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Abstract For micro/nano structures, surface elastic-

ity, surface stress and surface mass strongly affect

mechanical behaviors of 1D beam-columns. This

article studies dynamic stability of microcantilevers

on an elastic foundation or embedded in an elastic

matrix when subjected to a subtangential follower

force, where the surface effects are taken into account.

An exact characteristic equation is derived for

clamped–free end supports. For differential tangency

coefficients, the force–frequency interaction diagram

is displayed and the influences of surface elasticity

modulus, residual surface tension, surface mass and

the elastic foundation are analyzed for conservative

and non-conservative compressive forces. When the

tangency coefficient vanishes, a cantilever column

subjected to a conservative tip force is reduced, and

conventional Euler buckling for a compressive axial

load is recovered. When the tangency coefficient does

not vanish, a generalized Beck’s column with the

surface effects is tackled. When the tangency coeffi-

cient exceeds certain critical value, flutter instability

take places. For a fixed frequency, the critical

divergency and flutter loads as a function of the

tangency coefficient are given for various surface

influences from residual surface tension, surface

elasticity, surface mass and the stiffness of the elastic

foundation. The boundary map of stability, divergence

and flutter domain is shown.

Keywords Dynamic stability � Flutter load � Surface

stress � Surface elasticity � Surface mass � Elastic

foundation

1 Introduction

With the development of micro/nano technique, one-

dimensional (1D) beam-like micro/nanoscale struc-

tures have a wide application in MEMS/NEMS such

as sensors, AFMs, etc. Due to their very large aspect

ratio, such 1D micro/nano structures have apparent

size-dependent material properties, which is com-

pletely different from conventional 1D structures.

Since their diameter falls into the order of

micro/nanometer, the size effects, in particular surface

effects, are noticeable and they cannot be simply

neglected in assessing their mechanical behaviors. The

surface effects, in turn, can strongly affect material

properties of a small scale solid, and the surface effects

have been recognized as a key factor responsible for

experimentally measured size-dependent mechanical
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properties. Along this line, great progress has been

made to show the influence of the surface stress as well

as surface elasticity on mechanical behaviors.

From this viewpoint, much theoretical and exper-

imental attention has been directed towards the

investigation of the surface effects. Cuenot et al.

(2004) applied resonant-contact atomic force micro-

scopy to measure the elastic properties of silver and

lead nanowires and found that the increase of apparent

elastic modulus for smaller diameters is attributed to

surface tension effects. A large number of theoretical

papers related to the surface effects have been reported

to interpret how the surface stress and surface

elasticity affect the mechanical behaviors of micro

or nanobeams. By analyzing microcantilever beams,

the surface stress was suggested to account for change

in the natural frequency (McFarland et al. 2005).

When a nanomechanical cantilever is immersed in a

viscous fluid, the dynamic response of frequency shift

due to the surface stress was studied (Dorignac et al.

2006). Also the effect of surface stress on the stiffness

of a cantilever plate has been formulated based on a

three-dimensional model (Lachut and Sader 2007),

where surface stress difference and the corresponding

couple are ignored. For other static bending of a

microscale beam with the surface stress, three typical

theoretical models for a beam with rectangular cross

section have been presented by Zhang et al. (2004).

The response bending of a beam with arbitrary cross

section on the surface stress was also treated (Li and

Peng 2008).

On the other hand, within the framework of surface

elasticity (Gurtin and Murdoch 1975), great progress

has been made in characterizing the mechanical

properties of micro/nano solids and structures with

consideration of the surface stress incorporating

surface elasticity (Dingreville et al. 2005). Wang

et al. (2011) commented relevant work before 2011

in a review article. The dependence of effective

bending stiffness of a nanobeam or nanoplate on the

surface stress and surface elasticity was expounded

through the atomic simulations (Miller and Shenoy

2000). Yi and Duan (2009) established a quantitative

relation between continuum-level descriptions of

surface stress and molecular-level descriptions via

the van der Waals and Coulomb interactions. Wang

et al. (2013) derived a relation between the surface

stress and stress intensity factors based on the classical

linear fracture mechanics. In particular, using the

surface stress together with surface elasticity, the static

bending of a nanowire has been dealt with based on the

Euler–Bernoulli theory (He and Lilley 2008b; Liu and

Rajapakse 2010) and the Timoshenko theory (He and

Lilley 2012; Li et al. 2014; Nazemnezhad and Hos-

seini-Hashemi 2015). For dynamic response within

the framework of the Euler–Bernoulli theory, trans-

verse vibration of nanomechanical cantilevers has

been investigated by Wang and Feng (2007) and He

and Lilley (2008a). When considering the shear

deformation and rotational moment of inertia of

cross-section, free vibration (Wang and Feng 2009;

Farshi et al. 2010) and forced vibration (Wu et al.

