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Abstract In this paper, the element free Galerkin

method (EFG) is applied to carry out the topology

optimization of continuum structures with displace-

ment constraints. In the EFG method, the matrices in

the discretized system equations are assembled based

on the quadrature points. In the sense, the relative

density at Gauss quadrature point is employed as

design variable. Considering the minimization of

weight as an objective function, the mathematical

formulation of the topology optimization subjected to

displacement constraints is developed using the solid

isotropic microstructures with penalization interpola-

tion scheme. Moreover, the approximate explicit

function expression between topological variables

and displacement constraints are derived. Sensitivity

of the objective function is derived based on the

adjoint method. Three numerical examples are used to

demonstrate the feasibility and effectiveness of the

proposed method.

Keywords Topology optimization � Element free

Galerkin method (EFG) � Displacement constraints �
Sensitivity analysis � Optimality criteria

1 Introduction

The topology optimization design of the continuum

structures is one of the most challenging research topics

in the field of the structural optimization (Bendsøe and

Sigmund 2003). The purpose of the topology optimiza-

tion design is to find the optimal lay-out of a structure

within a specified region. The topology optimization

design of the continuum structures is essentially a

discretized 0–1 variables problem. Some familiar for-

mulations including homogenization method (Bendsøe

andKikuchi 1988), variable density approach (Zhou and

Rozvany 1991; Bendsoe and Sigmund 1999), evolution-

ary structural optimization approach (Xie and Steven

1993), level set-based approach (Sethian andWiegmann

2000; Wang et al. 2003; Allaire et al. 2004) and ICM

(Independent Continuous Mapping) method (Sui and

Peng 2006) have been developed for topology optimiza-

tion. The current investigations mainly focus on the

problems, whose objective function are compliance or

potential energy subjected to the global constraints, such

as volume or natural frequency constraints. Less effort

has devoted to topology optimization of continuum

structures subjected to the displacement constraints.

The displacement constraints are very important in
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practicable structures, and the design can not be put into

use without considering the constraints.

To date, the prevailing numerical method in topol-

ogy optimization is the finite element method (FEM).

The finite elements are utilized not only to describe the

fields of displacements and strains but also to represent

the topology of structures. It can be seen that the

standard SIMP model and most of its variants were

formulated based on elemental design variables, in

which the relative densities of elements are often treated

as design variables. However, in topology optimization

of continuum structures, the element density variables

may be one of the reasons for the occurrence of

numerical instabilities, for example, checkerboards,

mesh-dependence, and a non-smooth zigzag boundary

(Zhou et al. 2001; Sigmund and Petersson 1998). In

addition, frequent remeshing is unavoidable when

dealing with large deformation or moving boundary

problems based on FEM. Recently, there have emerged

several methods for topology optimization of structures

based on nodal design variables of finite elements.

Matsui and Terada (2004) studied the nodal density

approximant for topology optimization problems by

using finite element shape functions. Rahmatalla and

Swan (2004) presented a nodal variable based topology

optimization method to ensure C0 continuity of the

design variables for suppressing checkerboards using

finite elements. Kang and Wang (2011) discussed the

merits of standard Shepard interpolations in preserving

the physical meaning of density variables for topology

optimization of structures.

In recent years, a group of meshless methods have

been developed and achieved remarkable progress

(Belytschko et al. 1996; Liu and Gu 2005), such as

smooth particle hydrodynamics method (SPH) (Mon-

aghan 1992), element free Galerkin method (EFG)

(Belytschko et al. 1994), reproducing kernel particle

method (RKPM) (Liu et al. 1995), meshless local

Petrov–Galerkin method (MLPG) (Atluri and Shen

2002), collocation meshless method (Zhang et al.

