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Abstract This paper investigates the dynamic

behavior of a micro-resonator under various levels of

Alternating Current (AC) voltage, without a biased

Direct Current voltage. The governing equations are

developed in the framework of Euler–Bernoulli beam

theory, accounting for the effects of damping, fringing

field, and mid-plane stretching using von Karman

nonlinear strain. The steady-state frequency response

of the micro-resonator is derived from the governing

equations by the method of multiple scales. The

transient response is also derived by the long-time

integration. The results of our work reveal that the

applied AC voltage and the mid-plane stretching

(quantified by a stretching parameter) determine the

characteristic feature of the dynamic behavior of the

micro-resonator, such as the dynamic pull-in, the

frequency response of linear or hardening character-

istic. A design diagram in terms of AC voltage

amplitude and stretching parameter is developed to

show the domains of the different dynamic behavior

characteristics. Our results also reveal the significant

effects of damping and boundary conditions on the

dynamic behavior and the design diagram of the

micro-resonator.

Keywords Micro-resonator � Frequency response �
Dynamic pull-in � Design diagram � Mid-plane

stretching � Boundary conditions

1 Introduction

The Micro/Nano-Electro-Mechanical Systems (MEMS/

NEMS) have various unique advantages such as small

size, high precision and low power consumption. Among

MEMS/NEMS, the micro/nanobeam system is one of

the most studied in the literature, and the applications

such as switches and non-volatile memories have been

found in these systems (Brown 1998; Charlot et al. 2008;

Intaraprasonk and Fan 2011; Jang et al. 2008; Rooden-

burg et al. 2009; Rueckes et al. 2000). The micro/-

nanobeams can also be driven to vibration by an

Alternating Current (AC) voltage, and the obtained

micro/nano-resonators can be used as mass sensors,

temperature sensors, transmitters and receivers (Burg

et al. 2007; Chaste et al. 2012; Chiu et al. 2008; Eltaher

et al. 2016; Hopcroft et al. 2007; Kivi et al. 2015; Kwon

et al. 2008; Mohanty 2005; Peng et al. 2006; Southworth

et al. 2010; Wang and Arash 2014; Yang et al. 2006).

Theoretical and experimental studies on the pri-

mary resonance frequency of the micro/nano-res-

onator have been conducted in the literature, and the

evolutions of resonance frequency with the applied

AC voltage and a biased DC (direct current) voltage

have been largely reported (Jia et al. 2012; Jonsson
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et al. 2004; Kuang and Chen 2004; Tilmans and

Legtenberg 1994). The dynamic behavior of the

micro/nano-resonator have also been reported, and

the frequency response curves of linear, hardening,

and softening characteristics have been observed in

the experiments (Almog et al. 2007; Alsaleem et al.

2009; Badzey et al. 2004; Carr et al. 1999; Evoy et al.

1999; Mestrom et al. 2008; Ruzziconi et al. 2013;

Tilmans and Legtenberg 1994; Zook et al. 1992) as

well as predicted from the theoretical investigations

(Caruntu and Knecht 2011; Caruntu et al. 2013;

Caruntu and Martinez 2014; Farokhi and Ghayesh

2015a, b; Gui et al. 1998; Kacem et al. 2011; Kim and

Lee 2013; Ouakad and Younis 2010; Rhoads et al.

2006; Ruzziconi et al. 2013).

Careful literature review indicates that most of

the work is concerned with the micro/nano-res-

onator biased by a DC voltage. Caruntu and Knecht

(2011), Caruntu et al. (2013), and Caruntu and

Martinez (2014) studied theoretically a non-biased

cantilever-type micro-resonator, and the dynamic

pull-in near the primary resonance regime was

found. Moreover, most work is conducted at a

certain level of the applied voltages, and one

characteristic feature of the dynamic behavior is

observed or predicted. Studies concerned with

characterizing the dynamic behavior of the micro/-

nano-resonator at different levels of the applied

voltages and determining the parameters which

govern the dynamic behavior characteristics are

limited.

In this paper, we extend the earlier work to study the

dynamic behavior of the non-biased micro-resonator

at different levels of AC voltage. The remaining parts

of the paper are organized as follows. Section 2 is

devoted to the beam model formulation. In Sect. 3, the

methods of multiple scales and long-time integration

are presented to obtain respectively the steady-state

frequency response and the transient response of the

microbeam from the beam model. Various effects on

the dynamic behavior of the microbeam are investi-

gated in Sect. 4, including the effects of mid-plane

stretching, fringing field, damping, and boundary

conditions. A design diagram in terms of AC voltage

amplitude and mid-plane stretching parameter is also

developed, indicating the domains of different char-

acteristic features of the dynamic behavior. Finally, a

general conclusion is given in Sect. 5.

2 Model formulation

The situation envisaged is that of an electrically actuated

rectangular microbeam of lengthL, width b and thickness

h, as depicted in Fig. 1. Suppose that the displacements

ux, uy and uz of any point in the beam only depend on x-

and z-coordinate, anduy is equal to 0, i.e., no displacement

along y-coordinate. Further suppose that the studied

microbeam is thin (h � L), then the Euler–Bernoulli

beam theory can be applied as:

uxðx; z; tÞ ¼ uðx; tÞ � z
ow

ox
ðx; tÞ ð1aÞ

uzðx; z; tÞ ¼ wðx; tÞ ð1bÞ

where t is time, u and w are respectively the axial

(along x-coordinate) and transverse (along z) displace-

ments of a point on the mid-plane of the beam. The von

Karman nonlinear strain is used to account for the

geometric nonlinearity due to mid-plane stretching.