2016) of a small scale beam were analyzed. Using

various beam theories, governing equations were

established and buckling and vibration analyses of a

nanobeam-column with the surface effects were coped

with by Ansari et al. (2014). Adopting the nonlocal

beam theory incorporating the surface effect, some

analyses on free vibration and buckling of nanowires

have been made (Lee and Chang 2010; Elishakoff and

Soret 2013; Hosseini-Hashemi et al. 2015; Attia and

Mahmoud 2016). For fluid-conveying nanotubes with

consideration of surface effects, vibration character-

istic and dynamic response were formulated (Wang

2010; Zhang and Meguid 2016). Furthermore, The

effect of high-order surface stress on buckling and

vibration behavior of nanowires (Chiu and Chen

2012, 2013; Zhang et al. 2015). Chen and Chiu (2011)

also analyzed the effect of higher-order interface

stresses on mechanical behavior of two-dimensional

composites. A Timoshenko beam model incorporating

microstructure and surface energy effects has been set

forth by Gao (2015). As a mass sensor, Agwa and

Eltaher (2016) analyzed the effect of surface stress on

vibrational frequencies. A general model of nano-

cantilever switches was investigated with surface

effects included (Wang and Wang 2015). The effect

of magnetic field on vibration and buckling behavior

of a current-carrying nanowire was treated by Kiani

(2014, 2015). Some bending-based test methods for

elastic modulus of nanowires when surface effects are

taken into account have been suggested (Zheng et al.

2010; Qiao and Zheng 2013). Although a great amount

of work has been conducted, there is little information

on the study of dynamic stability of micro/nano beams

with consideration of the surface effects. Very

recently, Chen and Meguid (2015a, b, c, 2016) ana-

lyzed asymmetric bifurcation and snap-through
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buckling behavior of initially curved microbeams. Li

et al. (2016) studied flutter instability of a cantilever

with tip mass and examined the influence of surface

elasticity on flutter loads.

This paper aims at analyzing dynamic stability of

microcantilevers when taking the surface effects into

account. Under a generalized follower force at the free

end, flutter instability of a microcantilever on an

elastic foundation or embedded in a surrounding

matrix is investigated in detail. An exact characteristic

equation governing the force–frequency interaction

relation is derived. The influences of surface elasticity,

surface stress, surface mass, and the stiffness of elastic

foundation on dynamic stability are shown graphi-

cally. The boundary of stability, divergence and flutter

domains is presented.

2 Governing equations

Since the diameter of nanowires or microcantilevers

falls down to the order of nano meter or micro meter,

the surface effects are significant and cannot be simply

neglected. Due to this reason, we consider dynamic

stability of a microcantilever of length L subjected to a

subtangential follower force P with tangency coeffi-

cient b at the free end, as shown in Fig. 1. The

constitutive equations read

rij ¼ kBekkdij þ 2lBeij; ð1Þ

for the bulk material, and

rSab ¼ r0dab þ kS þ r0

� �
eSccdab þ 2 lS � r0

� �
eSab

þ r0u
S
a;b; ð2Þ

rSaz ¼ r0u
S
z;a; ð3Þ

for the surface material (Gurtin and Murdoch 1975),

where kB and lB are Lame constants, dij the Kronecker

delta, and rij the stress components, eij the strain

components, eij ¼ 0:5 ui;j þ uj;i
� �

, uj the displacement

components, r0 is the residual surface tension under

unconstrained conditions, which is equal to the

preexisting initial surface energy, kS and lS the

surface Lame constants independent of the residual

surface tension. In the above, a quantity with the

superscript S denotes the one for the surface material,

and a comma in subscript denotes differentiation with

respect to the coordinate following. For the present

study, it is easy to find that the constitutive equations

reduce to

r ¼ Ee; ð4Þ

for bulk material and

rs ¼ r0 þ Eses; ð5Þ

for surface material, where r eð Þ and rs esð Þ are axial

stress(strain) and axial surface stress (strain), E and Es

are moduli of bulk elasticity and surface elasticity,

respectively. Note that both the surface stress and

surface elastic modulus have the unit of Newton/

meter, not Newton/meter2. For flexural vibration or

stability problems of slender microcantilevers, the

Euler–Bernoulli beam hypothesis is suitable and

adopted in the present paper. Hence according to this

hypothesis, the axial strain can be expressed in terms

of the deflection w as follows

e ¼ �zj ¼ �z
o2w

ox2
; ð6Þ

where j denotes the curvature of the deformed

microcantilever, the x axis is orientated in the longi-

tudinal direction, and the z axis is normal to the x axis

upward.

