mization strategy and also sensitivities of parameters

related to both the forward and inverse model. The

setup is made up of 17 sensors, 13 of the sensors are

distributed on the dam upstream and downstream face

while 4 are installed within the dam structure itself.

Installation is done by drilling into to structure from

the inspection tunnel. In the event where difficulty

exist in sensor installation on the dam upstream, the

proposed acquisition set-up can be adapted to the

prevailing site conditions.

Before carrying out the inverse analysis, it is

necessary to come up with an effective arrangement of

sensors and also select measurements that capture

change in structural behavior due to damage. This was

achieved by changing the damage location and

comparing the average response recorded by each

sensor on dam for different crack locations both in the

frequency and time domain. From the results obtained

in Fig. 8, it can be observed that the frequency domain

(as compared to the time domain) shows more

sensitivity to the change in crack location on the

dam response. A clearer picture can be seen by

comparing Figs. 9 with 10. The contour and surface

plots for a time domain analysis in Fig. 9 contains

trough-like regions of both local and global minima

thus leading to non-unique values. However, when a

frequency domain analysis is employed as seen in

Fig. 10, the trough-like features are almost absent and

a global minima is clearly defined. The frequency

domain response is more sensitive to crack location,

thus it is preferred for carrying out the inverse

analysis. More information on frequency domain

inverse analysis for poroelastic material can be

obtained in Lahmer and Rafajłowicz (2017).

The parameters used for identifying the crack are

the coordinates of the crack tips (½x1 y1; x2 y2�). Cracks

that originate from the dam face are considered more

critical, thus x1 ¼ 0 and both horizontal cracks

(y1 ¼ y2) and inclined cracks (y1 6¼ y2) are assumed.

A parameter dependency analysis is carried out using

contour and surface plots. Results obtained in Figs. 9

and 10 show that the model is ill-posed and depending

on the search strategy employed convexication would

be required to improve the chances of convergence. In

addition to this, a lower ‘degree of ill-poseness’ (i.e.

number of non-unique values) was observed from the

contour plot in the frequency domain as compared to

the time domain, thus favoring a frequency based

inverse analysis.
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An attempt was made to use the constrained and

unconstrained Nelder-Mead algorithm to locate the

global minima, however irrespective of the application

of aforementioned methods the algorithm did not

converge to the expected values. The particle swarm

optimization PSO on the other hand was able to

produce better results. From our observations of the

model parameter dependencies in Figs. 10 and 11,

random search strategies such as PSO seem to be a

better suited method. More so, it can be run using

‘parallel-computing’ thus decreasing computational

costs. The algorithm was run using 24 particles (i.e. 6

particles run parallel on 4 cores) and acceleration

constants c1 ¼ c2 ¼ 1:2. In addition, the quality of

convergence was influenced by the size of the search

area and also the number of excitation points (with

positions in Fig. 2b). In the case where a single

excitation point is used, 101 function evaluations were

required and the minimization error was 1:85 � 10�4.

More over the multiple excitation case required 52

function evaluations to arrive at a convergence with

minimization error of 8:4 � 10�6. It should be noted

that for multiple excitation points, the computational

time for 1 evaluation is much longer than when only

single excitation point is considered. Data used for the

evaluation did not consider the effect of noise in

measurement. From the obtained results in Fig. 12

using excitation points E1, E2 and E3 enabled an

exact location of the horizontal crack and also a close

approximation for the inclined crack although more

computation effort was required. This is because better
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quality response is obtained from excitations closest to

(and above) the crack. Thus, using excitation sources

are at different sensitive positions within the dam

increases the probability of localizing the crack.

To avoid ‘inverse-crime’ (Colton and Kress 2012)

and further test the robustness of our method, the

effect of noise on the quality of the identified crack

parameters is investigated. This is done by corrupting

the synthetically generated experimental data used for

the inverse analysis. Since the inverse analysis is

carried out in the frequency domain, the noise is added

to the data in considering two different scenarios.

Firstly the time domain measurements are corrupted

before transformation to the frequency domain as

obtained in Eq. 37. This has the effect of smoothening

some of the noise as seen in Fig. 13a. The second

scenario deals with noise addition to the frequency

response measurements in Eq. 38, the effect of this on

the dam response can be observed in Fig. 13b. The

data is corrupted using random normal distributed

noise of 1, 5, 10, 20, 25, and 50% before carrying out

the inverse analysis.

