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Abstract Piezoelectric materials are extensively

applied for vibrational energy harvesting especially

in micro-scale devices where other energy conversion

mechanisms such as electromagnetic and electrostatic

methods encounter fabrication limitations. A can-

tilevered piezoelectric bimorph beam with an attached

proof (tip) mass for the sake of resonance frequency

reduction is the most common structure in vibrational

harvesters. According to the amplitude and frequency

of applied excitations and physical parameters of the

harvester, the system may be pushed into a nonlinear

regime which arises from material or geometric

nonlinearities. In this study nonlinear dynamics of a

piezoelectric bimorph harvester implementing consti-

tutive relations of nonlinear piezoelectricity together

with nonlinear curvature and shortening effect rela-

tions, is investigated. To achieve this goal first of all a

comprehensive fully-coupled electromechanical non-

linear model is presented through a variational

approach. The governing nonlinear partial differential

equations of the proposed model are order reduced and

solved by means of the perturbation method of

multiple scales. Results are presented for a PZT/

Silicon/PZT laminated beam as a case study. Findings

indicate that material nonlinearities of the PZT layer

has the dominant effect leading to softening behavior

of the frequency response. At the primary resonance,

different frequency responses of the extracted power

can be distinguished according to the excitation

amplitude, which is due to harmonic generation as a

result of piezoelectric nonlinearity. The extracted

power is analytically computed and validated with a

good agreement by a numerical solution.

Keywords Micro power generation � Piezoelectric
materials � Nonlinear piezoelectricity � Large
amplitude vibrations � Coupled electromechanical

model

1 Introduction

Recent progresses in two tightly interconnected fields

of engineering including microelectronics and micro-

electromechanical systems (MEMS) technologies

have provided the possibility of fabricating various

sensors and actuators along with a widespread variety
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of integrated circuitry such as processors and signal

conditioning circuits with vastly reduced size and very

low amounts of power consumption. These advances

have led to the ability of design and fabrication of new

low power consuming devices with applications to

industrial, medical and civil engineering and have

proposed the idea of environmental energy harvesting

to provide their required energy. Energy harvesting

micro power generators can be employed as an

efficient alternative for conventional heavy batteries

with limited service lives and will be very beneficial in

powering inaccessible remote electronics including a

medical apparatus implanted in a human body for

diagnostic or therapeutic purposes (Miao et al. 2006;

He et al. 2009), a remote sensor node of a wireless

sensor network where large number of the nodes

makes battery replacement or delivering energy

through cables impossible (Elfrink et al. 2010; Yu

et al. 2014), or a mobile device such as an active radio

frequency identification system (Hande et al. 2009;

Kaya and Koser 2007).

Considering two factors of availability and effi-

ciency, the kinetic energy stored in mechanical

vibrations has shown to be a promising candidate for

energy harvesting through different potential sources

of environmental energy such as solar, thermal and

electromagnetic radiation energies (Roundy et al.

2004). Three transduction mechanisms can be

exploited to convert vibration energy to electrical

energy including piezoelectric (Liu et al. 2008; Chung

and Lee 2015), electromagnetic (Wang et al. 2009;

Williams et al. 2001) and electrostatic (Mitcheson

et al. 2004; Sheu et al. 2011) techniques among which

piezoelectric transducers have shown to have the most

practical energy storage density (Roundy et al. 2005).

In addition to energy density, some deficiencies of the

latter two methods such as complicated micro-fabri-

cation processes and low levels of generated output

voltages of electromagnetic mechanism as well as

separate voltage sources requirement and low quality

factors of electrostatic technique, have caused the

increasing application of piezoelectric materials espe-

cially in MEMS-based harvesters (Sue and Tsai 2012).

Piezoelectric harvesters generally consist of a

cantilevered laminated beam in a bimorph configura-

tion with two layers of piezoelectric material which

are poled along the thickness and electroded at both

sides. A proof (tip) mass is attached to the free end of

the beam for the sake of resonance frequency

reduction to push the natural frequency of the system

to the range of environmental vibrations frequencies.

This design has main advantages such as low

resonance frequency, uncomplicated fabrication pro-

cess and high sensitivity which is the ability to create

large strains in the piezoelectric material through low

acceleration excitations. This cantilever type genera-

tor made from a piezoelectric bimorph with two PZT

layers attached to the upper and bottom surfaces of a

supporting beam, has been well-developed in both

micro and macro scale devices (Roundy and Wright

2004; Benasciutti et al. 2010; Lee et al. 2010).

Exploiting nonlinearities as a tool which has the

ability to extend the coupling between the response

of the harvester and the excitations to a wider range

of frequencies and slightly suppress the main

challenge of linear harvesters namely narrow oper-

ational bandwidths, have shown to be beneficent and

is in the center of focus of many researchers in the

field of energy harvesting. Mono and bi-stable non-

linear harvesters under various types of excitations

including single fixed-frequency harmonic or ran-

dom vibrations have been investigated by the

researchers (Masana and Daqaq 2011; Daqaq

2010; Panyam and Daqaq 2016; Ferrari et al.

2010). In most of these investigations the nonlin-

earity is induced through added mechanisms such as

placement of magnets (Cottone et al. 2009), pendu-

lum (Jia et al. 2014) and etc.

