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Abstract A particle impact damper is a vibration

absorber type that consists of a container attached to a

primary vibrating structure. It also contains many

particles that are constrained to move inside the

container, whereby the damping effect can be obtained

by collision between particles and the container. The

discrete element method (DEM) has been developed

for modeling granular systems, where the kinematics

of each particle are calculated numerically using the

equations of motion. However, the computational time

is significant since the algorithm checks for particle

contacts for all possible particle combinations. The use

of a cellular automata (CA) modeling technique may

provide increased computational efficiency due to the

local updating of variables, and the discrete treatment

of time and space. In this study, we propose a new

approach combining DEM with CA for modeling a

granular damper under a forced excitation. We use

DEM to describe the particle motion according to the

equations of motion, while CA is introduced for the

particle contact checks in discrete space. We also

investigate the effect of simplification in the contact

force model, which allows the unit time step of

numerical integration to become larger than that used

in the strict model. It is shown that the suggested

particle contact scanning method and the force

approximation model contribute to the reduction of

the computational time, and neither degenerates the

calculation accuracy nor causes the numerical

instability.

Keywords Particle impact damper � Granular
materials � Discrete element method � Cellular
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1 Introduction

The impact damper is a type of vibration absorber that

consists of a container attached to the primary

vibrating structure. Additionally, it comprises a solid

body constrained to move inside the container, where

the damping effect can be obtained by collision and

friction between the body and the container wall

(Masri and Caughey 1966). The damper is usually

used when an external damping treatment is substan-

tially difficult, or when an extreme heat environment

limits the use of viscous dampers. A particle damper is

a type of an impact damper where the impact body is

replaced by a granular assembly (Pannosian 1992).

Establishing an effective numerical model is quite

essential for the efficiency of the damper design for

determining particle-related parameters, such as size,

numbers, and material properties, which ultimately

elicit the best damping performance.
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The basic theoretical analyses deal with the particle

bed as a single solid structure, which collides with the

container wall plastically, whereby the dynamic

response of the system is described by the governing

equations of respective bodies (Friend and Kinra 2000;

Papalou and Masri 1996). These approaches provide

approximate predictions of the system behavior.

However, the application is limited to simple systems,

and the detailed information that may affect the

system responses, such as the effect of particle size, or

the friction between particles, cannot be fully mod-

eled. Since the damper is intrinsically a nonlinear

system, the continuum approximation approach could

not be extended to the problems formulated at

different scales.

On the other hand, the discrete element method

(DEM) has been developed for modeling discontinu-

ous materials, such as granular systems, in order to

understand the microscopic behavior. In this case, the

motion of each particle is numerically calculated by a

set of motion equations considering the contact force

between the elements. The early development of the

model was introduced by Cundall and Struck in which

the behavior of granular assemblies of discs and

spheres was explained (Cundall and Strack 1979).

Tsuji et al. (1992) extended Cundall’s model to

simulate the plug flow of spherical particles conveyed

in a horizontal tube. They expressed the contact force

between particles by using the Hertzian contact model.

DEM has also been used to study the damping effect of

the particle dampers. Saeki studied the relationship

between the behavior of granules in the cavities, and

the performance of a multi-unit particle damper using

the Hertzian model in the DEM calculation (Saeki

2005). Other prior research studies refer to the

modification of the contact model itself, or to the

identification technique towards the precise estimation

of the damping performance (Olson 2003; Wong et al.

2009; Malone and Xu 2008).

Since DEM employs governing equations on each

grain, the behavior of individual particles and the

gross motion of a granular system can be traced.