The strain energy of a deformed microcantilever

can be computed by

U ¼ 1

2

Z L

0

Z

A

redAþ
Z

C

rsesds

� �
dx ¼ D

2

Z L

0

o2w

ox2

� �2

dx;

ð7Þ

with

D ¼ EI þ EsJ; I ¼
Z

A

z2dA; J ¼
Z

C

z2ds: ð8Þ

and the kinetic energy is calculated by

Fig. 1 Schematic of a microcantilever with consideration of

surface effects when subjected to a subtangential follower force

at the free end
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K ¼ 1

2

Z L

0

Z

A

q
ow

ot

� �2

dAþ
Z

C

qs
ow

ot

� �2

ds

" #

dx

¼ m

2

Z L

0

ow

ot

� �2

dx; ð9Þ

with

m ¼ qAþ qsC; ð10Þ

where A is the cross-sectional area, C the correspond-

ing boundary contour of the cross-section A.

In writing the above energy, we have neglected

shear deformation and rotatory inertia of cross-

section. In addition, when subjected to distributed

lateral loading q xð Þ over the whole microcantilever

0\ x\ L, and applied compressive subtangential

follower force P P [ 0ð Þ at the unsupported tip

together with the residual surface tension, the total

work done is

V ¼
Z L

0

q xð Þw xð Þdxþ 1

2
P� Hð Þ

Z L

0

ow

ox

� �2

dx;

ð11Þ

where the small axial shortening prior to buckling has

been ignored, and H stands for a resultant force due to

the residual surface tension, i.e.

H ¼
Z

C

r0ds: ð12Þ

In the above, small deformation and small rotation are

assumed. If taking the residual surface tension as a

constant, we find H ¼ 2 bþ hð Þr0 for rectangular

cross-section with breadth b and height h, and H ¼
pr0d circular cross-sections with diameter d. The

results of H have a slight difference from those in He

and Lilley (2008b).

We applies Hamilton’s principle and substitute (7),

(9) and (11) into the following equation

d
Z t2

t1

U � V � Kð Þdt þ
Z t2

t1

dV�dt ¼ 0; ð13Þ

where V� denotes the work at the free end done by the

vertical (i.e. nonconservative) component of the

subtangential follower force with the tangency coef-

ficient b,

dV� ¼ bP
ow

ox

����
x¼L

dwjx¼L; ð14Þ

where b is a tangency coefficient larger than or equal

to zero. After performing variational operation we get

the following governing partial differential equation

D
o4w

ox4
þ P� Hð Þ o

2w

ox2
þ m

o2w

ot2
¼ q xð Þ; ð15Þ

and proper boundary conditions. Note that in this

equation, the surface effects have been reflected

throughD, H, andm since D contains the contribution

of the surface elasticity, H describes the contribution

of the residual surface tension, and a part of m also

accounts for the influence of the surface mass. For

microcantilevers on an elastic foundation or embed-

ded in a surrounding elastic matrix, the lateral loading

q can be expressed in terms of �Yw, Y being the

stiffness of the elastic foundation. Here the simplest

Winkler foundation is used, although a general model

such as Winkler–Pasternak foundation can be simi-

larly solved without further difficulty.

For the problem in question, boundary conditions of

a microcantilever subjected to a subtangential fol-

lower force at the free end in an angle bow=ox (Fig. 1)

can be derived using Hamilton’s principle and read

w ¼ 0;
ow

ox
¼ 0; at x ¼ 0; ð16Þ

o2w

ox2
¼ 0; D

o3w

ox3
þ P 1 � bð Þ � H½ � ow

ox
¼ 0; at x ¼ L;

ð17Þ

It is noted that b ¼ 0 corresponds to the case of the

classical Euler–Bernoulli cantilever beam subjected to

a conservative tip force along the horizontal direction,

and b ¼ 1 corresponds to the case of the usual

follower force. The study on the case of b ¼ 0 (i.e.

Euler’s column with the surface effects) has been

reported in Wang and Feng (2007), while for other

cases of b [ 0, even for b ¼ 1 (i.e. Beck’s column

with the surface effects), little information is available.

It is worth pointing out that previous studies on

vibration and stability of microcantilevers the surface

effects do not contain surface mass, let along dynamic

stability of microcantilevers.