There are several publications investigating the

behavior of cantilevered piezoelectric harvesters

which implement coupled or uncoupled electrome-

chanical models where many of them contain linear

equations. Vibrations of a linear MEMS-based har-

vester using a single mode assumption for the beam

vibrations was studied by Lu et al., and expressions for

output power, voltage, current and conversion effi-

ciency of the harvester were derived (Lu et al. 2004).

To increase the accuracy of the model, Jiang et al.

(2005) derived a set of mode shapes for a piezoelectric

bimorph with an attached tip mass and utilized them to

analyze the vibratory behavior of the harvester. Erturk

and Inman performed a detailed study on the can-

tilevered piezoelectric harvesters using the Euler–

Bernoulli beam theory (Erturk and Inman 2008).

Assuming resistive external load, they extracted the

coupled governing electrical and mechanical equa-

tions and solved them implementing the mode sum-

mation method. At the next effort Erturk employed
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two other prevalent theories namely Rayleigh and

Timoshenko in addition to Euler–Bernoulli theory

(Erturk 2012). The axial displacements of the beam

elements were considered in the model and employing

assumed-mode method, the governing equations were

first order-reduced and then analytically solved.

Andosca et al. brought into account the effect of other

layers in the laminated microbeam including conduct-

ing electrodes, using a multimorph beam model

(Andosca et al. 2012). Employing a linear damping

coefficient representing both dissipated mechanical

and harvested electrical energies, governing equations

were derived and then solved using a single-mode

assumption. Nonlinear vibrations of a micro-scale

piezoelectric-driven unimorph beam in sensor appli-

cations was studied by Mahmoodi et al. (2008a).

Assuming a specified voltage to be applied to the

piezoelectric layer, they derived a single nonlinear

equation governing the lateral deflection of the beam

and presented a numerical solution. Inextensibility

condition was considered in large amplitude bending

of the beam which has limitations in unimorph

piezoelectric beams exhibiting axial deformation due

to induced forces in the piezoelectric layer. Daqaq

et al. (2009) presented a lumped parameter nonlinear

model describing the first mode dynamics of a

cantilever-type harvester. They employed their model

to study parametrically excited vibrations of can-

tilevered harvesters.

Some researchers havemade efforts on enhancement

of output power through optimization of geometric

parameters of the bimorph beam. Paquin and St-Amant

(2010) improved the performance of a piezoelectric

energy harvester using a variable thickness beam. The

main idea of their workwas to employ a tapered beam in

order to have a more uniform stress distribution across

the piezoelectric material and consequently increase the

stored energy and harvesting performance. Shindo and

Narita (2014) proposed a new harvester made of an

S-shaped wavy beam. They showed that both numerical

calculations implementing 3D finite element method

and experimental observations prove that coupled

bending/torsion of this proposed harvester yields to

smaller maximum stress at the clamped end of the beam

for the same output voltage and therefore can enhance

the value of extractable power.

Piezoelectric ceramics as a specific type of elec-

troelastic materials exhibit nonlinear behavior at

relatively large stress and electric fields and their

linear response which is represented by standard

piezoelectric constitutive equations, is generally con-

fined to small electromechanical fields. This nonlinear

phenomena is more evident in ferroelectric materials

due to their intrinsically nonlinear polarization mech-

anisms namely domain wall motion and domain

switching (Damjanovic 1998; Hall 2001; Yang

2005). Nonlinear behavior of piezoelectric laminated

beams due to material nonlinearities of the piezoelec-

tric layer is investigated in actuator (Guyomar et al.

1997) and sensor (Mahmoodi et al. 2008b) applica-

tions. Experimental studies by Stanton et al. (2010)

showed that a geometrically linear bimorph harvester

can exhibit nonlinearity as a result of nonlinear

piezoelectricity. They assumed the vibration ampli-

tude to be small and neglecting geometrical nonlin-

earities presented a single mode model of the system

and comparing to experimental results found an

optimal set of values for the nonlinear coefficients of

the piezoelectric material.

In this paper, nonlinear behavior of a piezoelectric

harvester composed of a cantilevered bimorph beam is

investigated. A Fully-coupled electromechanical non-

linear model of the harvester is extracted through a

comprehensive variational approach taking into

account nonlinearities due to both piezoelectric mate-

rial and beam geometry. For excitations in the

neighborhood of first mode resonance frequency the

governing equations are order-reduced and solved

implementing the perturbation method of multiple

scales. The system response and harvested power are

analyzed in the primary resonance of the system and

extracted results are validated using a numerical

solution.

2 Mathematical modelling

Figure 1 shows schematic of a typical micro harvester

consisting of a cantilevered beam of length L, width

b and thickness hB covered with two surface bounded

layers of piezoelectric material of thickness hP. l1 and

l2 represent the starting and ending edges of the

deposited piezoelectric layers. The proof mass M is

attached to the free end of the beam in order to

decrease the natural frequency of the system. qB, qP
and EB are mass densities of the base and piezoelectric

materials and effective Young’s modulus of the base

material, respectively. Base vibration is represented
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by d(t) which denotes the displacement of the clamped

end in y direction. According to the displacement of

the clamped end of the beam, the xyz coordinates

system connected to the support base is a non-inertial

reference frame and therefore the effect of displace-

ment can be taken into account by a fictitious force

proportional to the acceleration €d tð Þ.
As shown in Fig. 2 energy extraction is performed

by placement of two electrodes which are very thin

layers of conductive material on the both sides of each

piezoelectric layer. The effect of these electrodes

stiffness is negligible on the mechanical properties of

the system. The electrodes are connected to an

external load which is supposed to be a pure resistance

R substituted for input impedance of the harvesting

circuit, in this study.