2001), and so on. These are methods in which the

approximate solution is constructed entirely in terms

of a set of nodes, and no element or characterization of

the interrelationship of the nodes is needed. The

element free Galerkin method (EFG) is one of the

popularly used meshless methods, as it generally

exhibits very good numerical stability and possesses

excellent rate of convergence and reasonably accurate

results. The EFG method has been successfully

applied to large variety of problems including two-

dimension and three-dimension linear and nonlinear

elastic problems (Belytschko et al. 1997), fracture and

crack growth problems (Belytschko et al. 1994), plate

and shell structures (Liu and Chen 2001), and so on. In

EFG, the shape function is constructed by moving

least square (MLS), and control equation is produced

from the weak form of variational equation. Because

the EFG shape function constructed using the MLS

approximation lacks the Kronecker delta function

property, special techniques are needed in the imple-

mentation of essential boundary conditions, for exam-

ple, the penalty method, the Lagrange multiplier

method, and so on. At present, some researchers have

already explored structural topology optimization

using meshless methods. Zhou and Zou (2008)

introduced the implicit topology description function

method into meshless method for optimization of

continua. Zheng et al. (2008) applied the meshless

radial point interpolation method (RPIM) to carry out

a topology optimization design for the continuum

structure. Cho and Kwak (2006) formulated a struc-

tural topology optimization method using the mesh-

less method for geometric non-linearly modeling. Luo

et al. (2013) proposed a structural topology optimiza-

tion method using a dual-level point-wise density

approximant and the meshless Galerkin weak-forms.

Luo et al. (2012) also proposed a meshless Galerkin

level set method for shape and topology optimization

of continuum structures and used CSRBFs techniques

to parameterize the level set surface and to construct

the meshless shape functions.

This study aims to propose the topology optimiza-

tion of continuum structures with displacement con-

straints using the element free Galerkin method

(EFG). Considering the relative density at Gauss

quadrature points as design variable, and the mini-

mization of weight as an objective function, the

mathematical formulation of the topology optimiza-

tion is developed using the SIMP interpolation

scheme. The approximate explicit function expression

is given between topological variables and displace-

ment constraint. The sensitivity analysis of topology

optimization under displacement constraints is

derived in detail, and the filtering technique is adopted

to eliminate the checkerboard pattern with the point

state. The problem is well solved by using optimality

criteria. Three numerical examples are used to prove

the feasibility of the approach adopted in this paper.
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2 Element free Galerkin method for plane

elasticity

2.1 Moving least square approximation

With the moving least square (MLS) method (Be-

lytschko et al. 1994), if field variable is a function such

as uðxÞ, the interpolation function uhðxÞ in a sub-

domain Xs can be defined over a number of scattered

local points xi (i = 1, 2, …, n) by

uhðxÞ ¼ PTðxÞaðxÞ; 8x 2 Xs ð1Þ

where PðxÞ is the basis function of the spatial

coordinates. For two-dimensional problems, the com-

plete polynomial basis functions are chosen as

In Eq. (1), aðxÞ is a vector containing coefficients

which are functions of the global Cartesian coordi-

nates x1; x2½ �T, depending on the polynomial basis.

These coefficients can be obtained by minimizing a

weighted discrete L2 norm defined as

JðxÞ ¼
Xn

i¼1

wðxi; xÞ½PTðxiÞaðxÞ � ûi�2 ð2Þ

where n is the number of nodes in the support domain

of x for which the weight function wðxi; xÞ 6¼ 0; ui is

the nodal parameter of u at x ¼ xi; and wðxi; xÞ is the
weight function associated with the node i. In this

paper, weight function is cubic spline weight function

as below

wðxi; xÞ ¼
2=3� 4r2i þ 4r3i ri � 0:5
4=3� 4ri þ 4r2i � 4=3r3i 0:5\ri � 1

0 ri [ 1

8
<

:

where ri ¼ di
rw
¼ x�xij j

rw
in which di ¼ x� xij j is the

distance from node xi to the interest point x, and rw is

the size of the support domain for the weight function.