However, the method requires a significant calculation

time. This tremendously complex calculation is

attributed to the setting of the simulation time step to

a very small value in order for the impact calculation

to be stable, and to particle–particle or particle–wall

contact checks for all possible combinations. Reduc-

tion of the calculation time seems more significant

than elaborating the model-related parameters for the

efficient damper design, especially in the case of

predicting long-term, forced vibration responses. Mao

et al. (2004) and Hu et al. (2008) introduced the link

cell (LC) method, also known as the ‘‘box’’ algorithm,

to reduce the number of contact checks. In the LC

method, the space inside a container is divided into

homogeneous cubic cells. By determining nonempty

cells intersecting more than one particle, the contact

detection was localized at the neighbors of the

granules, which correspondingly reduced the fre-

quency of contact checks. To further increase the

contact detection efficiency, Fang et al. (2007) com-

bined an improved LC method and an adaptively

updated Verlet table that recorded all granular pairs

whose distances were less than a predefined threshold

value. Despite the improvement of computational

efficiency, the procedure seems rather complex, and

the management of the Verlet table might consume

significant memory for an increasing number of

particles.

Computer simulations using cellular automata

(CA) may provide useful tools for understanding

various types of phenomena in physical, social, and

biological systems. CA models can produce complex

patterns based on simple strategies describing behav-

ior of elements, which are analogous to the appearance

of complex systems (Chopard and Droz 1998; Ilachin-

ski 2001). CA consist of finite-state variables arranged

on uniformly segmented grids, each of which can vary

within a finite set of values corresponding to the

physical state of components in the system being

analyzed. The time evolution of the system is updated

synchronously according to the local interaction rule

at every discrete time step. The state of a cell at a given

time step only depends on its previous state and the

state of nearby neighboring cells.

The CA modeling techniques provide advantages

over the DEM approach in regard to computational

efficiency and numerical stability, due to the local

updating of variables, and the discrete treatment of

time and space. CA has been used to model the particle

behavior in granular flows (Prado and Olami 1992;

Baxter and Behringer 1991; Sakaguchi et al. 1996).

These studies have revealed that the CA model can

describe any piece of physical properties, even with

the use of simple rule definitions. However, few

studies have qualitatively exploited the dynamic

interactions between granular materials and a structure
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in CAmodels. This may have been due to the difficulty

in relating discrete model parameters to the actual

continuous physical quantities, such as the force,

velocity, and others.

Towards an improved computational efficiency, we

propose a new approach combining the DEM with the

CA for modeling particles moving inside a granular

damper container under the steady state forced exci-

tation. We use the DEM to provide rigorous descrip-

tion of the physics related to the particle motion

according to Newton’s first law of motion, while the

CA is introduced to reduce computational cost by

limiting the contact checks of the local neighbors of

each particle in cellular space. We also investigate the

effect of simplification in the contact force model,

which allows the unit time step of numerical integra-

tion to become relatively larger than the strict model,

without causing numerical instability in the system

calculation.

2 Measurement of the damping characteristics

of a granular damper

We measured the damping characteristics of a gran-

ular damper experimentally in order to verify the

numerical model using a fundamental DEM, as shown

in the next section. A schematic of the experimental

setup is shown in Fig. 1. An acrylic container is

attached to the tip of two phosphor bronze plates,

which constitute a base-excited, one degree-of-free-

dom (DOF) primary vibrating system constrained to

move in the direction of gravity. The mass of the

container is 88.6 g, and the natural frequency of the

system is 6 Hz. The acrylic particles (6 mm in

diameter, 0.2 g) are packed inside the container whose

inner space dimensions are 96 mm in height, 60 mm

in width, and 6 mm in thickness, in such a way that

particles are restrained to move in two-dimensional

space. The maximum number of particles that can be

arranged in the vertical direction is 16, and 10 in the

horizontal direction. The container is sinusoidally

excited by an exciter at the clamped end of the leaf

springs, with the constant base excitation amplitude of

2.0 mm. In this experiment, the damping performance

was evaluated bymeasuring the absolute displacement

of the primary system, where the number of particles

varied from 0 to 60 at every 20 particles.

Figure 2 shows the frequency responses of the

primary system obtained by the experiment, where the

particle damper incorporated a different number of

particles. A root-mean-square (RMS) absolute dis-

placement of the primary system is plotted against

each excitation frequency. In the figure, the displace-

ment is also expressed as the RMS transmissibility in

non-dimensional form, where the absolute displace-

ment is normalized by using the base excitation

amplitude. It is shown that the damping effect

increases in accordance to the particle number. The

peak frequency shift towards the lower frequencies is

Power amplifier Exciter 

Fast Fourier transform (FFT) analyzer 

Laser displacement sensors 

Plate springs 

Granular damper 
Container (front view) 

60 mm 

96 mm 

Fig. 1 Experimental setup

of a vertically oriented

granular damper
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mainly caused by the added mass effect of particles,

which contributes to the decrease of the natural

frequency.