Figure 3 depicts an arbitrary element of the beam

neutral axis before and after deflection. According to

this figure, angle h which shows the slope of the beam
with respect to undeformed position is derived as:

tan h ¼ v0

1þ u0
ð1Þ

Also the neutral axis elongation can be expressed

by the following relation:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u0ð Þ2þ v02
q

� 1 ð2Þ

According to Euler–Bernoulli beam theory which

supposes that all planes which are initially perpendic-

ular to neutral axis remain plane and perpendicular to

neutral axis after deformation, the only nonzero

component of the strain is:

S1 ¼ e� yh0 ð3Þ

The inextensibility condition as a result of no

external longitudinal force application to the beam,

demands no relative elongation of the neutral axis.

Therefore, equating neutral axis stretching to zero in

Eq. (2) and using a Taylor series expansion, yields in:

u0 ¼ � 1

2
v02 þ O e4

� �

ð4Þ

where lateral displacement v is assumed to be O(e).
Integrating the above relation considering the bound-

ary condition for axial displacement results in:

Fig. 1 Schematic view of a

piezoelectric bimorph

harvester

Fig. 2 Electrodes connections

Fig. 3 An element of the neutral axis before and after

deflection
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u ¼ � 1

2

Z

x

0

v02dx ð5Þ

Upon expanding Eq. (1) in a Taylor series and

keeping terms up to third order of epsilon while using

Eq. (4), one obtains:

h ¼ v0 þ 1

6
v03 þ O e5

� �

ð6Þ

The kinetic energy of the beam and attached mass

can be written as:

T ¼ 1

2

Z

L

0

mþMd x� Lð Þð Þ

� � 1

2

Z

x

0

v02dx

0

@

1

A

�0

@

1

A

2

þ _v2

0

@

1

Adx

ð7Þ

The mass per unit length of the beam is:

m ¼ b qBhB þ 2qPhPP xð Þð Þ ð8Þ

where P(x) is the rectangular function:

P xð Þ ¼
0 x\l1
1 l1\x\l2
0 x[ l2

8

<

:

ð9Þ

Total free energy of a nonlinear electroelastic

material which is the summation of mechanical and

electrical energies stored per unit mass of the

electroelastic body, for the case of axial strains can

be written as (Yang 2005):

w Si;Ej

� �

¼ 1

2
c
2ij
SiSj � eijEiSj �

1

2
eijEiEj

þ 1

24
c
4ijkl

SiSjSkSl þ
1

6
k
2ijkl

EiSjSkSl ð10Þ

where the material constants c2ij, eij, eij, c4ijkl and k2ijkl
are second-order elastic, piezoelectric, electric per-

mittivity, fourth order elastic and second odd elec-

troelastic coefficients, respectively. The first three

terms yield to linear theory of piezoelectricity and the

last two terms are due to nonlinear effects. Since the

electromechanical coupling factor is usually small for

piezoelectric materials such as PZT, in an energy

harvester the generated electrical fields are generally

small. Therefore the weak nature of the electric field

motivates the exclusion of nonlinear terms due to

electric field-dependent behavior of dielectric or

piezoelectric constants. Also terms proportional to

third-order elastic and first electroelastic coefficients

which lead to even nonlinearities are not considered,

since they vanish due to symmetry of the bimorph

configuration.

Introducing an electrical potential function / inside

the piezoelectric media, one has:

Ei ¼ �/;i ð11Þ

Assuming that the piezoelectric material is polarized

in y direction, one obtains by substituting Eq. (11) into

Eq. (10) and neglecting the x-component of electrical

field due to slenderness of the piezoelectric layer:

w h;/ð Þ ¼ 1

2
c
211

y� yNð Þh0ð Þ2�e21/;2 y� yNð Þh0ð Þ � 1

2
e22/

2
;2

þ 1

24
c

41111
y� yNð Þh0ð Þ4þ 1

6
k

22111

/;2 y� yNð Þh0ð Þ3

ð12Þ

The above energy function yields to following

nonlinear constitutive equations:

T1 ¼
ow
oS1

¼ c
211

þ1

6
c

41111
S21

� �

S1 � e21 �
1

2
k

22111

S21

� �

E2

D2 ¼� ow
oE2

¼ e21 �
1

6
k

22111

S21

� �

S1 þ e22E2

ð13Þ

As can be seen in the above equations both

piezoelectric and elastic coefficients are functions of

applied mechanical strain in the nonlinear model.

The potential energy stored in beam and piezoelec-

tric layers will be:

U ¼ UM þ UE ð14Þ

in which UM is pure mechanical part of potential

energy and UE is sum of electromechanical and

electrical parts as follows:

UM ¼1

2

Z

L

0

D2h
02þD4h

04� �

dx

UE¼
Z

L

0

Z

hB
2
þhP

hB
2

b �2e21/;2yh
0 �e22/

2
;2þ

1

3
k

22111

/;2 yh0ð Þ3
� �

dy

0

B

B

@

1

C

C

A

P xð Þdx

ð15Þ
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where D2 and D4 are second and fourth order bending

stiffness, respectively:

D2 ¼
2

3
b EB

hB

2

� �3

þ c
211

hB

2
þhP

� �3

� hB

2

� �3
 !