The stationary of J with respect to aðxÞ leads to the
following set of linear relation

AðxÞaðxÞ ¼ BðxÞUs ð3Þ

where Us is the vector that collects the nodal

parameters of the field function for all the nodes in

the support domain,Us ¼ û1; û2; . . .; ûn½ �T; andAðxÞ is
called the weighted moment matrix defined by

AðxÞ ¼ PTWP¼
Xn

i¼1

wðxi; xÞPðxiÞPTðxiÞ ð4Þ

The matrix BðxÞ in Eq. (3) is defined as

BðxÞ¼PT

W¼ wðx1;xÞPðx1Þ;wðx2;xÞPðx2Þ; . . .;wðxn;xÞPðxnÞ½ �
ð5Þ

Solving Eq. (3) for aðxÞ, we have

aðxÞ ¼ A�1ðxÞBðxÞUs ð6Þ

Substituting the above equation back into Eq. (1), we

have

uhðxÞ ¼
Xn

i¼1

/iðxÞûi ¼ UTðxÞUs ð7Þ

where UðxÞ is the vector of MLS shape functions

corresponding n nodes in the support domain of the

point x, and can be written as

UTðxÞ ¼ /1ðxÞ;/2ðxÞ; . . .;/nðxÞ½ �
¼ PTðxÞA�1ðxÞBðxÞ: ð8Þ

2.2 Discrete equations in 2D problem

Considering the following standard two-dimension

problem of linear elasticity defined in the domain X
bounded by the boundary C

LTrþ b ¼ 0 in X
rn ¼ t on Ct

u ¼ u on Cu

8
<

: ð9Þ

where L is the differential operator; r is the stress

vector; u is the displacement vector; b is the body

force vector; �t is the prescribed traction on the natural

boundaries; �u is the prescribed displacement on the

essential boundaries; n is the vector of unit outward at

a point on the natural boundary.

linear basis function PTðxÞ ¼ 1; x1; x2½ � m ¼ 3

quadratic basis function PTðxÞ ¼ 1; x1; x2; x
2
1; x1x2; x

2
2

� �
m ¼ 6
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The element free Galerkin method uses the moving

least squares (MLS) shape functions. Because the

MLS approximation lacks the Kronecker delta func-

tion property, the constrained Galerkin weak form

should be posed as follows
Z

X
dðLuÞTDðLuÞdX�

Z

X
duTbdX�

Z

Ct

duT�tdC

� d
Z

Cu

1

2
ðu� uÞTaðu� uÞdC ¼ 0 ð10Þ

where a ¼ j a1 a2 � � � ak j is a diagonal matrix of

penalty factors.

The displacement at any point can be approximated

using n nodes in the local support domain of the point

u ¼ u

v

� �
¼ /1 0 � � � /n 0

0 /1 � � � 0 /n

� �
û1
v̂1

..

.

ûn
v̂n

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼ Uû

ð11Þ

where U is the matrix of the shape functions, û is the

vector of the displacements at the field nodes in the

support domain, and n is the number of nodes in the

support domain of a quadrature point.

In terms of the integration by parts and the divergence

theorem, the discrete governing equation corresponding

to the weak formulation can be expressed by

KþKa½ �U ¼ Fþ Fa ð12Þ

where

K ¼
Z

X
BTDBdX;

F ¼ Fb þ Ft ¼
Z

X
UTbdXþ

Z

Ct

UT�tdC
ð13Þ

Ka ¼
Z

Cu

UTaUdC; Fa ¼
Z

Cu

UTaudC ð14Þ

BI ¼
/I;x 0

0 /I;y

/I;y /I;x

2

4

3

5;

D ¼ E

1� l2

1 l 0

l 1 0

0 0 1� lð Þ=2

2

4

3

5
ð15Þ

In the numerical implementation, the above equa-

tions will be assembled by using Gauss quadrature

scheme over the problem domain. With the Gauss

quadrature, these matrixes can be further expressed by

K ¼
Xng

i¼1

w
_

iB
T xið ÞDB xið Þ J xið Þj j ð16Þ

F ¼
Xng

i¼1

w
_

iU
T xið Þb xið Þ J xið Þj j

þ
Xng

i¼1

w
_

iU
T xið Þ�t xið Þ J xið Þj j ð17Þ

where ng is the number of gauss quadrature points, w
_

i

is the weighting factors for the ith gauss point, J xið Þ is
the Jacobian matrix.