3 Characteristic equation

In order to analyze bending vibration and structural

stability of microcantilevers with the surface effects
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subjected to a subtangential follower force, we take

the deflection w ¼ W nð Þeixt=L in (15) where

i ¼
ffiffiffiffiffiffiffi
�1

p
, n ¼ x=L, W is the amplitude, and x is the

circular frequency. Thus, the governing Eq. (15)

becomes

WIV þ p� g
1 þ k

W 00 þ k � 1 þ lð ÞX2

1 þ k
W ¼ 0; ð18Þ

where we have defined the following dimensionless

quantities

p ¼ PL2

EI
; g ¼ HL2

EI
; X2 ¼ qAL4x2

EI
; ð19Þ

k ¼ EsJ

EI
; l ¼ qsC

qA
; k ¼ YL4

EI
; ð20Þ

and the prime denotes differentiation with respect to n.

Using these dimensionless quantities, the boundary

conditions (16) and (17) can be stated below

W 0ð Þ ¼ 0; W 0 0ð Þ ¼ 0; ð21Þ

W 00 1ð Þ ¼ 0; W 000 1ð Þ þ p 1 � bð Þ � g
1 þ k

W 0 1ð Þ ¼ 0:

ð22Þ

If expressing a solution to Eq. (18) in the

following form W nð Þ ¼ ecn, one easily finds that the

constant c has to satisfy the following algebraic

equation

c4 þ p� g
1 þ k

c2 þ k � 1 þ lð ÞX2

1 þ k
¼ 0: ð23Þ

Solving the above algebraic equation one gets two

pairs of distinct roots as �c1 and �ic2, where

c1 ¼


p� gð Þ2 þ 4 1 þ kð Þ 1 þ lð ÞX2 � k

� 	q
� p� gð Þ

2 1 þ kð Þ

vuut
;

ð24Þ

c2 ¼


p� gð Þ2 þ 4 1 þ kð Þ 1 þ lð ÞX2 � k

� 	q
þ p� gð Þ

2 1 þ kð Þ

vuut
:

ð25Þ

Then a general solution to Eq. (18) is obtained to be

W ¼ C1 cosh c1nð Þ þ C2 sinh c1nð Þ þ C3 cos c2nð Þ
þ C4 sin c2nð Þ;

ð26Þ

where Cj j ¼ 1; 2; 3; 4ð Þ are unknown constants which

do not vanish simultaneously.

Substituting (26) into the boundary conditions (21)

and (22), after some manipulations, leads to

C1 þ C3 ¼ 0; ð27Þ

C2c1 þ C4c2 ¼ 0; ð28Þ

c2
1 C1 cosh c1 þ C2 sinh c1ð Þ � c2

2 C3 cos c2 þ C4 sin c2ð Þ ¼ 0;

ð29Þ

c1 c2
2 �

pb
1 þ k

� �
C1 sinh c1 þ C2 cosh c1ð Þ

þ c2 c2
1 þ

pb
1 þ k

� �
C3 sin c2 � C4 cos c2ð Þ ¼ 0:

ð30Þ

To gain a nontrivial solution of the above system of

algebraic equations, the determinant of the coefficient

matrix must be null,

det

1 0 1 0

0 c1 0 c2

c2
1 cosh c1 c2

1 sinh c1 � c2
2 cos c2 � c2

2 sin c2

c1 c2
2 �

pb
1 þ k

� �
sinh c1 c1 c2

2 �
pb

1 þ k

� �
cosh c1 c2 c2

1 þ
pb

1 þ k

� �
sin c2 � c2 c2

1 þ
pb

1 þ k

� �
cos c2

2

66664

3

77775
¼ 0;

ð31Þ
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which can be further simplified as

1þ
2 1þkð Þ 1þlð ÞX2�k

� 	
þ p�gð Þ p�g�pbð Þ

2 1þkð Þ 1þlð ÞX2�k
� 	

þ p�gð Þpb
coshc1 cosc2

�
p�g�2pbð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkð Þ 1þlð ÞX2�k

� 	q

2 1þkð Þ 1þlð ÞX2�k
� 	

þ p�gð Þpb
sinhc1 sinc2 ¼0:

ð32Þ

In deriving the above equation, we have used the

following relations:

c2
1 þ c2

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� gð Þ2þ4 1 þ kð Þ 1 þ lð ÞX2 � k

� 	q

1 þ k
;

ð33Þ

c2
1 � c2

2 ¼ � p� g
1 þ k

; ð34Þ

c2
1c

2
2 ¼ 1 þ lð ÞX2 � k

1 þ k
: ð35Þ

Equation (32) is the characteristic equation we need to

seek, which governs dynamic stability of a microcan-

tilever on an elastic foundation or embedded in an

elastic matrix subjected to a subtangential follower

force at the free end. In particular, several special

cases are mentioned as follows. When taking p ¼ 0,

Eq. (32) gives the characteristic equation of free

vibration of a microcantilever on an elastic founda-

tion. When taking X ¼ 0 and b ¼ 0, Eq. (32) gives the

characteristic equation of buckling of a microcan-

tilever subjected to a compressive force p. If b ¼ 0,

Eq. (32) can be used to determine natural frequencies

or buckling load for a microcantilever subject to a

conservative force at the free end. In addition, if

b ¼ 1, Eq. (32) in fact extends the classical Beck’s

column.