P xð Þ
 !

D4 ¼
1

30
b c
41111

hB

2
þhP

� �5

� hB

2

� �5
 !

P xð Þ

ð16Þ

The virtual work which is the summation of

the work done by nonconservative forces includ-

ing inertial and damping forces and the work

done by the electrical charges stored on the

electrodes, is:

dWnc ¼
Z L

0

� mþMd x� Lð Þð Þ€d tð Þ � c _v
� �

dvdx

� qd/j
hB
2
þhP

y¼hB
2

ð17Þ

where c represents the mechanical or parasitic damp-

ing, which arises from material or air damping.

Extended Hamilton’s principle indicates:

Z t2

t1

dT � dU þ dWncð Þdt ¼ 0 ð18Þ

After performing some mathematical operations in

accordance with the variational calculus including

some integrations by parts, the variations of the kinetic

and potential energies are obtained as:

Z

t2

t1

dTdt ¼ �
Z

t2

t1

Z

L

0

1

2

Z

x

L

mþMd x� Lð Þð Þ
Z

x

0

v02dx

0

@

1

A

��

dx

0

@

1

Av0

0

@

1

A

0

þ mþMd x� Lð Þð Þ€v

0

@

1

Advdxdt ð19Þ

Z

t2

t1

dUMdt ¼
Z

t2

t1

Z

L

0

D2h
0 þ 2D4h

03� �0oh
ov0

� �0
dvdxdt

þ
Z

t2

t1

D2h
0 þ 2D4h

03� � oh
ov0

dv0 � D2h
0 þ 2D4h

03� �0oh
ov0

dv

� �
	

	

	

	

L

x¼0

dt ð20Þ

Z

t2

t1

dUEdt ¼

2

Z

t2

t1

Z

L

0

Z

hB
2
þhP

hB
2

b �e21/;2yþ
1

2
k

22111

/;2 yh0ð Þ2y
� �� �

dy

0

B

B

@

1

C

C

A

P xð Þ

0

B

B

@

1

C

C

A

0

oh
ov0

0

B

B

@

1

C

C

A

0

dv

�
Z

hB
2
þhP

hB
2

b �e21h
0 � e22/;22 þ

1

2
k

22111

yh0ð Þ2h0
� �

d/

� �

dy

0

B

B

@

1

C

C

A

P xð Þ

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

dxdt

þ 2

Z

t2

t1

Z

L

0

b �e21yh
0 � e22/;2 þ

1

6
k

22111

yh0ð Þ3
� �

d/

� �

P xð Þ
� �

	

	

	

	

hB
2
þhP

y¼hB
2

dxdt

ð21Þ
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Substituting Eqs. (17) and (19)–(21) into Eq. (18),

the governing equations of motion are obtained as:

e22/;22 ¼ �e21 þ
1

2
k

22111

yh0ð Þ2
� �

h0 ð22bÞ

where associated boundary conditions are:

D2h
0 þ2D4h

03� � oh
ov0

dv0 � D2h
0 þ2D4h

03� �0oh
ov0

dv

� �
	

	

	

	

L

x¼0

¼ 0

ð23aÞ

2

Z

L

0

b �e21yh
0 � e22/;2þ

1

6
k

22111

yh0ð Þ3
� �

P xð Þdx
� �

þq

0

@

1

Ad/

0

@

1

A

	

	

	

	

	

	

hB
2
þhP

y¼hB
2

¼ 0

ð23bÞ

Twice integration of Eq. (22b) assuming that the

lower electrode is grounded and showing the voltage

of the upper one by V, yileds in following electrical

potential distribution function:

/ ¼ 2y� hB

2hP
V þ h2P

2e22
e21c1 yð Þ þ k

22111

c2 yð Þh2Ph
02

� �

h0

ð24Þ

where:

c1 yð Þ ¼ 1

h2P

hB

2

� �2

�y2

 !

þ 2y� hB

2hP

� �

 

hB

2
þ hP

� �2

� hB

2

� �2
 !!

c2 yð Þ ¼ � 1

12h4P

hB

2

� �4

�y4

 !

þ 2y� hB

2hP

� �

 

hB

2
þ hP

� �4

� hB

2

� �4
 !!