3 Formulation of the topology optimization

3.1 The optimization model with displacement

constraints

SIMP (solid isotropic microstructures with penaliza-

tion) is a common density interpolation model (Zhou

and Rozvany 1991). In SIMP model, a penalization

factor which has the effect of penalizing the interme-

diate density is introduced to ensure that the contin-

uous design variables are forced towards to a 0–1

solution. The relation between the density and the

material tensor is written as

Eijkl xð Þ ¼ qp xð ÞE0
ijkl ð18Þ

where Eijkl
0 and Eijkl represent the elastic modulus of a

given solid material and interpolated elastic modulus,

respectively; q(x) is design variable; p is a penalization
factor, p C 1.

In element free Galerkin (EFG) method, the global

stiffness matrix in discrete equation is assembled by

the stiffness matrix of Gauss points. So in order to

reduce the computational tasks, the design variable is

set at the Gauss quadrature point. Considering the

relative density at Gauss quadrature points as design

variable, and the minimization of weight as an

objective function, the topology optimization problem

of a continuum structure subjected to displacement

constraints can be stated as follows
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min:M ¼
Png

i¼1

qimi

s:t: url � �ur ðr ¼ 1; . . .;R ; l ¼ 1; . . .; LÞ
0\qmin � qi � 1

ð19Þ

where qi is the relative density of the ith Gauss points,
and is the design variable; mi is the inherent weight of

the ith Gauss points; url is the rth constrained

displacement under the lth load condition; �ur is the

prescribed limit of ur; R is the total number of

displacement constraints in the design; L is the total

number of load cases; ng is the number of Gauss

quadrature points; qmin is a lower bound on density,

introduced to prevent any possible singularity, in the

typical application, we set qmin = 0.001.

To solve the optimization problem (19), the explicit

function expression between topological variables and

displacement constraints should be given firstly.

According to Mohr theorem, the displacement of

arbitrary point to the j direction can be calculated by

uj ¼
Xng

i¼1

Di ¼
Xng

i¼1

Z
ðrvi Þ

TðeRi Þdv ð20Þ

where rvi is the stress vector of the ith Gauss points

under the unit pseudo load; eRi is the strain vector of the
ith Gauss points under the real load.

By virtual work principle,

Di ¼
Z

ðrvi Þ
TðeRi Þdv ¼ ðFv

i Þ
Tui ð21Þ

By system Eq. (12), we can have

uj ¼ ðFvÞTU ¼ ðÛvÞTK̂ðqÞU: ð22Þ

3.2 Sensitivity analysis

In general, the adjoint sensitivity method (Bendsoe

and Sigmund 1999) is more effective for the sensitiv-

ity analysis when the number of design variables far

exceeds that of structural performance functions. For

this reason, the adjoint method is used to calculate the

sensitivity of the objective function.

By the derivative of Eq. (22) with respect to the

design variable qi, we can obtain as

ouj

oqi
¼ Fvð ÞToU

oqi
¼ Fvð ÞTU oÛ

oqi
ð23Þ

By the derivative of Eq. (12) with respect to the design

variable qi, we can have

oK

oqi
Ûþ K̂

oÛ

oqi
¼ 0 ð24Þ

It can be rewritten as

oÛ

oqi
¼ �K̂

�1 oK

oqi
Û ð25Þ

Substituting Eq. (25) into Eq. (23), we can have

ouj

oqi
¼ � Fvð ÞTUK̂

�1 oK

oqi
Û ð26Þ

In solutions, there would appear some dispersed and

no structural continuity points, analogous to so-call

checkerboard pattern in FEM. In this paper, the

phenomenon is termed the checkerboard pattern with

the point state. The filtering of sensitivities is adopted

to eliminate the checkerboard pattern with the point

state. The filter modifies the design sensitivity of a

specific Gauss point based on a weighted average of

the Gauss point sensitivities in a fixed neighborhood.

The filter works by modifying the Gauss point

sensitivities as follows

ouj

oqe
¼ 1

qe R
n

f¼1
Hf

R
n

f¼1
Hfqf

ouj

oqi
ð27Þ

where �Hf is the convolution operator, and can be

written as

�Hf ¼ rmin � dist e; fð Þ

in which, rmin is the filter radius; dist (e, f) is the

distance between the Gauss points e and f.