As a check, if setting Es ¼ 0; qs ¼ 0 and r0 ¼ 0,

implying the surface effects disappear, we find

k ¼ l ¼ 0; g ¼ 0; c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4 X2 � k

� �q
� p

2

vuut
;

c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4 X2 � k

� �q
þ p

2

vuut
;

ð36Þ

and the above characteristic equation (32) reduces to

1 þ
2 X2 � k
� �

þ p2 1 � bð Þ
2 X2 � k
� �

þ p2b
cosh c1 cos c2

�
p X2 � k
� �

1 � 2bð Þ
2 X2 � k
� �

þ p2b
sinh c1 sin c2 ¼ 0:

ð37Þ

In the absence of surrounding matrix, i.e. k ¼ 0, the

above result is in exact agreement with that derived in

Zuo and Schreyer (1996). However, when considering

the surface effects, the dynamic stability has an

evident dependence on the surface elasticity, the

residual surface tension, and surface mass, which can

be seen from the characteristic equation (32).

4 Results and discussion

In this section, numerical calculations are carried out

to examine the influence of surface effects on the

dynamic stability of a microcantilever. For typical

cross-section, we have

C ¼ 2 bþ hð Þ; A ¼ bh; I ¼ 1

12
bh3; J ¼ 1

2
bh2 þ 1

6
h3;

ð38Þ

for rectangular cross-section with breadth b and height

h, and

C ¼ pd; A ¼ 1

4
pd2; I ¼ 1

64
pd4; J ¼ 1

8
pd3; ð39Þ

for circular cross-section with diameter d, respec-

tively. Thus we get

k ¼ 2Es

E

3

h
þ 1

b

� �
ðfor rec:Þ ¼ 8Es

Ed
ðfor cir:Þ ð40Þ

l ¼ 2qs

q
1

h
þ 1

b

� �
ðfor rec:Þ ¼ 4qs

qd
ðfor cir:Þ ð41Þ

Surface elasticity Es may be positive or negative,

depending on surface orientation, and its value covers

a large range, e.g. taking �1170, �950 N/m (Gavan

et al. 2009), �12:19, �10:655 N/m (Miller and

Shenoy 2000), 1.22, �1:39 N/m (Shenoy 2005).

Therefore, when diameter or height/breadth of cross-

section of a microcantilever falls to the nano-meter
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order, the influence of k should be taken into account

for usual bulk Young’s modulus of 100 GPa order. In

the following, we choose a material with properties

E ¼ 56:25 GPa, m ¼ 0:25, q ¼ 3000 kg/m3 Es ¼
19:73 KPa, ms ¼ 0:233, qs ¼ 0:0007 kg/m3, r0 ¼
110 N/m (Gurtin and Murdoch 1978). For such

materials, the study in Lu et al. (2006) indicates that

when a structure of thickness of micrometer order, the

surface effect is pronounced. Thus we choose a

microcantilever of diameter 8 lm and length 40 lm.

From such a circular microcantilever, we examine the

effect of these parameters on the force–frequency

interaction curves.

4.1 Effect of residual surface tension

First, let us consider the effect of residual surface

tension on the critical load for a microcantilever in a

free space ðk ¼ 0Þ under a subtangential follower

force. Figure 2a, b show the force–frequency interac-

tion diagram between the dimensionless force p and

dimensionless frequency X for a microcantilever

subjected to a subtangential follower force with

various tangency coefficients for g ¼ 0:391,

g ¼ 1:564, respectively, where k ¼ 0 and l ¼ 0 are

imposed. In Fig. 2a, b, solid lines stand for the case of

the presence of residual surface tension, while dashed

lines for the case without residual surface tension, i.e.

the classical case. Moreover, the curves marked with

b ¼ 0, corresponding to the case of a conservative

force, consist of two separate lines (modes 1 and 2),

and in this case, when p ¼ 0 two curves intersect the

X-axis at two distinct positions with and without the

surface effects, which are the first and second natural

frequencies, respectively. Without the surface effect,

we find the intersecting positions at the X-axis are

X ¼ 3:516 and 22.035, identical to the fundamental

and second natural frequencies of a cantilever

(Weaver et al. 1990). When the surface residual

tension is taken into account, the natural frequencies

become larger as if the cantilever is pulled tightly.