ð25Þ

Based on Kirchhoff’s voltage law:

V þ R _q ¼ 0 ð26Þ

Using second boundary condition (23b) and the

above equation one obtains:

V þ 2Rb

Z

L

0

e21 y� yNð Þh0 þ e22/;2 �
1

6
k

22111

y� yNð Þh0ð Þ3
� ��	

	

	

	

y¼hB
2
þhP

P xð Þdx ¼ 0

ð27Þ

Substituting Eqs. (6) and (25) into Eqs. (22a) and

(27) and keeping nonlinear terms up to third order,

coupled electromechanical equations of the harvester

assuming the beam is completely covered by the

piezoelectric layers, governing lateral deflection and

output voltage are obtained:

mþMd x� Lð Þð Þ€vþ c _vþ D2h
0 þ 2D4h

03� �0oh
ov0

� �0
þ 1

2

Z

x

L

mþMd x� Lð Þð Þ
Z

x

0

v02dx

0

@

1

A

��

dx

0

@

1

Av0

0

@

1

A

0

þ 2

Z

hB
2
þhP

hB
2

b �e21/;2yþ
1

2
k

22111

/;2 yh0ð Þ2y
� �� �

dy

0

B

B

@

1

C

C

A

P xð Þ

0

B

B

@

1

C

C

A

0

oh
ov0

0

B

B

@

1

C

C

A

0

¼ � mþMd x� Lð Þð Þ€d tð Þ

ð22aÞ
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where terms with /,1 are neglected due to slenderness

of the beam and piezoelectric layers. The boundary

conditions are:

v ¼ v0 ¼ 0 x ¼ 0

v00 ¼ v000 ¼ 0 x ¼ L

(

ð29Þ

Introducing the following dimensionless

parameters:

x̂ ¼ x

L
; ŷ ¼ y

h
; v̂ ¼ v

L
; t̂ ¼ t

s
; M̂ ¼ M

mL
; d̂ ¼ d

L
; ĉ

¼ cs
m
; V̂ ¼ V

V� ; ŷN ¼ yN

h
; R̂ ¼ R

R� ; s ¼ L2
ffiffiffiffiffiffi

m

D2

r

;V�

¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffi

D2hP

be22

r

;R� ¼ hPs
2e22bL

; h ¼ hB þ hP

ð30Þ

Equation (28) may be non-dimensionalized as

following equations where hat superscripts are omitted

for the sake of notational simplicity:

1þMd x� 1ð Þð Þ€vþ c _vþ v000 þ v02v000 þ v0v002
� �0

þ 6b1 v002v000
� �0

þ 1

2

Z

x

1

1þMd x� 1ð Þð Þ
Z

x

0

v02dx

0

@

1

A

��

dx

0

@

1

Av0

0

@

1

A

0

þ 2b3b4b6V v00v000ð Þ0þb22b3b
2
4b7 v00v000ð Þ0v00

þ 2b4b5Vd
0 x� 1ð Þ ¼ � 1þMd x� 1ð Þð Þ€d tð Þ

ð31Þ

mþMd x� Lð Þð Þ€vþ c _vþ D2 v000 þ v02v000 þ v0v002
� �0þ6D4 v002v000

� �0þ 1

2

Z

x

L

mþMd x� Lð Þð Þ
Z

x

0

v02dx

0

@

1

A

��
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@
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Vd0 x� Lð Þ ¼ � mþMd x� Lð Þð Þ€d tð Þ

V þ 2Rb

Z

L

0

e22
hP

V þ e211
hB

2
þ hP

� �

1þ 1

2
v02

� �
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>

>

>
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>
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V þ R

Z

1

0

V þ b4
1

2
1þ b2ð Þ

� �

1þ 1

2
v02

� �

v00 � 1

6
b4b3
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v003
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� �
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� �
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where:

b1 ¼
D4

L2D2

b2 ¼
hP

h
b3 ¼

k
22111

e21

h2

L2
b4 ¼ he21

ffiffiffiffiffiffiffiffiffiffiffi

bhP

D2e22

r

b5 ¼
h

hP

Z

hBþ2hP
2h

hB
2h

ydy

0

B

B

@

1

C

C

A

b6 ¼
h

hP

Z

hBþ2hP
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0

B
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@

1

C
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A
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h
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Z
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2h
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2h

c01 yð Þy3dy
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B

B

@

1

C

C

A

ð33Þ

The Galerkin method can be employed to reduce

the order of the equations and derive the governing

ordinary differential equations. To this end v(x, t) is

assumed to be:

v x; tð Þ ¼
X

n

i¼1

wi xð Þgi tð Þ ð34Þ

where wi(x) are the mode shapes. Substituting the

above equation in Eqs. (31) and (32), multiplying the

first equation by wi(x) and integrating over the beam

length, the ordinary differential equations are derived.

Generally in vibrational harvesters the resonance

frequencies are high in comparison to environmental

vibration frequencies and the excitation frequency

rarely falls into the neighborhood of higher mode

frequencies, therefore a single mode response suffices

for the analysis. Assuming:

v x; tð Þ ¼ w xð Þg tð Þ ð35Þ

where w(x) is the first mode shape of the cantilever

beam (Rao 2007):

w xð Þ ¼ cos bx� cosh bxð Þ

� cos bþ cosh b
sin bþ sinh b

sin bx� sinh bxð Þ

b ¼ 1:8751

ð36Þ

The ordinary differential equations may be written

as:

€gþl _gþx2
Egþa1g

3þa2 g€gþ _g2
� �

g�a3Vþa4g
2V ¼K cos Xtð Þ

V þR _V þa5 _gþa6g
2 _g

� �

¼ 0

(

ð37Þ

where:
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Z
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0
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Z

1

0
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0

cw2dx
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Here xE is the linear short circuit resonance

frequency of the bimorph. The damping coefficient

can be derived from mechanical quality factor of the

system in the case of no energy harvesting:

l ¼ xE

Q
ð39Þ

The base motion is supposed to be a single

harmonic with excitation frequency X as:

€d tð Þ ¼ ABase cos Xtð Þ ð40Þ

3 Analytical solution

To analytically solve the governing nonlinear equations

of the system and investigate the vibratory behavior of

the nonlinear harvester, themethod ofmultiple scales as

a perturbation technique which can represent the

solution of a nonlinear problem by an asymptotic

expansion is implemented in this section (Nayfeh 2008).