Ücor
( j,ti) = Üexp

( j,ti)
(1+� N); Ücor

( j,ω) =F
(
Ücor
( j,ti)

)

ð37Þ

Ücor
( j,ω) = Üexp

( j,ω) (1+� N); ð38Þ

where €Ucor
ðj;tiÞ is the corrupted sensor measurement in

the time domain, €Ucor
ðj;xÞ is the corrupted measurement
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in the frequency domain, � is the percentage of noise

added to the signal and N is the applied noise vector.

The effect of applying different percentages of noise to

both time signal before frequency transformation and

to the frequency response of the dam is investigated.

The identified crack parameters and final error after

the inverse analysis (i.e. with 30 evaluations) for each

level of noise considering both the application of a

single excitation source and multiple excitation

sources are obtained in Table 3 and Fig. 14.

Although investigation into the application of

single and multiple excitation sources (as stated in

previous paragraphs) favors the robustness associated

with multiple sources, however Table 3 and Fig. 14

shows otherwise. The crack orientation using a single

source excitation deviates from the real crack for high

noise values. For multiple source excitation, this effect

is observed earlier coupled with a higher minimization

error as would be expected when comparing Eqs. 35

with (36). The underlying reasons behind this behavior

results from the fact that with multiple sources the

search space is unrestricted (unlike for single source)

and also the noise/error in measurements accumulates

for each source. A close observation at Fig. 14 shows a

linear increase in the error between both plots as the

percentage of noise increases. In practice since the
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exact distribution of error in measurement is uncertain,

it is recommended to first use the multiple excitation

method to localize the crack or region where the

damage exists, after which data from the excitation

source closest to the crack (this constitutes a restricted

search space) location can be used to narrow down the

crack location and fine tune the results. Thus the

following procedures can be readily applied especially

when no prior knowledge on the damage region exists
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Table 3 Identified crack coordinates for different noise levels

Noise (%) Crack parameters (x1; x2; y1; y2)

Single excitation Multiple excitation

– 0 7 3.5 5 0 7 3.5 5

1 0 6.5 3.7 4.8 0 5.5 6 6

5 0 6.8 3.4 5.5 0 8 6 3.7

10 0 4.2 1.2 5.3 0 5.8 5.2 1.2

20 0 6.9 1 3.5 0 7.9 6 5.8

25 0 7.9 6 5.7 0 7 5.6 6
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Fig. 14 Comparison between quality of fit for single and

multiple excitation considering different noise levels. a Noise is

added to time domain response before transformation and in

(b) noise is added to the recorded frequency response
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1. Carry out multiple excitation of the dam.

2. Obtain all necessary sensor data and

measurements.

3. Initiate the inverse analysis using the multiple

sources. This is capable of localizing the damage

zone.

4. Using output from (3) to restrict search, run

inverse analysis using single source and the

sensors in this region or the closest to the localized

region in (3).

5. Results obtained have a higher probability of

convergence to the original crack location.

5 Conclusion

In order to reduce the risk of a catastrophe resulting

from dam failure, proper maintenance and monitoring

is required. Although synthetic data was used in this

work, the damage identification method presented

here shows optimism in the location of cracks

considering the influence of pore water pressures on

the dam. The damping effect of the water in the

reservoir on the response amplitude was also simu-

lated by the model. The presence of structural damage

can also be detected earlier first from the comparison

of frequency response between measurements taken at

different time periods where a phase shift of the

fundamental frequencies in the measurements triggers

an inverse analysis procedure to localize the damage.

The frequency domain response showed more sensi-

tivity to structural damage as compared to time

domain response.

The application of multiple excitation sources

apart from the fact that it requires more computa-

tional costs is capable of localizing the damage

region irrespective of the search space size. More so,

owing to the uncertainty in field measurements,

absence of a priori information and the sensitivity of

the single excitation method to the search space, a

combination of the both the multiple excitation case

and the single excitation case is recommended for

crack identification. Thus, the proposed method in

combination with other structural health monitoring

strategies can go a long way in improving current

dam monitoring practices and also act as an early

warning system for both old and newly constructed

dams.
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