Therefore, the only nonzero strain component from

Eq. (1) is (Reddy 2011):

exx ¼
oux

ox
þ 1

2

ouz

ox

� �2

¼ ou

ox
� z

o2w

ox2
þ 1

2

ow

ox

� �2

ð2Þ

Considering Eq. (2), we calculate the variation dUelas

of the elastic strain energy as:

dUelas ¼
Z L

0

Z
S

r : de
� �

ds dx

¼ �
Z L

0

oNðx; tÞ
ox

du dx

�
Z L

0

 
o2Mðx; tÞ

ox2
þ o

ox
Nðx; tÞ ow

ox

� �!
dwdx

þ Nðx; tÞdujLx¼0þ
oMðx; tÞ

ox
þ Nðx; tÞ ow

ox

� �

dw

�����
L

x¼0

�Mðx; tÞ odw
ox

����
L

x¼0

ð3Þ

where $Sds is the integral over the cross section, i.e.,

the y–z plane in Fig. 1; the axial force N and the

bending moment M are defined as follows:

N ¼
Z
S

rxxds ð4aÞ

482 X. Chen, S. A. Meguid

123



M ¼
Z
S

zrxxds ð4bÞ

The variation dEk of the kinetic energy is calculated

with the aid of Eq. (1) as:

dEk ¼
Z L

0

Z
S

q
oux

ot

odux
ot

þ ouz

ot

oduz
ot

� �
ds dx

¼
Z L

0

qS
ou

ot

odu
ot

þ ow

ot

odw
ot

� �
þqI

o2w

oxot

o2dw
oxot

� �� �
dx

ð5Þ

where q is the mass density, S (=bh) is the cross-sectional

area, and I (=bh3/12) is the second moment of area.

The variation dWext of the work done by the

external forces is:

dWext ¼
Z L

0

fdamp þ felec
� �

dwdx ð6Þ

where fdamp and felec are respectively the viscous

damping force and the electrostatic force per unit

length. We can estimate fdamp as:

fdamp ¼ �cd
ow

ot
ð7Þ

with cd being the damping coefficient per unit length.

Considering a small gap (� beam length) between the

beam and the electrode, we can regard the beam and

the electrode as a parallel-plate capacitor. To further

consider the fringing fields at the edges of the

microbeam, Palmer’s formula (Palmer 1937) is used,

and the electrostatic force felec is calculated as

(Caruntu and Knecht 2011; Gupta 1997):

felec ¼
1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �
ð8Þ

where e0 (=8:8542 � 10�12 F � m�1) is the vacuum

permittivity, b is the beam width, g0 is the initial gap

between the beam and the rigid electrode, as shown in

Fig. 1, and VAC is the amplitude of the applied AC

voltage with the angular velocity x. It is noted that

Palmer’s formula is only valid for wide microbeams,

i.e., b[ 5 h and b[ 10g0 (Caruntu and Knecht 2011).

When the beam is narrow, more complicated formulae

such as (Batra et al. 2006; van der Meijs and Fokkema

1984) should be used.

Introducing Eqs. (3), (5) and (6) into the following

Hamilton’s principleZ t1

0

dEk þ dWext � dUelasð Þdt ¼ 0 ð9Þ

and integrating the result by parts with respect to t and

x, we arrive at:Z t1

0

Z L

0

oN

ox
�qS

o2u

ot2

� �
dudxdt

þ
Z t1

0

Z L

0

o2M

ox2
þ o

ox
N
ow

ox

� �
þfdampþfelec

�

�qS
o2w

ot2
þqI

o4w

ox2ot2

�
dwdxdtþ

Z t1

0

� �Ndu� oM

ox
þN

ow

ox
þqI

o3w

oxot2

� �
dwM

odw
ox

� �L

x¼0

dt

þ
Z L

0

qS
ou

ot
duþqS

ow

ot
dwþqI

o2w

oxot

odw
ox

� �t1

t¼0

dx¼0

ð10Þ

The following governing equations can be obtained

from Eqs. (7), (8) and (10):

du :
oN

ox
� qS

o2u

ot2
¼ 0 ð11aÞ

dw :
o2M

ox2
þ o

ox
N
ow

ox

� �
� qS

o2w

ot2
þ qI

o4w

ox2ot2

� cd
ow

ot
þ 1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �

¼ 0 ð11bÞ

Since the studied microbeam is thin (thickness �
length), the axial displacement u and the beam

Fig. 1 Clamped–clamped

microbeam actuated by

alternating current voltage.

The arrow indicates the

direction of the induced

distributed electrostatic

force
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curvature o2w
ox2 are quite small and negligible with

respect to the transverse displacement w. As a result,

we neglect the axial inertia term qS o2u
ot2

and the

rotational inertia term qI o4w
ox2ot2

in Eq. (11), and obtain:

du :
oN

ox
¼ 0 ð12aÞ

dw :
o2M

ox2
þ o

ox
N
ow

ox

� �
� qS

o2w

ot2
� cd

ow

ot

þ 1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �
¼ 0

ð12bÞ

with Eqs. (12a), (12b) can be reduced to:

o2M

ox2
þ N

o2w

ox2
� qS

o2w

ot2
� cd

ow

ot

þ 1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �

¼ 0 ð13Þ

Suppose that the beam material is elastically

isotropic with Young’s modulus E and Poisson’s ratio

m. Then the 1D constitutive relation becomes:

rxx ¼ E�exx ð14Þ

where E* is the effective Young’s modulus. We take

E* = E/(1 - m2) for the wide microbeam studied here.

When the beam is narrow, E* = E. Introducing

Eqs. (2) and (14) into Eq. (4), we have:

N ¼ E�S
ou

ox
þ 1

2

ow

ox

� �2
 !