To use the method of multiple scales the following

assumptions are made (Nayfeh and Mook 2008):

l ¼ e2l̂; K ¼ e2k ð41Þ

This guarantees the terms to be ordered so that

excitation and damping terms appear simultaneously

with the highest order of nonlinearity. By introducing

new independent variables accordingly as:

Tn ¼ ent for n ¼ 0; 1; 2; . . . ð42Þ

Then derivatives with respect to tmay be written as

an expansion of partial derivatives with respect to Tn:

d

dt
¼ dT0

dt

o

oT0
þ dT1

dt

o

oT1
þ . . . ¼ D0 þ eD1 þ . . .

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2 D2
1 þ 2D0D2

� �

þ . . .

ð43Þ

The coefficients a1 to a6 are ordered as follows:

a1 ¼ e2â1 a2 ¼ e2â2 a3 ¼ eâ3 a4 ¼ eâ4
a5 ¼ eâ5 a6 ¼ eâ6

ð44Þ

The solution can be represented by expanding g and
V as follows:

g ¼ g0 T0; T1; . . .ð Þ þ eg1 T0; T1; . . .ð Þ þ . . .

V ¼ V0 T0; T1; . . .ð Þ þ eV1 T0; T1; . . .ð Þ þ . . .
ð45Þ

Since the excitation is O(e2), X - xE should be

O(e2) for consistency. Therefore introducing the

detuning parameter r as:

X ¼ xE þ e2r ð46Þ

then substituting Eqs. (41) and (43) to (45) into

Eq. (37) and equating the coefficients of the same

powers of e, one obtains the following sets of

equations:

e0 : D2
0g0 þ x2

Eg0 ¼ 0
�

ð47aÞ

e0 : V0 þ RD0V0 ¼ 0f ð47bÞ

e1 : D2
0g1 þ x2

Eg1 ¼ �2D0D1g0 þ â3V0 � â4g
2
0V0

�

ð48aÞ

e1 : V1 þ RD0V1 ¼ �R D1V0 þ â5 þ â6g
2
0

� �

D0g0
� ��

ð48bÞ

e2 : D2
0g2 þ x2

Eg2 ¼ �2D0D1g1
�

� D2
1 þ 2D0D2

� �

g0 � l̂D0g0 � â1g
3
0

�â2 g0D
2
0g0 þ D0g0ð Þ2


 �

g0

þâ3V1ða� â4 g20V1 þ 2g0g1V0

� �

þ k cos Xtð Þ
ð49aÞ

e2 : V2 þ RD0V2 ¼ �R D1V1 þ D2V0ðf
þâ5 D0g1 þ D1g0ð Þ
þâ6 g20D0g1 þ g20D1g0 þ 2g0g1D0g0

� ��

ð49bÞ

The solution of Eqs. (47a) and (47b) can be written

as:

g0 ¼ A T1; T2; . . .ð Þ exp ixET0ð Þ þ �A T1; T2; . . .ð Þ
exp �ixET0ð Þ

V0 ¼ 0 ð50Þ

Substituting the above solution into Eq. (48a) and

eliminating the secular terms one obtains:

D1A ¼ 0; g1 ¼ 0 ð51Þ

Substituting in Eq. (48b) results in:

V1 ¼ � RixE

1þ RixE

â5Aþ â6A
2 �A

� �

exp ixET0ð Þ

� Râ6ixEA
3

1þ 3RixE

exp 3ixET0ð Þ þ cc ð52Þ
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The following equation is obtained by substituting

Eqs. (50)–(52) into Eq. (49a):

D2
0g2þx2

Eg2

¼

�2ixED2A� l̂þ Râ3â5
1þRixE

� �

ixEA

þ
2â2x

2
E�3â1þ

â4â5� â3â6ð ÞRixE

1þR2x2
E

� â3â6�3â4â5ð ÞR2x2
E

1þR2x2
E

0

B

B

B

B

@

1

C

C

C

C

A

A2 �A

þ
Râ6ixEâ4 2þ10R2x2

E

� �

1�3RixEð Þ
1þR2x2

Eð Þ 1þ9R2x2
Eð Þ

� �

A3 �A2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

exp ixET0ð Þþ1

2
kexp iXtð Þþ ccþNST

ð53Þ

where NST stands for non-secular terms with fre-

quencies 3xE and 5xE. Therefore eliminating the

secular terms results in:

� 2ixED2A� l̂þ Râ3â5
1þ RixE

� �

ixEA

þ
2â2x

2
E � 3â1

þ â4â5 � â3â6ð ÞRixE

1þ R2x2
E

� â3â6 � 3â4â5ð ÞR2x2
E

1þ R2x2
E

0

B

@

1

C

A

A2 �A

þ
Râ6ixEâ4 2þ 10R2x2

E

� �

1� 3RixEð Þ
1þ R2x2

Eð Þ 1þ 9R2x2
Eð Þ

� �

A3 �A2

þ 1

2
k exp irT2ð Þ ¼ 0

ð54Þ

Representing A in polar form:

A ¼ 1

2
a exp ibð Þ ð55Þ

And substituting into Eq. (54), then separating real

and imaginary parts one obtains:

where the following change of variable is made to

transform the equations to an autonomous system:

c ¼ rT2 � b ð57Þ

The steady state solution of the dynamical system

described by equations set (56) can be found by setting

a0 ¼ c0 ¼ 0. The linear stability of equilibrium points

(aE, cE) and location of bifurcation points can be found
through eigenvalues of the Jacobian matrix.