Similarly, when X ¼ 0 these two curves intersect

the p-axis at two positions, the lower one of which

corresponds to the buckling load and the greater one

corresponds to the second divergence force. In partic-

ular, the lower intersecting point at the p-axis of the

curve of b ¼ 0 gives the buckling load p ¼ 2:467 for

b ¼ 0, agreeing with the well-known buckling load

p2=4 of a cantilever (Simitses and Hodges 2006). With

the tangency coefficient b rising, the force–frequency

interaction curve of mode 1 changes to lie above that

of mode 1 for b ¼ 0, whereas that of mode 2 decreases

to lie below that of mode 2 for b ¼ 0. Both curves of

modes 1 and 2 tend to be closer and closer when b is

further raised. Finally, both curves coalesce to become

a constinuous curve. For example, for the classical

case, the force–frequency curves of modes 1 and 2

intersect at the p-axis at two distinct positions for

b\ 0:5, both of which decrease with X rising, meet at

the same position of the p-axis for b ¼ 0:5, and have

no intersecting position at the p-axis but coalesce to a

curve when b � 0:5. Moreover, for b [ 0:5, the

force–frequency interaction curve has a highest posi-

tion at a nonvanishing X value, which gives a flutter

load. As a result, for a subtangential follower force or

partially follower force with small tangency

(a)

(b)

Fig. 2 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever subjected to a subtangential follower force with

residual surface tension and without surface elasticity and

surface mass k ¼ 0; l ¼ 0ð Þ, a g ¼ 0:391, b g ¼ 1:564
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coefficients b\ 0:5, flutter instability does not take

place, and only divergence instability such as buckling

occurs. For a subtangential follower force or partially

follower force with large tangency coefficients

b � 0:5, flutter instability takes place, but buckling

does not occur. This is possible due to greater

contribution of the vertical component of the follower

force than the horizontal component. When the

residual surface tension is taken into account, by

comparing Fig. 2a with 2b, we find that residual

surface tension has a remarkable effect on the force–

frequency interaction curves, in particular for those

with b close to 0.5. From Fig. 2b, the value of b across

which the force–frequency curves of mode 1 and 2

coalesce at the p-axis becomes slightly lower. Since

Fig. 2a, b correspond to L ¼ 5d and L ¼ 10d, for the

same residual surface tension, the larger the slender-

ness ratio, the more remarkable the surface effects. In

other words, for a longer elastic microcantilever when

surface residual tension is taken into account, the

dimensionless buckling load, flutter load, and funda-

mental frequency all become larger. It is noted that the

force–frequency interaction curves for b [ 1 are also

possible in practice and they are not displayed in

Fig. 2.

As we know, the divergence-type instability refers

to a structure transiting from stability to instability at

zero frequency, whereas the flutter instability refers to

a structure passing from stability to instability through

a dynamic process at a nonvanishing frequency. The

values of force–frequency interaction curves when

X ¼ 0 are called divergence forces and depend on b.

The divergence force of the first-order mode for a

conservative force b ¼ 0 corresponds to the well-

known Euler buckling loading. Clearly, when b\ 0:5

without residual surface tension, the divergence force

takes two different values, while when b [ 0:5,

b ¼ 1, say, the force–frequency interaction curve has

no intersecting point with the vertical axis. In this case,

flutter instability occurs and the highest position of

each force–frequency curve gives the corresponding

critical flutter load. When considering surface stress,

the force–frequency interaction curve has a similar

trend. For a conservative force with b ¼ 0, from

Fig. 2a, b we see that the effect is stronger for the first-

order mode than for the second-order or higher modes.

It is interesting to note that all solid curves or dashed

lines have common intersecting points at the fre-

quency axis for different b values. This is easily

understood since these positions correspond to the

natural frequencies in the absence of axial loading.

When residual surface tension is considered, the

natural frequencies have a bit difference. Besides the

above-mentioned common intersecting points at the

frequency axis, there are still a notable characteristic.

That is, all solid curves intersect at a position about

X; pð Þ ¼ 7:1; 16:4ð Þ in Fig. 2a and X; pð Þ ¼
7:1; 17:6ð Þ in Fig. 2b, likely all dashed curves also

intersect at a position X; pð Þ ¼ 7:05; 16:1ð Þ. Obvi-

ously, these intersecting points are independent of b,

but depend on g values. In fact, this intersecting point

corresponds to the lowest one among flutter loads for a

generalized follower force with arbitrary tangency

coefficient, as explained in Li et al. (2016). Since the

highest position having nonvanishing frequency value

X of the force–frequency interaction curve implies

occurrence of flutter instability, which gives flutter

load, from Fig. 2a, b, the flutter instability is affected

by the residual surface tension. For clarity, Fig. 3

show the stability boundary map against the tangency

coefficient b for a microcantilever subjected to a

subtangential follower force.