ð15aÞ

M ¼ �E�I
o2w

ox2
ð15bÞ

Equation (12a) shows that the axial force N is constant

along x-coordinate. Using Eq. (15a), we estimate N as

the following average value:

N ¼ E�S

2L

Z L

0

ow

ox

� �2

dx

 !
ð16Þ

To obtain Eq. (16), we have used the boundary

conditions of clamped–clamped beam, i.e.,

u(0) = u(L) = 0. Introducing Eqs. (15b) and (16)

into Eq. (13), we obtain:

qS
o2w

ot2
þ cd

ow

ot
þ E�I

o4w

ox4

� E�S

2L

Z L

0

ow

ox

� �2

dx

 !
o2w

ox2

¼ 1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �
ð17Þ

Considering the dimensionless quantities in Table 1, we

rewrite Eq. (17) in the following dimensionless form:

o2w

ot2
þ cd

ow

ot
þ o4w

ox4
� a

Z 1

0

ow

ox

� �2

dx

 !
o2w

ox2

¼ VAC cosðxtÞ
� �2 1

1 � wð Þ2
þ b

1 � wð Þ

 !
ð18Þ

In Eq. (18), the 4th term on the left-hand-side with

a stretching parameter a represents the effect of

mid-plane stretching, which stiffens the microbeam.

The dimensionless boundary conditions of the

clamped–clamped microbeam are:

dw : wð0; tÞ ¼ 0; wð1; tÞ ¼ 0 ð19aÞ

odw
ox

:
ow

ox
ð0; tÞ ¼ 0;

ow

ox
ð1; tÞ ¼ 0 ð19bÞ

3 Solution methodology

3.1 Method of multiple scales

The micro-resonator is usually vibrating at low amplitude

with small damping effect. In this case, the method of

multiple scales can be used (Caruntu and Knecht 2011;

Ouakad and Younis 2010). Considering low vibration

amplitude, small damping, and weak nonlinearity, we

expand the electrostatic force around w ¼ 0 in Eq. (18),

and further set the electrostatic force, damping and

mid-plane stretching terms to a slow scale by multi-

plying them by a small bookkeeping parameter n:

o2w

ot
2
þ ncd

ow

ot
þ o4w

ox4
� na

Z 1

0

ow

ox

� �2

dx

 !
o2w

ox2

¼ n VAC cosðxtÞ
� �2

1 þ bþ 2 þ bð Þwþ 3 þ bð Þw2 þ 4 þ bð Þw3
� �

ð20Þ

Introducing the first-order expansion of the dimen-

sionless deflection w as:
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w ¼ w0ðx; T0; T1Þ þ nw1ðx; T0; T1Þ ð21Þ

with T0 (=t) being the fast time scale and T1 (=nt) being

the slow time scale, we derive the following time

derivatives from Eq. (21):

ow

ot
¼ ow0

oT0

þ ow0

oT1

þ ow1

oT0

� �
nþ ow1

oT1

n2 ð22aÞ

o2w

ot2
¼ o2w0

oT2
0

þ 2
o2w0

oT0oT1

þ o2w1

oT2
0

� �
n

þ o2w0

oT2
1

þ 2
o2w1

oT0oT1

� �
n2 þ o2w1

oT2
1

n3 ð22bÞ

By introducing Eqs. (21) and (22) into Eqs. (19)

and (20), and equating the like powers of n, we obtain:

Order n 0:

o2w0

oT2
0

þ o4w0

ox4
¼ 0 ð23aÞ

w0ð0; T0; T1Þ ¼ 0; w0ð1; T0; T1Þ ¼ 0;
ow0

ox
ð0; T0; T1Þ

¼ 0;
ow0

ox
ð1; T0; T1Þ ¼ 0 ð23bÞ

Order n 1:

o2w1

oT2
0

þ o4w1

ox4

¼ �2
o2w0

oT0oT1

� cd
ow0

oT0

þ a
Z 1

0

ow0

ox

� �2

dx

 !
o2w0

ox2

þ VAC cosðxT0Þ
� �2

1 þ bþ 2 þ bð Þw0 þ 3 þ bð Þw2
0 þ 4 þ bð Þw3

0

� �
ð24aÞ

w1ð0; T0; T1Þ ¼ 0; w1ð1; T0; T1Þ ¼ 0;
ow1

ox
ð0; T0; T1Þ

¼ 0;
ow1

ox
ð1; T0; T1Þ ¼ 0 ð24bÞ

Suppose that the solution to Eq. (23) is:

w0 ¼ /jðxÞ AðT1ÞeixjT0 þ A�ðT1Þe�ixjT0
� �

ð25Þ

where A is a coefficient depending on the slow time

scale T1 and A* is its complex conjugate; /j (j = 1, 2,

…, n) is the jth linear undamped vibration mode of the

clamped–clamped beam, being:

whereCj is a constant satisfying max
x2½0;1�

/jðxÞ
�� �� ¼ 1, and kj

is a frequency parameter satisfying cosh (kj) cos (kj)
= 1. kj is related to the resonance angular frequencyxj

by: xj = kj
2. The micro-resonator usually works near

the primary resonance regime, so we only consider the

Table 1 Dimensionless

quantities adopted in the

study

Quantity Expression Meaning

cd cdL
2=

ffiffiffiffiffiffiffiffiffiffiffiffi
E�IqS

p
Dimensionless damping coefficient

t t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qSL4= E�Ið Þ

p
Dimensionless time

VAC VAC=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�h3g3

0= 6e0L4ð Þ
p

Dimensionless AC voltage amplitude

w w/g0 Dimensionless deflection

x x/L Normalized coordinate

a 6(g0/h)2 Stretching parameter

b 0.65(g0/b) Fringing field parameter

x x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�I= qSL4ð Þ

p
Dimensionless angular frequency

/jðxÞ ¼ Cj coshðkjxÞ � cosðkjxÞ �
sinhðkjÞ þ sinðkjÞ
coshðkjÞ � cosðkjÞ

sinhðkjxÞ � sinðkjxÞ
� �� �

ð26Þ
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first vibration mode here, i.e., j = 1 in Eq. (25). The

square of the applied voltage can be expressed as:

VAC cosðxT0Þ
� �2¼ 1

2
VAC

2 þ 1

2
VAC

2
cosð2xT0Þ

ð27Þ

Equation (27) shows that the microbeam vibrates at a

frequency of 2x. To indicate the nearness of 2x to the

primary resonance frequency x1, a detuning param-

eter d is introduced as:

2x ¼ x1 þ nd ð28Þ

with Eqs. (28), (27) can be rewritten as:

VACcosðxT0Þ
� �2¼1

2
VAC

2

þ1

4
VAC

2
eiðx1T0þT1dÞþe�iðx1T0þT1dÞ
� �

ð29Þ

By introducing Eqs. (25) and (29) into the right-hand-

side of Eq. (24a), we have:

o2w1

oT2
0

þ o4w1

ox4
¼c0 þ c1e

ix1T0 þ c�1e
�ix1T0

� �

þ c2e
ið2x1T0Þ þ c�2e

�ið2x1T0Þ
� �

þ c3e
ið3x1T0Þ þ c�3e

�ið3x1T0Þ
� �

þ c4e
ið4x1T0Þ þ c�4e

�ið4x1T0Þ
� �

ð30Þ

with c0 * c4 being coefficients and c�1 � c�4 being the

complex conjugates of c1 * c4. c1 is calculated as:

c1 ¼�2ix1/1

dA

dT1

� icdx1/1A

þ3a/00
1

Z 1

0

/00
1

� �2
dx

� �
A2A�þ1

2
2þbð ÞVAC

2
/1A

þ3

2
4þbð ÞVAC

2
/3

1A
2A�þ1

4
1þbð ÞVAC

2
eiT1d

þ1

2
3þbð ÞVAC

2
/2

1AA
�eiT1d

þ1

4
3þbð ÞVAC

2
/2

1A
2e�iT1d ð31Þ

where a superimposed apostrophe denotes a derivative

with respect to the normalized coordinate x. The

solvability condition states that the right-hand-side of

Eq. (30) must be orthogonal to any solution of

Eq. (23), which is expressed in Eq. (25) with j = 1

(Caruntu and Knecht 2011). Then we have:

c1/1 ¼ 0 ð32Þ

Introducing Eq. (31) into Eq. (32) and integrating the

result from x ¼ 0 to 1, we obtain:

� 2ix1m2

dA

dT1

� icdx1m2Aþ 3as1A
2A�

þ 1

2
2þbð ÞVAC

2
m2Aþ 3

2
4þbð ÞVAC

2
m4A

2A�

þ 1

4
1þbð ÞVAC

2
m1e

iT1dþ 1

2
3þbð ÞVAC

2
m3AA

�eiT1d

þ 1

4
3þbð ÞVAC

2
m3A

2e�iT1d ¼ 0 ð33Þ

where the parameters are given below:

m1 ¼
Z 1

0

/1dx; m2 ¼
Z 1

0

/2
1dx; m3

¼
Z 1

0

/3
1dx; m4 ¼

Z 1

0

/4
1dx

s1 ¼
Z 1

0

/0
1

� �2
dx

� � Z 1

0

/1/
00
1dx

� �
ð34Þ

Express A(T1) in the following polar form:

AðT1Þ ¼
1

2
aðT1ÞeihðT1Þ ð35Þ

It can be derived from Eqs. (25) and (35) that a is the

vibration amplitude. The time derivative can be

obtained from Eq. (35) as:

dA

dT1

¼ 1

2

da

dT1

eih þ a
dh
dT1

ieih
� �

ð36Þ

Introducing Eqs. (35) and (36) into Eq. (33), separat-

ing the real and imaginary parts, and after several

calculations we obtain:

da

dT1

¼� cd

2
aþ m1

4m2x1

1þbð Þþ m3

16m2x1

3þbð Þa2

� �

�VAC
2

sinðT1d� hÞ ð37aÞ

a
dh
dT1

¼ � 1

4x1

2 þ bð ÞVAC
2
a� 3as1

8m2x1

a3

� 3m4

16m2x1

4 þ bð ÞVAC
2
a3

� m1

4m2x1

1 þ bð Þ þ 3m3

16m2x1

3 þ bð Þa2

� �

� VAC
2

cosðT1d� hÞ
ð37bÞ

With the phase lag c:
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c ¼ T1d� h ð38Þ

Equation (37) can be rewritten as:

da

dT1

¼�cd

2
a

þ m1

4m2x1

1þbð Þþ m3

16m2x1

3þbð Þa2

� �
VAC

2
sinc

ð39aÞ

a
dc
dT1

¼ adþ 1

4x1

2 þ bð ÞVAC
2
aþ 3as1

8m2x1

a3

þ 3m4

16m2x1

4 þ bð ÞVAC
2
a3

þ m1

4m2x1

1 þ bð Þ þ 3m3

16m2x1

3 þ bð Þa2

� �

� VAC
2

cos c ð39bÞ

When the response of the microbeam becomes steady,

we have da
dT1

¼ 0 and dc
dT1

¼ 0. In this case, Eq. (39) can

be reduced to:

m1

4m2x1

1 þ bð Þ þ m3

16m2x1

3 þ bð Þa2

� �
VAC

2
sin

c ¼ cd

2
a ð40aÞ

m1

4m2x1

1 þ bð Þ þ 3m3

16m2x1

3 þ bð Þa2

� �

VAC
2

cos c ¼ �ad� 1

4x1

2 þ bð ÞVAC
2
a

� 3as1

8m2x1

a3 � 3m4

16m2x1

4 þ bð ÞVAC
2
a3

ð40bÞ

Combining Eqs. (40a) and (40b), we have:

b2
1b

2
3a

10 þ 2b2
1b3b4 þ 2b1b2b

2
3 � 9b4

1b
2
6

� �
a8

þ b2
1b

2
4 þ 4b1b2b3b4 þ b2

2b
2
3 þ 9b2

1b
2
5 � 24b3

1b2b
2
6

� �
a6

þ 2b1b2b
2
4 þ 2b2

2b3b4 þ 6b1b2b
2
5 � 22b2

1b
2
2b

2
6

� �
a4

þ b2
2b

2
4 þ b2

2b
2
5 � 8b1b

3
2b

2
6

� �
a2 � b4

2b
2
6 ¼ 0

ð41aÞ

c ¼ arccos � b4aþ b3a
3ð Þ

b6 b2 þ 3b1a2ð Þ

� �
ð41bÞ

where the coefficients b1 * b6 are:

b1 ¼ m3

16m2x1

3 þ bð Þ; b2 ¼ m1

4m2x1

1 þ bð Þ;

b3 ¼ 3as1

8m2x1

þ 3m4

16m2x1

4 þ bð ÞVAC
2

b4 ¼ dþ 1

4x1

2 þ bð ÞVAC
2
; b5 ¼ cd

2
; b6 ¼ VAC

2

ð42Þ

To study the damping effect, a quality factor Q is

commonly used, which is related to the dimensionless

damping coefficient cd by (Nayfeh et al. 2007):

cd ¼
x1

Q
ð43Þ

By solving Eq. (41a) at different levels of the detuning

parameter d, we can obtain the steady-state frequency

response of the microbeam, i.e., the evolution of the

maximum deflection (normalized as the dimensionless

vibration amplitude a) with the applied angular

frequency (normalized as x, calculated from

Eq. (28) with n = 1).

To analyze the stability of each point (d0, a0) on the

frequency response curve, we take the following

procedures: by introducing d = d0 and a = a0 into

Eq. (41b) and solving the resulting equation, we

obtain the phase lag c0; further introducing c0 and a0

into the following Jacobian matrix Ja of Eq. (39):

Ja ¼

o da=dT1ð Þ
oa

o da=dT1ð Þ
oc

o dc=dT1ð Þ
oa

o dc=dT1ð Þ
oc

2
664

3
775

¼
�b5 þ 2b1b6a sin c b2 þ b1a

2ð Þb6 cos c

2b3a�
b2

a2
� 3b1

� �
b6 cos c � b2

a
þ 3b1a

� �
b6 sin c

2
4

3
5

ð44Þ

we calculate the eigenvalues of Ja. If the real parts of

all the eigenvalues are negative, the point (d0, a0) is

stable; otherwise, it is unstable.

3.2 Long-time integration

To validate the steady-state frequency response

obtained from the analytical model given in

Eq. (41a), we solve the governing equation Eq. (18)

with the boundary conditions of Eq. (19) to obtain the

time evolution of the beam deflection at each

frequency. To do so, the Galerkin decomposition of
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the dimensionless deflection w is used (Jia et al. 2012;

Kim and Lee 2013; Ouakad and Younis 2010; Rhoads

et al. 2006; Ruzziconi et al. 2013):

w ¼
Xn
j¼1

qjðtÞ/jðxÞ ð45Þ

where /j (j = 1, 2, …, n) is the jth linear undamped

vibration mode of the straight clamped–clamped

beam, which has already been given in Eq. (26), and

qj is its generalized coordinate. Multiplying Eq. (18)

by 1 � wð Þ2
, introducing Eq. (45), and further multi-

plying the result by /i (i = 1, 2, …, n) and integrating

from x ¼ 0 to 1, we obtain the following n-degree-of-

freedom reduced-order model:

Z 1

0

/2
i dx

� �
€qi � 2

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
qk€qj

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
qlqk€qj

þ cd

Z 1

0

/2
i dx

� �
_qi � 2cd

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
qk _qj

þ cd
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
qlqk _qj

þ k4
i

Z 1

0

/2
i dx

� �
qi � 2

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
k4
j qkqj

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
k4
j qlqkqj

� a
Xn
j¼1

Xn
k¼1

Z 1

0

/0
k/

0
jdx

� �
qkqj

 ! Xn
j¼1

Z 1

0

/00
j /i dx

� �
qj

 

�2
Xn
j¼1

Xn
k¼1

Z 1

0

/k/
00
j /i dx

� �
qkqj

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/
00
j /i dx

� �
qlqkqj

!

¼ VAC cosðxtÞ
� �2

1 þ bð Þ
Z 1

0

/i dx� b
Z 1

0

/2
i dx

� �
qi

� �

for i ¼ 1; 2; . . .; n

ð46Þ

with an over dot denoting a derivative with respect to

the normalized time t. Introducing the following

variables:

qi0 ¼ qi ð47aÞ

qi1 ¼ _qi ð47bÞ

where i = 1, 2, …, n, we have:

_qi0 ¼ qi1 ð48aÞ

_qi1 ¼ €qi ð48bÞ

Further introducing Eqs. (47) and (48b) into Eq. (46),

we obtain:

Z 1

0

/2
i dx

� �
_qi1 � 2

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
qk0 _qj1

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
ql0qk0 _qj1

þ cd

Z 1

0

/2
i dx

� �
qi1 � 2cd

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
qk0qj1

þ cd
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
ql0qk0qj1

þ k4
i

Z 1

0

/2
i dx

� �
qi0 � 2

Xn
j¼1

Xn
k¼1

Z 1

0

/k/j/i dx

� �
k4
j qk0qj0

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/j/i dx

� �
k4
j ql0qk0qj0

� a
Xn
j¼1

Xn
k¼1

Z 1

0

/0
k/

0
jdx

� �
qk0qj0

 ! Xn
j¼1

Z 1

0

/00
j /i dx

� �
qj0

 

�2
Xn
j¼1

Xn
k¼1

Z 1

0

/k/
00
j /i dx

� �
qk0qj0

þ
Xn
j¼1

Xn
k¼1

Xn
l¼1

Z 1

0

/l/k/
00
j /i dx

� �
ql0qk0qj0

!