Substituting Eq. (55) into Eq. (51), an expression

for the output voltage is obtained:

V ¼ RxE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þR2x2
E

p a5a
Eþa6

4
aE
� �3


 �

cos Xtþ/1� cE
� �

þ RxEa6
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ9R2x2
E

p aE
� �3

cos 3Xtþ/2�3cE
� �

ð58Þ

where:

/1 ¼ pþ arctan
1

RxE

� �

/2 ¼ pþ arctan
1

3RxE

� � ð59Þ

The average output power is:

P ¼ lim
T!1

1

T

Z

T

0

V2

R
dt ð60Þ

Substituting V from Eq. (58) into the above equa-

tion one obtains:

P ¼ Rx2
E aEð Þ2

32

4a5 þ a6 aEð Þ2

 �2

1þ R2x2
E

þ a26 aEð Þ4

1þ 9R2x2
E

0

B

@

1

C

A

ð61Þ

a0 ¼ � 1

2
l̂þ Râ3â5

1þ R2x2
E

� �

aþ R â4â5 � â3â6ð Þ
8 1þ R2x2

Eð Þ

� �

a3 þ
Râ4â6 1þ 5R2x2

E

� �

16 1þ R2x2
Eð Þ 1þ 9R2x2

Eð Þ

� �

a5 þ 1

2xE

k sin cð Þ

ac0 ¼ r� R2â3â5xE

2 1þ R2x2
Eð Þ

� �

aþ 2â2x2
E � 3â1
8xE

� R2xE â3â6 � 3â4â5ð Þ
8 1þ R2x2

Eð Þ

� �

a3 þ
3R2â4â6xE 1þ 5R2x2

E

� �

16 1þ R2x2
Eð Þ 1þ 9R2x2

Eð Þ

� �

a5

þ 1

2xE

k cos cð Þ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð56Þ
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4 Results and discussion

As a case study to explore the effect of nonlinearities

on the system response and particularly the amount of

extractable power, we consider here a micro-scale

harvester composed of a cantilever beam with width

b = 5 mm, length L = 5 mm and a tip mass

M = 10 mg. The beam is constructed of a base silicon

layer of thickness hB = 33 lm and two PZT deposited

layers of thickness hP = 1 lm. The mechanical

quality factor of the system is Q = 200 which has

been derived in the case of no energy harvesting.

Material properties of silicon and PZT-5H (poled

along the thickness) are given in Table 1.

The short circuit resonance frequency for this

assumed configuration is calculated to be fE = 410

Hz. The value of the external load R is chosen so that

the output power flowing from the piezo layers to the

harvesting circuit is maximized. Calculations show

that this optimum point is achieved at R = 0.6 kX
which can approximately be calculated by matching

the external load with the capacitive impedance of the

piezoelectric layers at the resonance frequency (Ott-

man et al. 2002).

Figure 4 shows the system frequency response at

various excitation levels defined by different base

acceleration amplitudes. As can be seen in this

figure the response curves are simple left-bended ones

which traditionally appear in the response of Duffing-

type oscillators with nonlinearities of the softening

type. At sufficiently high amplitudes of excitation, the

response includes two stable high and low energy

branches connected through a curve with saddle

stability which is the locus of system saddle points.

There are two saddle-node bifurcation points in the

response of the system in which the saddle point

collides with a stable node.

Although geometric nonlinearities result in hard-

ening response of cantilever beams in the first mode

(Nayfeh and Pai 2008), the softening behavior of the

response curves indicates that the material nonlinear-

ities of the piezoelectric ceramic has the dominant

Table 1 Material properties of the harvester

Parameter Silicon PZT-5H

Effective Young’s modulus E (GPa) 165 126

Density q (kg/m3) 2330 7500

Piezoelectric coefficient e211 (C/m
2) _ 6.5

Dielectric coefficient e22 (C/Vm) _ 1.302 9 10-8

Fourth order elastic coefficient c41111 (N/m2) (Stanton et al. 2010) _ -4.4 9 1018

Second odd electroelastic coefficient k22111 (C/m2) (Stanton et al. 2010) – 1.03 9 109
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effect on the nonlinear behavior of the harvester,

leading to left bended response curves. It illustrates

that in the nonlinear analysis of piezoelectric harvest-

ing beams especially when ferroelectric ceramics are

employed as piezoelectric material, the material

nonlinearities must be taken into account together

with geometric ones.

Figure 5 depicts the variation of tip deflection

amplitude with respect to the excitation amplitude at

different frequencies which again is a multivalued

response for excitation frequencies lower than the

resonance one.