3 Modeling particle behavior using a strict discrete

element method

In this section, DEM is introduced to model the

particle behavior inside the container when the system

is excited harmonically. The DEM model consists of

the governing equations defined for each particle

considering the contact forces between the elements.

The equations of motion for the particles and the

primary system are described in this section.

3.1 A model of a primary system

If we consider x to be the displacement of the primary

system in the vertical direction, the equation of motion

for the primary system is written as follows:

M _xþ C _xþ Kx ¼ fd þ fp ð1Þ

In Eq. (1), M, C, and K, represent the mass, damping

coefficient, and spring constant of the primary system,

respectively. Correspondingly, fd denotes an external

force acting on the primary mass, and fp the total

collision force brought in contact with particles. We

investigated the harmonically-excited cases, where the

force was defined as: fd (t) = Fsin2pft. The force

amplitude value F was 0.25 N, and the excitation

frequency f was varied from 4 to 8 Hz.

3.2 Equations for particle motion

When particles move within the two-dimensional

space, three equations should be defined to describe

their motion. Specifically, two translational equations

for motion must be defined along the horizontal and

vertical directions, and an equation for rotational

motion with respect to the center of gravity. If particles

are assumed to be spherical, and have uniform

characteristics, the equations of motion for the ith

particle are represented by Eqs. (2) and (3).

m€pi ¼ Fi � mg ð2Þ

I €ui ¼ Ti ð3Þ

In Eqs. (2) and (3), m denotes the mass of the particle,

I the moment of inertia, pi the position vector, ui the

angle of rotation, andFi and Ti are the force and torque

acting on a particle, respectively. In addition, g

represents the acceleration of gravity. The contact

force acting on a particle that is in contact with other

particles, or with the container wall, can be decom-

posed into the normal and the tangential force

components, fn and ft, respectively. These forces are

explicitly expressed in conjunction with the normal

and the tangential contact displacements, dn and dt, as
follows (Tsuji et al. 1992):

fn ¼ kpd
3
2
n þ cpd

1
4
n
_dn ð4Þ

ft ¼ lfn _dt= _dt
�
�

�
� ð5Þ

In Eq. (4), cp represents a damping coefficient, which

is determined from the measured restitution coeffi-

cient, kp is a spring constant derived using the Hertzian

contact theory, and l in Eq. (5) denotes the friction

coefficient.

The spring constant kp is defined in a different way,

depending on whether a particle is in contact with

another particle, or with a wall. If the particle is in

contact with the wall, the spring constant kp1 is given

as follows:

kp1 ¼
4

ffiffi
r

p

3

E � E0

ð1� r2ÞE0 þ ð1� r20ÞE
ð6Þ

In the case of a collision between particles, the spring

constant is defined by the following equation:

Fig. 2 Comparison of the damping effect as a function of the

particle number (experimental results)
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kp2 ¼
ffiffiffiffiffi

2r
p

3
� E

ð1� r2Þ ð7Þ

In Eqs. (6) and (7), E and E0 represent the Young’s

moduli, and r and r0 the Poisson’s ratios, of the

particle and the wall, respectively, and r denotes the

radius of the particle. The impact force fp acting on the

container wall is obtained by the summation of the

x components of the normal and the tangential contact

forces, fn and ft. In the same way, the x and y compo-

nents of the force Fi that are exerted during the

translational motions of the particle are calculated by

the decomposition of fn and ft, and the synthesis of

their components in the respective directions. The

torque acting on a particle is also calculated by the

radius r times the tangential force ft.