3.3 Optimality criteria

After obtaining the design sensitivities, a number of

efficient optimization algorithms can be used as the

optimizer to find the solution. According to the

mathematical formulation of the optimization prob-

lem, this study will choose the optimality criteria (OC)

method (Rozvany et al. 1995).

The OC method is derived based on Kuhn-Tucker

optimality conditions. The OC method is simple to

understand and implement, and is especially efficient for

problems with large number of design variables and few

constraints. The effectiveness of the method comes from

the fact that each design variable is updated indepen-

dently of the update of the other design variables
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The Lagrange function of the optimization problem

(19) can be constructed as

L ¼ mþ
XL

l¼1

XR

r¼1

krl url � �urð Þ þ
Xng

i¼1

li1 qmin � qið Þ

þ
Xng

i¼1

li2 qi � 1ð Þ ð28Þ

where krl, l1 and l2 are Lagrangian multipliers and

they must be non-negative.The well-known necessary

condition for a stationary solution of the problem (19)

is the Kuhn-Tucker condition, which here takes the

form:

oL

oqi
¼ om

oqi
þ
XL

l¼1

XR

r¼1

krl
ourl

oqi
� l1 þ l2 ¼ 0

url � �ur ¼ 0

l1 qmin � qið Þ ¼ 0

l2 qi � 1ð Þ ¼ 0

qmin � qi � 1

l1 � 0; l2 � 0

8
>>>>>>>>><

>>>>>>>>>:

The above Kuhn-Tucker condition is equivalent to

om

oqi
þ
XL

l¼1

XR

r¼1

krl
ourl

oqi
¼ 0 qmin\qi\1

om

oqi
þ
XL

l¼1

XR

r¼1

krl
ourl

oqi
� 0 qi ¼ qmin

om

oqi
þ
XL

l¼1

XR

r¼1

krl
ourl

oqi
� 0 qi ¼ 1

url � �ur ¼ 0

8
>>>>>>>>>><

>>>>>>>>>>:

ð29Þ

Considering Eq. (29) is equivalent to 0, that is

om

oqi
þ
XL

l¼1

XR

r¼1

krl
ourl

oqi
¼ 0

We define

Bi ¼ �
om
oqi

PL

l¼1

PR

r¼1

krl
ourl
oqi

¼ 1 ð30Þ

an update scheme for the design variables is formu-

lated as follows

qnewi ¼
maxðqmin;qi�mÞ if qiB

g
i �maxðqmin;qi�mÞ

qiB
g
i if maxðqmin;qi�mÞ\qiB

g
i\minð1;qiþmÞ

minð1;qiþmÞ if minð1;qiþmÞ�qiB
g
i

8
<

:

ð31Þ

where m is a positive move-limit, g is a numerical

damping coefficient. The introduction m and g is to

ensure the stability of the iteration.

4 Numerical examples

4.1 Example 1

A cantilever beam, as shown in Fig. 1, is now

discussed. The left-hand side of the beam is fixed

and a concentrated force F ¼ 10 kN is applied at the

middle of the free end. The problem domain is

discretized by 651 field nodes, and 600 rectangular

background cells are used for the numerical integra-

tion, in each background cell 2 9 2 Gauss quadrature

points are employed. The elastic material properties

are chosen as Young’s modulus E ¼ 3� 108 Pa,

Possion’s ratio l = 0.3. The initial total weight of

the structure is 600 ton, the initial displacement of the

loaded point P in the vertical direction is 0.006 mm,

and the vertical downward displacement constraint at

point P is 0.019 mm.

The optimization result of the beam obtained by the

present method without sensitivity filtering is shown in

Fig. 2a, and the checkerboard pattern exists in the final

result. The optimization result with sensitivity filtering

is shown in Fig. 2b. It can be seen from these results

that the filtering can effectively eliminate the checker-

board pattern phenomenon.

The variation of the objective function with itera-

tive number is shown in Fig. 3. Without sensitivity

filtering, the value of the objective function decreases

from 600 to 204.2 ton, and the number of iteration is

82. With sensitivity filtering, the value of the objective

function decreases from 600 to 227.8 ton, and the

10 

15 

F 

P 

Fig. 1 Example 1

316 X. Yang et al.

123



number of iteration is 81. The variation of the value of

the displacement at the point P with iterative number is

shown in Fig. 4. Without sensitivity filtering, the final

displacement at the point P in the vertical direction is

0.01879 mm. With sensitivity filtering, it is 0.0188 mm.