As can be seen in Eq. (58), up to this order of

approximation the output voltage of the harvester is a

multi-frequency waveform consisted of two harmonic

components, one with a frequency equal to that of

excitation and the other with a frequency three times

the excitation frequency. This generation of higher

order electric signals from a pure sinusoidal single-

frequency excitation which shows the nonlinear nature
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Fig. 6 Output voltage of the harvester (ABase = 0.5 g,

X - xE = -20 rad/s)
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of piezoelectric and dielectric properties of piezoelec-

tric materials is known as harmonic generation (Hall

2001). While in the case of resonant piezoelectric

actuators it is usually an unwanted effect since it

causes a significant portion of the input energy to be

wasted in the generation of unwanted vibrational

modes, in the field of energy harvesting due to

collection of the energy of all harmonics by the

harvesting circuit it doesn’t create the same problem.

Figure 6 presents the temporal response of the output

voltage where the existence of these harmonics is

evident. To examine the validity of our analytical

solution, the equations are also solved numerically by

employing Runge–Kutta method. As can be seen in

this figure the comparison of this two solution results,

shows a good agreement between them.

The output power of the harvester is calculated

from Eq. (61) and presented in Fig. 7. As can be seen

in this figure at low levels of excitation the frequency

response slightly bends toward the low frequencies.

As excitation grows saddle-node bifurcation points are

observed. Increasing the excitation beyond this point

leads to output power decrease which is due to

decrease of the amplitude of the first harmonic as a

result of nonlinearity. Further increasing of the

excitation causes the amplitude of the third harmonic

to grow and consequently yields in power enhance-

ment again.

The frequency responses of Fig. 7 are presented

separately in Figs. 8, 9, 10, and 11 together with a

numerical solution for the sake of validation. Similar

to frequency response curves for vibration amplitude,

the output power is multivalued too, so that the correct

value of output power depends on the trajectory of the

excitation. Ramping down the frequency from high

excitation frequencies pushes the harvester along the

high energy stable branch of the response curve while

ramping it up causes the harvester power to lie on the

low energy branch. The numerical solution is con-

ducted employing the Runge–Kutta method and first

in a forward sweep the excitation frequency ramps up

smoothly, then through a backward one ramps down

again. The solution of each step is used as initial

condition for the next one as frequency increases or

decreases. The comparison is presented for all cases

and as can be seen in these figures, a very good

agreement is observed between the results of both

analytical and numerical methods.
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Figure 12 illustrates the variation of extracted

power with respect to the excitation amplitude at

different frequencies. As can be seen in this fig-

ure while similar to Fig. 5 the response curves are

constructed of two stable and saddle branches at

frequencies lower than that of the resonance, unlike

deflection response different behaviors can be distin-

guished at different excitation frequencies.

The peak-to-peak output voltage of the harvester

for different values of excitation amplitude is pre-

sented in Fig. 13. Similar to the output power, by

increasing the excitation the output voltage is

enhanced while the response curves are bended toward

lower frequencies. Continuation of increasing the

excitation leads to reduction of the output voltage due

to decrease of first harmonic amplitude as a conse-

quence of nonlinearity. In this case although the third

harmonic amplitude is increasing, the total voltage

amplitude decreases due to higher rate of the first

harmonic amplitude reduction together with the exis-

tence of a phase difference between the harmonics.

Further increasing of the excitation amplitude leads

the first harmonic to grow again in the opposite phase

and this simultaneous enhancement of both harmonics

amplitude leads the peak-to-peak amplitude of the

output voltage to increase again.

5 Conclusion

Nonlinear dynamics of piezoelectric bimorph beams

employed as vibrational energy harvesters during

large amplitude motions is investigated. To that end

first of all a comprehensive procedure implementing a

variational approach is followed to extract a fully-

coupled electromechanical nonlinear model of the

system. In the proposed model both sources of

nonlinear behavior including geometric and material

nonlinearities are considered through exploiting non-

linear constitutive relations of piezoelectricity

together with nonlinear strain relations which bring

into account large curvature and shortening effects. To

investigate the harvester behavior in the neighborhood

of first resonance frequency, derived nonlinear cou-

pled partial differential equations of the proposed

model are order-reduced bymeans of Galerkin method

and governing nonlinear ordinary differential equa-

tions are extracted. An analytical solution employing

the perturbation method of multiple scales is presented

for the equations at the primary resonance. To explore

the effect of nonlinearities on dynamic characteristics

and output power of piezoelectric harvesters, results

are presented for a PZT/Silicon/PZT laminated beam

as a case study. Findings indicate that although the

nonlinear curvature effect in large amplitude vibra-

tions of a cantilever beam leads to a hardening

behavior in the first vibration mode, material nonlin-

earities of the PZT layer which lead to softening

behavior of the frequency response have the dominant

effect in comparison to geometric ones. The output

voltage of the harvester is a multi-frequency wave-

form consisted of harmonics of the excitation fre-

quency due to harmonic generation effect as a

consequence of nonlinearity. At the primary reso-

nance, different frequency responses of the extracted

power can be distinguished at different excitation

amplitudes arising from the accumulation of powers of

voltage harmonics at the output harvesting circuit. A

numerical solution implementing the Runge–Kutta

method is conducted and the results are employed to

validate the analytical solution where a very good

agreement is observed.
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