In the fundamental DEM model, the contact

between the particles is assessed for all the pairs

irrespective of their separation distances. This process

is thought to be a predominant cause of the compu-

tational load. The contact between the ith and jth

particles is checked using their respective position

vectors pi and pj, and their radii r, as follows:

pi � pj
�
�

�
�\ r ð8Þ

If Eq. (8) is satisfied for a given pair, the contact forces

are then calculated using Eqs. (4) and (5).

3.3 Numerical prediction of the granular damper

performance using a strict DEM model

In this subsection, the damping performance of the

granular damper is evaluated numerically according to

the strict DEM model described in the previous

subsection. As shown in Fig. 3, the model of the

damper consists of many particles packed inside a

container. The container also works as a mass of the

primary vibration systemmoving along the direction of

gravity. Parameters used in the DEM analysis are

shown in Table 1. To comply with experimental

conditions, the inner dimension of the container was

chosen to be 96 mm in height, 60 mm in width, and

6 mm in depth. The particle diameter was 6 mm, and

hence, the particle motions inside the container were

assumed to be two-dimensional. Material properties of

an acrylic resin were considered for both the container

and the particle. The forced response of the harmon-

ically excited primary systemwas calculated, in which

the number of particles varied from 0 to 60 at every 20

particles. In this case, the natural frequency of the

primary system alonewas approximately 6 Hz, and the

time step for each calculation was dt = 2.0 9 10-5 s.

The calculation step must be small enough in order to

avoid numerical instability. The main cause of such

instability is the collision between objects within a

short time. Hence, the time step should be smaller than

the contact duration Tc. In the present case, the time

step dtwas almost identical to Tc/5. Therefore, the total

calculation time needed to obtain a response curve for a

series of excitation frequencies becomes very large.

The numerical prediction result of the primary

system response is shown in Fig. 4. The amplitude of

the response curve is expressed by the RMS value

where the time history of the absolute displacement at

each excitation frequency is averaged over 40 periods.

In the figure, the response is also expressed in non-

dimensional form, where the RMS amplitude is

normalized by using the static deflection value,

Container 

60 mm 

96 mm 

Particles 
(diameter = 6 mm) 

k c 

Fig. 3 Analytical model of the particle damper

Table 1 Parameters used in DEM calculation

Primary system

Mass, M 0.086 kg

Spring constant, K 123.4 N/m

Damping coefficient, C 0.08 Ns/m

Particle

Mass, m 0.2 9 10-3 kg

Radius, r 3 9 10-3 m

Elastic constant, E 0.4 GPa

Poisson’s ratio, r 0.3

Friction coefficients, lp, lw 0.2

Container

Dimension 0.096 9 0.06 9 0.006 m3

Elastic constant, E0 0.4 GPa

Poisson’s ratio, r0 0.3
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d = F/K. In this case, the force amplitude F was

0.25 N, and the spring constant K of the primary

system was 123.4 N/m. Hence the static deflection

was calculated as d = 2.0 mm. The results obtained

are similar to the experimental observations, where the

peak amplitude of the primary system is damped

effectively as the number of particles increases. The

peak frequency is also found to move towards a lower-

frequency region depending on the number of

particles.

4 Contact detection model using cellular automata

In the elementary DEM approach, an interparticle

contact is usually checked for all combinations of

particles, even if they are separated apart. Such a

process seriously increases the total computational

time for a large number of particles. In order to make

the calculation more efficient, we investigate an

approach combining the DEM with the CA for

modeling particles moving inside a granular damper

container. While we use DEM for modeling particle

motions, which are governed by the physical law, CA

is introduced for reducing computational cost by

limiting the contact checks within the local neighbor-

ing region of each particle in cellular space. Specif-

ically, particle displacements are treated as continuous

values, and are numerically integrated in a rigorous

manner using the Runge–Kutta method, obeying the

equations of motion. At each moment, the calculated

particle displacements along the x and y directions are

further mapped onto the two-dimensional space. The

indices used in the two directions correspond to

discrete positions of particles in cellular space. We

also investigate the effect of simplification in the

contact force calculation, which allows the unit time

step of numerical integration to become relatively

larger in comparison to the strict model, without

destabilizing the system calculation.