¼ VAC cosðxtÞ
� �2

1 þ bð Þ
Z 1

0

/i dx� b
Z 1

0

/2
i dx

� �
qi0

� �

for i ¼ 1; 2; . . .; n

ð49Þ

Equations (48a) and (49) are 2n first-order differential

equations. With the initial deflection and velocity

equal to zero (qi0 = qi1 = 0 at t ¼ 0), we solve

Eqs. (48a) and (49) using the commercial software

Matlab. The function ode45 based on an explicit

Runge–Kutta method is adopted. To obtain a steady-

state solution, we solve the equations over a long

period of time, i.e., t ¼ 0 * 2000, so-called the long-

time integration. It is shown in the literature that the

reduced-order model using five modes can accurately

describe the dynamic behavior of microbeams (Car-

untu and Martinez 2014; Ouakad and Younis 2010).

Therefore, we take the first five vibration modes in this

study, i.e., taking n = 5 in Eq. (45).
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4 Results and discussions

4.1 Effects of applied AC voltage and mid-plane

stretching

Let us consider an electrically actuated microbeam

system described in Table 2. Two levels of initial gap

between the microbeam and the rigid electrode are

taken into account in this table, i.e., large gap of 5 lm

and small one of 0.5 lm. With the aid of Tables 1 and

2, we obtain the following dimensionless quantities:

VAC ¼ 0� 4 for both large and small gaps, stretching

parameter a = 1.5 for large gap and 0.015 for small

gap. Introducing the values of VAC and a into Eq. (41a)

and taking the fringing field parameter b = 0 (no

fringing field effect) and quality factor Q = 1000

(using Eq. (43) to obtain the dimensionless damping

coefficient cd), we solve the resulting equation at

different levels of the detuning parameter d, and obtain

the frequency response of the microbeam. The typical

results are shown in Figs. 2 and 3.

Figure 2 is for the large initial gap of 5 lm,

which corresponds to a large stretching parameter

of 1.5. It is seen from the figure that the dynamic

behavior of the microbeam depends on the normal-

ized AC voltage amplitude VAC . When VAC is small

(e.g., 0.2 in Fig. 2a), the linear frequency response is

observed with the maximum deflection changing

gradually with the frequency of the applied AC

voltage. When VAC becomes larger (0.6 in Fig. 2b),

the microbeam exhibits the frequency response of

hardening characteristic. With the increase of the

applied frequency, the maximum deflection increases

gradually until reaching the first saddle-node bifurca-

tion point SN1, where the deflection drops (SN1 ? �

in Fig. 2b). During the decrease of the applied

frequency, the maximum deflection increases gradu-

ally until the second saddle-node bifurcation point

SN2, where it jumps (SN2 ? `). In the remainder of

this paper, such a characteristic frequency response

associated with the hardening effect on the microbeam

will be named ‘‘hardening frequency response’’. When

VAC is large (e.g., 2 in Fig. 2c), near the primary

resonance regime, a transient dimensionless deflection

reaching 1 is predicted by the long-time integration.

This indicates that the beam deflection equals to the

initial gap between the beam and the electrode, so the

microbeam has collapsed onto the rigid electrode.

Such behavior is called the dynamic pull-in instability.

Reducing the initial gap between the microbeam

and the rigid electrode can reduce the actuation

voltage for the microbeam. Figure 3 shows the case

of a small initial gap of 0.5 lm, which corresponds to a

small stretching parameter of 0.015. Different from

the case of a large stretching parameter in Fig. 2, the

hardening frequency response is not observed in

Fig. 3. The microbeam exhibits the linear frequency

response at small levels of VAC , as shown in Figs. 3a,

b; while at large levels of VAC , it exhibits the dynamic

pull-in behavior, as shown in Fig. 3c.

It is noted for Figs. 2 and 3 that the results from the

analytical model given in Eq. (41a) agree well with

those from the numerical simulations using long-time

integration, except when there is dynamic pull-in

behavior. The analytical model cannot capture the

dynamic pull-in (Caruntu and Knecht 2011).

Figures 2 and 3 show that the dynamic behavior

of the microbeam highly depends on the normal-

ized AC voltage amplitude VAC and the stretching

parameter a. To define the levels of VAC and a at which

Table 2 Values of the dimensional quantities for an electrically actuated microbeam system

Quantity Meaning Value

E Young’s modulus 160 GPa for silicon, given in Zhang et al. (2007)

m Poisson’s ratio 0.27 for silicon, given in Zhang et al. (2007)

g0 Initial gap between microbeam and rigid electrode Large gap: 5 lm

Small gap: 0.5 lm

h Beam thickness 10 lm

L Beam length 500 lm

VAC Amplitude of alternating current voltage Large gap: 0–320 V

Small gap: 0–10 V
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the microbeam exhibits the characteristic dynamic

behavior, we solve Eq. (41a) at different levels of VAC

(0–4) and a (0.0006–6) and mark the characteristic

feature of the obtained frequency response in a

diagram in terms of VAC and a, as shown in Fig. 4.