4.2 Effect of surface elasticity

Now we examine the effect of surface elasticity on

dynamic stability of a microcantilever subjected to a

subtangential follower force. In this case, we take

k ¼ 0:351, l ¼ 0 and g ¼ 0, i.e. the residual surface

tension and surface mass are neglected. Fig. 4 give a

comparison of force–frequency interaction diagram

Fig. 3 Comparison of the stability boundary map showing the

critical load as a function of the tangency coefficient b for a

microcantilever subjected to a subtangential follower force with

residual surface tension and without surface elasticity and

surface mass k ¼ 0; l ¼ 0ð Þ
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when considering or neglecting the surface elasticity.

Obviously, the change in the surface elasticity gives

rise to a pronounced response of the force–frequency

interaction curves. A positive surface elastic modulus

increases the critical buckling or flutter load since the

force–frequency interaction curve is always above the

corresponding classical interaction curve, as seen in

Fig. 4. For this case, we find that coalescence tangency

coefficient does not change and is still b ¼ 0:5;

however, the critical buckling load has an apparent

change. Fig. 4 only gives the numerical results of a

positive surface elasticity. The trend for a negative

surface elasticity is completely opposite to that

observed in Fig. 4 and is not presented.

Also, Fig. 5 depicts the critical loading p as a

function of the tangency coefficient b for a microcan-

tilever with surface elasticity subjected to a subtan-

gential follower force without residual surface tension

and surface mass. In Fig. 5, solid line corresponds to

the case of consideration of surface elasticity, and

dashed line to the case without surface elasticity.

Clearly, not only buckling load but also flutter load

have an increase as compared to the classical

counterparts.

4.3 Effect of surface mass

Here we examine the effect of surface mass on

dynamic stability of a microcantilever subjected to a

subtangential follower force. In this case, we take

l ¼ 0:117, k ¼ 0 and g ¼ 0, i.e. the residual surface

tension and surface elasticity are neglected. Fig. 6

displays the force–frequency interaction diagram

when considering or neglecting the surface mass,

corresponding to solid lines or dashed lines, respec-

tively. In this case, it is found that solid and dashed

lines with the same tangency coefficient have a

common intersecting position with the vertical p-axis,

which implies that surface mass does not change the

Euler buckling loading or divergency load. Further-

more, when the frequency becomes large, there is an

apparent difference between solid and dashed lines for

the same b values. However, solid and dashed force–

frequency interaction curves with the same b values

have the identical maximum value. This is to say that

Fig. 4 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever subjected to a subtangential follower force with

surface elasticity and without residual surface tension and

surface mass k ¼ 0:351; g ¼ 0;l ¼ 0ð Þ

Fig. 5 Comparison of the stability boundary map showing the

critical load as a function of the tangency coefficient b for a

microcantilever subjected to a subtangential follower force with

surface elasticity and without residual surface tension and

surface mass k ¼ 0:351; g ¼ 0;l ¼ 0ð Þ

Fig. 6 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever subjected to a subtangential follower force with

surface mass l ¼ 0:117 and without surface elasticity and

residual surface tension k ¼ 0; g ¼ 0ð Þ
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the stability boundaries are not sensitive to the surface

mass, although the force–frequency interaction is

affected. This is easily viewed from Fig. 7, which

shows the complete overlap of two stability bound-

aries. In Fig. 7, dashed and dotted lines standing for

the case of surface mass included and excluded,

respectively completely coincide.

4.4 Effect of elastic foundation

In the above discussion, a microcantilever is placed in

a free space. Sometimes, microcantilevers are placed

sufficiently close to or rest on an elastic foundation,

and the interaction between the microcantilever and

the elastic foundation needs considering. In order to

assess the influence of elastic foundation, we choose

the same material with k ¼ 0:351; l ¼ 0:117; g ¼

Fig. 7 Comparison of the stability boundary map showing the

critical load as a function of the tangency coefficient b for a

microcantilever subjected to a subtangential follower force with

surface mass l ¼ 0:117 and without surface elasticity and

residual surface tension k ¼ 0; g ¼ 0ð Þ

(a)

(b)

Fig. 8 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever on an elastic foundation or embedded in an

elastic medium under a conservative force ðb ¼ 0Þ at the free

end, a the classical case, b the surface effect included

k ¼ 0:351;l ¼ 0:117; g ¼ 0:391ð Þ

(a)

(b)