4.1 Definition of discrete space for contact

determination of particles

In this study, each compartment within a discrete

space is called a cell. An example of the discrete space

representation inside the container is shown in Fig. 5,

in which the two-dimensional space is discretized into

32 rectangular cells vertically and 20 cells horizon-

tally. Compared to the model shown in Fig. 1, the unit

cell size corresponds to 3 mm. Thus, a particle having

diameter of 6 mm occupies 2 9 2 cells. With refer-

ence to the origin (0, 0) assigned to a cell at the bottom

left corner, the location of each cell is expressed by a

combination of indices in both directions. Discrete

representation of particle position along the two

directions, ix and iy, is converted from the original

real numbers x and y in accordance to,

ix ¼ maxfn 2 Zjn\ Nx � x=W þ 0:5ð Þg
iy ¼ maxfn 2 Zjn\ Ny � y=H þ 0:5

� �

g

�

ð9Þ

In Eq. (9), W and H denote the width and height of

the container, Nx and Ny the indices of cells in

horizontal and vertical directions, respectively. We

assume that the particle center is located at a cell with

the indices calculated a priori, although it does not

always coincide with the true center due to the round-

X
/ δ

X

Fig. 4 Frequency response of the particle damper calculated by

the DEM model

22 cells

Container wall 34 cells

Particle

y

x

Fig. 5 Space discretization into cellular grids for the detection

of contact between particles (example case of a 22 9 34

discretization)
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off errors in this conversion process. Herein, the size

of a cell should be smaller than the radius of the

particle in order to avoid overlapping of multiple

particles at a single cell site. While the particle

positions ix and iy are only used for the determination

of inter-particle contact within the discrete space at

each calculation step, the original position values

x and y are consistently updated according to the DEM

calculation. In the present investigation, three types of

discrete cellular spaces are arranged, namely,

32 9 20, 64 9 40, and 128 9 80, and the effect of

the spatial resolution on the calculation accuracy is

evaluated.

4.2 Detection of contact between objects

Every particle center belongs to a particular cell center

in space. In detecting the collisions between particles

and other objects, the space is first searched sequen-

tially for a cell having a particle center. If the cell is

found, the surrounding neighboring area, whose

thickness is as large as the diameter of the particle,

is placed as shown in Fig. 6a. The presence of other

particles is subsequently scanned within the neigh-

boring site in order to determine whether the inter-

particle collision will occur or not. Specifically, the

four cells located near the central cell are excluded

from the search since they cannot include a particle

center. As shown in Fig. 6b, a particle present within

the region along the inner wall is considered to collide

with the wall. Particle behavior is then updated by

considering the collision force between the particle

and the second object. The force is calculated accord-

ing to the distance between the particle and the object.

Confinement of the contact search within the

neighborhood of the particles reduces the computa-

tional time, especially for a large number of particles.

Whereas the number of contact checks in one simu-

lation cycle in an elementary DEM model is of the

order of N2 for N particles, in our model the contact

number is of the order of 20 9 N. The factor 20

corresponds to the number of neighbors that are

scanned.

4.3 Modeling the collision force acting

on particles

Since the particle collision is determined in the

discretized cellular space, rigorous expression of the

contact forces in Eqs. (4) and (5) may cause numerical

instability under an approximate time-step setting. In

addition, the precise expression, which requires a short

time step, affects the total calculation time. Therefore,

the impact dynamics are roughly approximated by the

restitution coefficient instead of the expression of the

sum of stiffness and damping forces. Friction between

particles is further neglected for simplification. Thus,

we only need to consider the momentum change in the

normal direction, and the rotation of particles is not

considered. These approximations allow the unit time

step to become relatively large in comparison to the

strict model, without causing numerical instability in

the system calculation.