4.2 Example 2

The initial structural model is shown in Fig. 5, which

is fixed at both lower corners and subject to a

concentrate force F ¼ 1 kN at the center of the lower

edge. The problem domain is discretized by 21 9 41

field nodes, and 800 rectangular background cells are

used for the numerical integration, in each background

cell 2 9 2 Gauss quadrature points are employed. The

elastic material properties are chosen as Young’s

modulus E ¼ 3� 108 Pa, Possion’s ratio l = 0.3, and

mass density q ¼ 7800kg
�
m3. The initial displace-

ment of the loaded point P in the vertical direction is

0.02 mm, the vertical downward displacement con-

straint at point P is 0.06 mm.

The optimization result of the structure obtained by

the present method is shown in Fig. 6. The objective

function (mass) optimization history with iterative

number is shown in Fig. 7. The value of the objective

function decreases from 3900 to 1181 kg. The opti-

mization history of the displacement at the point P

with iterative number is shown in Fig. 8.

Fig. 2 Optimization results
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4.3 Example 3

We consider the cantilever beam as shown in Fig. 9.

The left-hand side of the beam is fixed, a concentrated

force F1 ¼ �1 kN is applied at the point P1 and a

concentrated force F2 ¼ 1 kN is applied at the point

P2. The problem domain is discretized by 441 field

nodes, and 400 rectangular background cells are used

for the numerical integration, in each background cell

2 9 2 Gauss quadrature points are employed. The

elastic material properties are chosen as Young’s

modulus E ¼ 3� 108Pa, Possion’s ratio l = 0.3. The

initial total weight of the structure is 100 ton, the

initial displacement of the loaded point P1 in the

vertical direction is -0.047 mm, the initial displace-

ment of the loaded point P1 in the vertical direction is

0.049 mm, the vertical downward displacement con-

straints at point P1, P2 are 0.14 mm.

The optimization result obtained by the present

method under the action of F1 is shown in Fig. 10a, the

optimization result under the action of F2 is shown in

Fig. 10b, and the optimization result by the co-action

of F1 and F2 is shown in Fig. 10c. In Ref (Zhou and

Rozvany 1991), considering the minimization of

compliance as objective function and the volume as

constraint, the same model is solved by the finite

element method (FEM). The optimization result is

shown in Fig. 10d. From these results, it can be seen

that similar optimization results were obtained by two

different algorithms, and a smoother optimization

result can be obtained by the present method.

The variation of the objective function with itera-

tive number is shown in Fig. 11, the value of the

objective function decreases from 100 to 36.52 ton,

and the number of iteration is 77. The variation of the

value of the displacement at the point P1, P2 with

iterative number is shown in Fig. 12. The final

displacement at the point P1 in the vertical direction

is -0.14, and is 0.14 mm at the point P2.

Fig. 6 Optimization results
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5 Conclusions

In this paper, the element free Galerkin method (EFG)

is applied to solve the topology optimization problem

of the continuum structures subjected to displacement

constraints. Based on the EFG method, a set of field

nodes are used to constructed numerical simulation

and optimization problem in the design domain,

without requiring to consider the mesh connectivity.

Considering the relative density at Gauss quadrature

Fig. 10 Optimization

results
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Fig. 11 Variation curve of the objection function
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points as design variables, and the minimization of

weight as an objective function, the mathematical

formulation of the optimization is developed using the

SIMP interpolation scheme. The approximate explicit

function expression between topological variables and

displacement constraints are derived. The filtering

technique of sensitivity is applied to eliminate the

checkerboard pattern with the point state. Several

numerical examples are shown to prove the validity

and feasibility of the present method. And the

examples also show the simplicity and fast conver-

gence of the proposed method. In future work the

proposed method can be straightforwardly extended to

more advanced topology optimization problems,

involving geometrical nonlinearity problems, material

nonlinearity problems, discontinuity problems and

singularity problems, to which the meshless methods

are more applicable than FEM method.
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