The dynamic pull-in behavior is also marked in

the figure by the predictions from the long-time

integration.

Fig. 3 Frequency response at different levels of AC voltage amplitude: a VAC ¼ 0:4, b VAC ¼ 0:6 and c VAC ¼ 0:7. Stretching

parameter a = 0.015. Solid and dashed lines are respectively the stable and unstable responses

Fig. 2 Frequency response at different levels of AC voltage amplitude: a VAC ¼ 0:2, b VAC ¼ 0:6 and c VAC ¼ 2. Stretching parameter

a = 1.5. SN1 and SN2 are saddle-node bifurcation points. Solid and dashed lines are respectively the stable and unstable responses
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Figure 4 shows that when VAC is low, the

microbeam exhibits the linear frequency response.

At low levels of VAC , the beam deflection is small, and

as a result, the mid-plane stretching is insignificant.

With the increase of VAC, the beam deflection

increases, and the mid-plane stretching (leading to a

hardening effect on the microbeam) becomes more

significant. Consequently, the microbeam exhibits a

hardening frequency response. At high levels of VAC,

the beam deflection becomes large. So the beam can be

close to the rigid electrode. In this case, it may collapse

onto the electrode, i.e., dynamic pull-in. On the other

hand, high actuating voltage leads to a large electro-

static force, which results in a softening effect on the

microbeam (Jia et al. 2012). So the microbeam may

also exhibit a frequency response of softening char-

acteristic. However, it is seen from Fig. 4 that the

softening frequency response is suppressed and the

dynamic pull-in is dominant. This is different from the

case of the microbeam biased by a DC voltage. In the

case of a DC-biased microbeam, the softening fre-

quency response can be observed at high levels of DC

voltage (Mestrom et al. 2008).

The inset of Fig. 4 also shows that the stretching

parameter a should be large enough for the existence of

the hardening frequency response. In fact, a quantifies

the effect of mid-plane stretching; i.e., by increasing a,

the mid-plane stretching becomes more significant,

which leads to the stiffening of the microbeam. The

expression in Table 1 indicates that in order to control

a, we can adjust the beam thickness h and/or the initial

gap g0 between the beam and the electrode.

4.2 Effects of fringing field and damping

The fringing field effect due to the finite size of the

beam width b is described by a fringing field parameter

b, whose expression can be found from Table 1 as

0.65g0/b with g0 being the initial gap between the

beam and the rigid electrode. For the proper applica-

tion of Palmer’s formula to estimate the electrostatic

force, the microbeam system must satisfy the inequal-

ity b[ 10g0 (Caruntu and Knecht 2011). In this case,

Fig. 4 Design diagram identifying the dynamic behavior of a

clamped–clamped microbeam under alternating current voltage.

The inset shows the minimum allowable stretching parameter

ac = 0.03 for the existence of hardening frequency response

Fig. 5 Frequency response

at different levels of fringing

field parameter b: a for

stretching parameter

a = 1.5 and b for

a = 0.015. In both figures,

VAC ¼ 0:6, quality factor

Q = 1000. Solid and dashed

lines are respectively the

stable and

unstable responses

Dynamic behavior of micro-resonator under alternating current voltage 491

123



b varies between 0 and 0.065. Using Eqs. (41a) and

(43) with Tables 1 and 2, we obtain the frequency

responses at different levels of b (0–0.065), as

depicted in Fig. 5. It is seen from the figure that the

effect of b at the studied level is negligible.

The frequency responses of the microbeam at

different levels of quality factor Q are shown in Fig. 6.

To obtain this figure, Tables 1 and 2 and Eqs. (41a)

and (43) are used. Figure 6a indicates that increasing

Q strengthens the hardening effect. Q is inversely

proportional to the dimensionless damping coefficient

cd (see Eq. (43)). So increasingQ reduces the damping

effect (cd decreases), which results in an increase of

the beam deflection. Therefore, the hardening effect

due to mid-plane stretching becomes more significant.

Figure 6b further indicates that Q influences the

minimum allowable stretching parameter for the

existence of hardening frequency response: when

Q = 1000, the stretching parameter a should be larger

than 0.03 to observe the hardening frequency response

(refer to Fig. 4); however, when Q = 3000, hardening

frequency response is observed at a = 0.015 (\0.03)

in Fig. 6b. Using the analytical model (Eq. (41a) and

the long-time integration presented in Sect. 3.2, we

obtain the minimum allowable stretching parameter ac
at different levels of quality factor Q, as shown in

Fig. 7. Increasing Q strengthens the hardening effect,

so ac decreases with the increase of Q.

4.3 Effects of boundary conditions

The microbeam investigated in the previous Sects. 4.1

and 4.2 is clamped at both ends. The beam can also be

subjected to other boundary conditions such as simply-

supported and cantilever, as shown in Fig. 8. This

subsection is devoted to studying the effects of

boundary conditions on the dynamic behavior of the

microbeam.

Figure 8a shows a simply-supported microbeam.

Its axial displacements at the two beam ends are the

same as those of the clamped–clamped beam, i.e.,

Fig. 6 Frequency response

at different levels of quality

factor Q: a for stretching

parameter a = 1.5 and b for

a = 0.015. In both figures,

VAC ¼ 0:4, fringing field

parameter b = 0 (no

fringing field effect). Solid

and dashed lines are

respectively the stable and

unstable responses

Fig. 7 Minimum allowable stretching parameter ac for the

existence of hardening frequency response: effect of quality

factor Q
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u(0) = u(L) = 0. Therefore, the axial force expressed

in Eq. (16) for the clamped–clamped beam can also be

used for the simply-supported beam. As a result, the

same governing equation Eq. (18) can be used. By

taking the first linear undamped vibration mode /1 of

simply-supported beam:

/1ðxÞ ¼ sinðpxÞ ð50Þ

with the frequency parameter k1 = p, and following

the similar procedure to the one adopted in Sect. 3.1,

we obtain the same expression as Eq. (41a) to study

the frequency response of the simply-supported beam.