The particle velocity is first estimated according to

the conservation of momentum before and after the

collision. In the case of interparticle collision, as

shown in Fig. 7a, the particle velocity along the axis

joining two particle centers is calculated by the

following equation:

v0n1 ¼
1

2
ðvn1 þ vn2Þ � eðvn1 � vn2Þf g ð10Þ

In Eq. (10), vn1 and v0n1 respectively represent the

particle velocities before and after the collision, vn2 the

Particle center

A cell incorporating 
particle center

Contact neighborhood Neighborhood for contact search

Wall cells

(b)(a)Fig. 6 Determination of

collisions: a between

particles, and b between

particle and wall
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velocity of the other particle before the collision, and e

the coefficient of restitution. In the case of the collision

between a particle and a wall (Fig. 7b), the particle

velocity is updated in accordance to

v0n1 ¼
1

mp þ mw

ðmp � mweÞvn1 þ mwð1þ eÞvw
� �

ð11Þ

In Eq. (11), mp and mw, respectively represent the

masses of the particle and the wall, vn1 corresponds to

the velocity of the particle whose direction is normal

to the wall, and vw the velocity of the wall in the same

direction. In addition, vw is provided by numerically

solving the equations of the primary system. Addi-

tionally, vw always becomes zero at the side walls of

the container, since head-on collisions between the

particle and the side wall do not occur. The restitution

coefficient that appeared in both Eqs. (10) and (11) is

based on the rebound characteristic measurement for

an acrylic particle against a flat acrylic plate.

In Fig. 8, the time history of a particle rebound

motion against a flat surface is compared between the

two impact force representations. In the approximate

model, the restitution coefficient e is assumed to be

equal to 0.75, whereas the damping coefficient cp in

the strict DEMmodel is adjusted to fit the time trace of

the approximate model. Since the velocity update

model described by Eqs. (10) and (11) only considers

two-body collision, momentum exchange among

many objects cannot be represented properly. There-

fore, the impact force is further calculated from the

momentum change towards the direction of collision

for each combination of particles, in accordance to

fn1 ¼ mp � ðv0n1 � vn1Þ=dt ð12Þ

In Eq. (12), dt represents the unit time step. The total

force acting on a particle is calculated by adding every

contribution of the impact force from the surrounding

contacting particles. By further resolving the force

vector into its x and y components in the global

coordinate system, and substituting these into the force

term in Eq. (2), the particle motion can be calculated.

Similarly, the summation of the particle impact forces

in contact with the container is also considered in the

equation of the primary system [Eq. (1)].

5 Results and discussion

5.1 Calculated response of the system using CA-

based contact detection model

The primary system response of the granular damper is

calculated using the CA-based contact detection model.

The same condition as the strict DEMmodel is applied,

but the contact force approximation model described in

Sect. 4.3 is introduced. The two-dimensional space is

divided into 32 9 20 cells, where the unit cell size

corresponds to 3 mm. The calculation accuracy is

investigated using two different time steps for the

numerical integration, namely, dt = 2.0 9 10-5 s and

1.0 9 10-4 s. The calculated system responses whose

values are presented in non-dimensional form are

compared in Fig. 9. Despite the coarse setting of the

unit time step in the latter case, little difference is found

in these results for each particle number.

vn1

vn2
vn1’

Side wall 
(vw = 0) 

vw

vn1vn1
vn1’vn1’

(b)(a)Fig. 7 Change of particle

velocity upon collision:

a against particle, and

b against a wall

Fig. 8 The time history of a particle rebound against a flat plate

is compared between two impact force representations. In the

approximate model, the restitution coefficient e is taken to be

equal to 0.75. The damping coefficient cp in the strict DEM

model is adjusted to fit the time trace of the approximate model
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The influence of the two-dimensional space divi-

sion on the calculation accuracy is shown in Fig. 10,

where three types of spatial resolutions are compared

in regard to the response characteristics of the primary

system incorporating respective particle numbers. The

unit time step in these cases is set to

dt = 1.0 9 10-4 s. In every case, the response curves

corresponded well to each other, regardless of the

spatial resolution. The impact phenomenon ends

instantaneously without causing numerical instability

in the model, and the resolution of the spatial division

rarely affects the determination of the interparticle

contact as long as the time step is small enough

compared to the minimum time needed for the particle

to travel a unit cell length.