Fig. 9 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever on an elastic foundation or embedded in an

elastic medium under a subtangential follower force ðb ¼ 0:5Þ
at the free end, a the classical case, b the surface effect included

k ¼ 0:351;l ¼ 0:117; g ¼ 0:391ð Þ
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0:391. For convenience, it is assumed that the

dimensionless stiffness k satisfies k\ p� gð Þ2=

4 1 þ kð Þ þ 1 þ lð ÞX2, which means that applied

loading or vibration frequency is large enough to that

the cantilever vibrates or even loss of stability takes

place. Under such a circumstance, we give a compar-

ison of force–frequency interaction diagram between

the dimensionless force p and dimensionless fre-

quency X for a microcantilever on an elastic founda-

tion when subjected to a force at the free end with and

without the surface effect in Figs. 8, 9 and 10. Note

that b ¼ 0 corresponds to the case of a conservative

force, while b ¼ 1 to the case of a follower force. For

other b values, we only depict force–frequency

interaction diagram for b ¼ 0:5. From Fig. 8a, b,

one can find that when considering the surface effect,

the stiffness of the elastic foundation clearly affects

the critical divergency force. Moreover, the influence

on the divergency force is greater than that on the

natural frequencies. It is worth noting that the force–

frequency interaction curves corresponding to k ¼ 5

and 10 for mode 1 do not meet the p-axis, while that to

k ¼ 0 meets the p-axis. The reason is that such k values

violate the above-mentioned assumption. In other

words, a necessary condition of harmonic vibration of

a microcantilever is that f [ 0 in (24), where f ¼
p� gð Þ2 þ 4 1 þ kð Þ 1 þ lð ÞX2 � k

� 	
: Figure 11a, b

depict the positive part of
ffiffiffi
f

p
f [ 0ð Þ as a function

of X and p in the case of k ¼ 10 without and with the

surface effect. Obviously, when p and X become very

low simultaneously, a positive k value leads to f\ 0,

which implies no harmonic vibration. It is interesting

to point out that the range of the domain satisfying

f [ 0 is neither related end constraint nor applied

load along with tangency coefficient, it only depends

on the microcantilever itself as well as the elastic

foundation. This is a necessary condition for harmonic

(a)

(b)

Fig. 10 Force–frequency interaction diagram between the

dimensionless force p and dimensionless frequency X for a

microcantilever on an elastic foundation or embedded in an

elastic medium under a follower force ðb ¼ 1Þ at the free end,

a the classical case, b the surface effect included

k ¼ 0:351;l ¼ 0:117; g ¼ 0:391ð Þ

Fig. 11 The range of the parameter
ffiffiffi
f

p
f [ 0ð Þ against X and

p for a microcantilever on elastic foundation, a the classical case

without the surface effect, b the surface effect is considered

k ¼ 0:351;l ¼ 0:117; g ¼ 0:391ð Þ
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vibrating occurring. As a result, for k [ 0, p and X
must satisfy some conditions such that a microcan-

tilever to vibrate. For clarity, Fig. 12 shows the

boundary of reasonable p and X values for two

different values of k. The domain below solid lines for

the surface effect included and dashed lines for the

classical case with the surface effect indicates a range

of X; pð Þ in which no harmonic vibration occurs. This

also implies that for a microcantilever in a free space,

there exist a buckling load, i.e. the first-order diver-

gency force. For a microcantilever on an elastic

foundation with larger value of k, the force to lead to

loss of stability is raised to be larger than 22 in Fig. 8a

and p [ 30 in Fig. 8b, which in fact nearly corre-

sponds to the second-order divergency force of k ¼ 0.

Although the elastic foundation changes the diver-

gency force, but does not affect the flutter load, which

can be seen from Figs. 9 and 10 since all curves

intersect at the highest position. Therefore, an elastic

foundation affects the divergency force, but does not

affect flutter load.

5 Conclusions

In this paper, dynamic stability of microcantilevers

subjected to a generalized follower force was dealt

with when the surface effects were taken into account.

By solving the corresponding boundary value prob-

lem, an exact characteristic equation was derived. The

force–frequency interaction was presented graphi-

cally for various interesting cases. Divergence and

flutter loads were given for any tangency coefficient.

Buckling load for a conservative compressive force

was recovered from vanishing tangency coefficient.

Some conclusions are drawn as follows:

• Flutter instability occurs for some subtangential

follower forces with tangency coefficients larger

than a certain value.

• Positive surface elastic modulus increases the

divergence or flutter load, and negative one

decreases the divergence or flutter load.

• Residual surface tension gives rise to the increase

of divergence or flutter load. The influence is more

noticeable for slender microcantilevers.

• Surface mass does not change the divergence or

flutter load, but affect the natural frequencies of

microcantilevers.

• An elastic foundation affects the divergency force,

but does not affect flutter load.
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