A cantilever-type microbeam anchored at one end

is shown in Fig. 8b. The axial force at the free end of

the beam is zero, i.e.,N(L, t) = 0. Then from Eq. (12a)

we have:

Nðx; tÞ ¼ 0 ð51Þ

With Eqs. (51) and (15b), Eq. (13) can be reduced to:

qS
o2w

ot2
þ cd

ow

ot
þ E�I

o4w

ox4

¼ 1

2

e0b VAC cosðxtÞð Þ2

ðg0 � wÞ2
1 þ 0:65

g0 � w

b

� �
ð52Þ

Introducing the quantities in Table 1, we rewrite

Eq. (52) in the following dimensionless form:

o2w

ot
2
þ cd

ow

ot
þ o4w

ox4

¼ VAC cosðxtÞ
� �2 1

1 � wð Þ2
þ b

1 � wð Þ

 ! ð53Þ

The mid-plane stretching term does not exist in

Eq. (53) because there is no axial force in the

cantilever (refer to Eq. (51)). Therefore, the can-

tilever-type microbeam cannot exhibit the hardening

frequency response. Taking the first linear undamped

vibration mode /1 of cantilever:

with C1 satisfying max
x2½0;1�

/1ðxÞj j ¼ 1 and k1 satisfying

cosh (k1) cos (k1) = -1, and following the proce-

dures in Sect. 3.1, we obtain a similar expression to

/1ðxÞ ¼ C1 coshðk1xÞ � cosðk1xÞ �
sinhðk1Þ � sinðk1Þ
coshðk1Þ þ cosðk1Þ

sinhðk1xÞ � sinðk1xÞð Þ
� �

ð54Þ

Fig. 8 Microbeam under different boundary conditions: a simply-supported and b cantilever

Fig. 9 Frequency response of cantilever-type microbeam at

different levels of AC voltage amplitude
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Eq. (41a). The only difference is that the coefficient b3

in Eq. (41a) is modified to be 3m4

8m2x1
4 þ bð ÞVAC

2
.

Using Tables 1 and 2 and Eqs. (41a) and (43), and

taking the fringing field parameter b = 0, quality

factor Q = 1000, we obtain the frequency responses

of the microbeam under different boundary condi-

tions. The results of the cantilever-type microbeam are

depicted in Fig. 9. As predicted, the cantilever cannot

exhibit the hardening frequency response. At low

levels of VAC, the linear frequency response is

observed (see VAC ¼ 0:05 in Fig. 9); while at high

levels (e.g., VAC ¼ 0:11), the dynamic pull-in near the

primary resonance frequency is predicted by the long-

time integration.

The frequency responses of simply-supported and

clamped–clamped microbeams are compared in

Fig. 10. It is found from Fig. 10a that the hardening

effect in the simply-supported beam is more signifi-

cant than that in the clamped–clamped beam. More-

over, Fig. 10b shows that compared with the clamped–

Fig. 10 Frequency

response of simply-

supported and clamped–

clamped microbeams: a for

a ¼ 1:5; VAC ¼ 0:2 and b

for a ¼ 0:015; VAC ¼ 0:3.

Solid and dashed lines are

respectively the stable and

unstable responses
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clamped beam, the simply-supported one is prone to

pull-in. The reduced rotation at the two ends of the

clamped–clamped microbeam makes it more difficult

to bend, and as a result, the dynamic pull-in is

hindered. The beam deflection is also reduced, which

weakens the hardening effect due to mid-plane

stretching.

Using Tables 1 and 2, Eq. (41a), and the long-time

integration in Sect. 3.2, we draw the design diagram

for the simply-supported microbeam in Fig. 11. The

figure is analogous to Fig. 4 of the clamped–clamped

microbeam. However, smaller voltage input VAC is

required to induce the dynamic pull-in and the

hardening frequency response in the simply-supported

beam. Moreover, the insets in Figs. 4 and 11 show that

the simply-supported beam has a smaller minimum

allowable stretching parameter ac for the existence of

hardening frequency response. The stiffer fixation as

observed in the clamped–clamped fixation versus the

simply-supported case weakens the hardening effect

and makes it more difficult to actuate the beam.

Consequently, higher ac (stronger hardening effect)

and higher VAC (larger electrostatic force) are needed

for the clamped–clamped beam.

5 Conclusions

The dynamic behavior of a microbeam under vari-

ous levels of AC (alternating current) voltage is

investigated. The beam model is developed using

Euler–Bernoulli beam theory. The mid-plane stretch-

ing, fringing field and damping effects are all taken

into account in the model formulation. The transient

response and the steady-state frequency response of

the microbeam under different boundary conditions

are derived from the beam model respectively by the

method of multiple scales and the long-time

integration.

Our results reveal that unlike the microbeam biased

by a DC voltage, the non-biased microbeam does not

exhibit the softening frequency response. Our results

also reveal that the characteristic feature of the

dynamic behavior of the non-biased microbeam highly

depends on the applied AC voltage and the mid-plane

stretching parameter a, which can be altered by the

beam thickness and the initial gap between the beam

and the rigid electrode. A diagram in terms of a and AC

voltage amplitude is developed to show the domains of

characteristic dynamic behaviors. The diagram pro-

vides some basic guidelines for designing the micro-

resonators. Furthermore, our results real that damping

and boundary conditions have significant effects on the

dynamic behavior of the microbeam, while the effect

of fringing field is negligible.
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