As shown in Fig. 11, the responses of the primary

system incorporating a different number of particles

are further compared with the responses obtained by

the strict DEM model. The discrete two-dimensional

space is divided into 32 9 20 cells in the approximate

model. Additionally, the time step used for the

calculation is different in these models. Almost

identical responses can be obtained using the approx-

imate model. The slight difference in the response

amplitude of the approximate model near the

resonance is due to the overestimation of the contact

forces. Discretizing the space at the higher resolution

might not improve the accuracy under the coarse time

step setting.

5.2 Calculation time

The time required for system calculation in both the

strict and the approximate models is compared in

Fig. 12. The time step used for the numerical integra-

tion is equal to dt = 2.0 9 10-5 s, which is found to

be the required marginal time step in order to obtain

stable results for the strict model. In the approximate

model, another time step, namely, dt = 1.0 9 10-4 s

was considered. Increasing the particle numbers by 10,

led to a measured increase in the actual time required

for the computer to complete the 5 s of system

response calculation. The tested hardware was

equipped with a Core 2 Duo 3.0 GHz central process-

ing unit (CPU), and a 2 GB main memory. A 32-bit

Linux operating system was installed.

The calculation time required for strict DEM

analysis becomes significantly large as the number

of particles increases, while the time taken by the

approximate model is much shorter. The difference

X
/ δ

(a)

X
/ δ

(b)
Fig. 9 Frequency

responses of the particle

damper calculated using the

CA model. The two-

dimensional space consists

of 32 9 20 cells. The unit

time step is set to:

a dt = 2.0 9 10-5 s, and

b dt = 1.0 9 10-4 s

X
/ δ

(a)

X
/ δ

(b)

X
/ δ

(c)

Fig. 10 Effects of the two-dimensional space grid division on the precision of the frequency response calculation. The number of

particle is: a 20, b 40, and, c 60

A combined approach for modeling particle behavior 415

123



becomes progressively large for an increasing number

of particles. The resultant calculation time in the strict

model is quite dependent on the contact determination

between objects, where the distance between every

combination is calculated and examined within the

two-dimensional space, even though some pairs are

distant. On the other hand, since the contact search is

only limited in the particle neighborhood sites in the

approximate model, the time for computation is

reduced significantly. The computing efficiency values

of the approximate model are shown in percentage, in

Table 2. The efficiency was defined as the ratio of the

time required for the strict DEM model to the time for

the approximate model, and the values were calculated

for the time step condition: dt = 2 9 10-5 s. In terms

of computational efficiency, the suggested approxima-

tion model is far more effective than the conventional

DEM model, however, by an insignificant amount of

degenerating calculation accuracy.

6 Conclusions

In the present study, we investigated a new approach

combining the DEM with the CA for modeling the

dynamic behavior of particles inside a vibrating

damper container. While we used DEM to model the

particle behavior using the equations of motion, the

discrete cellular space was defined to limit the contact

search within the local neighborhood of each particle.

Additionally, a simplification was introduced on the

representation of the contact force between the

particles. It is shown that the computation becomes

more efficient than the elementary DEM model,

especially for a large number of particles, by intro-

ducing the particle contact scanning within a discrete

cellular space. It is also shown that the suggested

contact force approximation model allows a coarse

setting of the unit time step, which contributes to the

reduction of the computational time, and neither

degenerates the calculation accuracy nor causes the

numerical instability.
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Fig. 11 Comparison of the calculation results between the strict DEM and approximate models. The time step is set to

dt = 2.0 9 10-5 s in the strict model, and dt = 1.0 9 10-4 s in the approximate model. The number of particle is: a 20, b 40, and, c 60

Fig. 12 Variation of calculation time against particle number

Table 2 Computing efficiency of the approximate model in

comparison to the strict DEM model

Number of

particles

Computing time (s) Efficiency

ratio (%)
Strict

model

Approximate

model

20 4.4 3.3 134.0

40 16.6 5.7 288.8

60 37.3 8.4 445.6

80 62.5 11.0 568.8

100 97.2 13.7 710.5

The computing times were compared under the same time step

condition: dt = 2.0 9 10-5
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