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Abstract In the present research, free vibration of
circular and annular sandwich plates with auxetic
(negative Poisson’s ratio) cores and isotropic/ortho-
tropic face sheets is investigated for different combi-
nations of the boundary conditions. To ensure that the
results are accurate and reliable, a global-local
layerwise plate theory is employed instead of the
traditional equivalent single-layer theories. The gov-
erning equations are derived based on Hamilton’s
principle and solved using a Taylor transform whose
center is located at the outer radius of the plate. Due to
this hint, the resulting semi-analytical solution can be
employed for both circular and annular sandwich
plates. After investigation of vibration behavior of a
single-layer annular auxetic plate, a comprehensive
parametric study including evaluation of effects of the
auxeticity for sandwich plates with isotropic and
orthotropic face sheets, symmetric and asymmetric
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layups, different core to sheet thickness, radius to
thickness, and inner to outer radius ratios, and various
boundary conditions, is carried out. Results show that
unlike the single-layer auxetic plates that exhibit a
transition state, the auxeticity may considerably
increase the natural frequencies and rigidities of the
circular/annular sandwich plates, especially when the
boundary conditions induce higher rigidity in the plate
or when the fibers are along the radial direction.
Accuracy of results of the employed layerwise theory
and the proposed semi-analytical solution is verified
by comparing the results with those of the three-
dimensional theory of elasticity extracted from the
ABAQUS software.

Keywords Free vibration - Auxetic core - Layerwise
theory - Composite annular sandwich plate -
Differential transform

1 Introduction

While rectangular plates have commonly been used
for relatively fixed structural components, plates with
circular or annular configurations have been the most
appropriate choice for plates with continuous (e.g.,
power train transmission plates or discs) or partial
(e.g., supporting or rotating tables) rotations or when
less energy dissipation (e.g., heat transfer) is of
concern. These types of plates may be fabricated in
three-layer sandwich constructions with different
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layer material properties to satisfy a diversity of
purposes; so that depending on the design require-
ments, the core may be either more rigid or more
compliant than the isotropic/orthotropic face sheets.
Various studies have been performed on annular single
layer and sandwich plates based on the three-dimen-
sional theory of elasticity and plate theories, using
different solution procedures (So and Leissa 1998;
Tornabene et al. 2009; Malekzadeh et al. 2010a, b;
Tajeddini et al. 2011; Zhou et al. 2003).

Apart from the researches that have been accom-
plished based on the traditional equivalent single-layer
plate theories, some more accurate researches have
been developed for the single-layer circular and
annular plates. Zhou et al. (2003) and Dong (2008)
investigated three-dimensional free vibration of annu-
lar plates with different boundary conditions using
Chebyshev-Ritz method. Liew and Yang (2000) and
Hosseini Hashemi et al. (2008) employed Ritz method
for three-dimensional free vibration analysis of thick
annular plates with different edge conditions. Mal-
ekzadeh et al. (2010a, b) studied free vibration of thick
laminated circular and annular plates supported by
elastic foundations, using a three-dimensional layer-
wise-finite element method.

Very limited researches have been presented so far
on vibration of the sandwich circular or annular plates.
Lee et al. (1998) analyzed free vibration and transient
dynamic responses of a rotating multi-layer annular
plate using the finite element method. The governing
equations of motion were derived using a zigzag
theory with a higher-order shear-deformation global
and a linear local displacement fields. Alipour and
Shariyat have presented numerous studied on the
sandwich circular and annular plates. Alipour and
Shariyat (2012, 2013a, 2014a) and Shariyat and
Alipour (2013) have shown that results of the tradi-
tional single-layer plate theories may be erroneous,
even for the simple cases. For this reason, they
proposed zigzag and layerwise theories with local and
global components for static and dynamic deformation
and stress distributions of the sandwich plates, using
corrections based on the three-dimensional theory of
elasticity. Alipour and Shariyat (2014b) studied
vibration of annular functionally graded sandwich
plates supported by non-uniform elastic foundations.
Finally, Shariyat and Alipour (2012, 2014, 2015)
proposed the concept of local correction factors for
functionally graded viscoelastic circular, functionally
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graded annular, and functionally graded sandwich
plates.

Power series solutions were employed by some
researchers for different analyses of the circular
plates (Alipour et al. 2010). On the basis of the
power series solutions, Alipour and Shariyat inves-
tigated buckling loads and stresses (2010, 2011,
2013b) of heterogeneous/viscoelastic variable thick-
ness circular plates resting on elastic foundations
and axisymmetric bending of the functionally
graded circular/annular sandwich plates (Alipour
et al. 2010; Alipour and Shariyat 2012, 2013a,
2014a; Shariyat and Alipour 2013) based on the
differential transform method. Moreover, the differ-
ential transform method was employed by Shariyat
and Alipour (2011) for free vibration and modal
analyses of circular plates made of bidirectional
functionally graded materials. Using the differential
transform technique, Lal and Ahlawat (2015) have
recently studied vibration and buckling of the
functionally graded circular plates.

Auxetic materials are solids with negative Poisson’s
ratios (Alipour and Shariyat 2015). Unlike the conven-
tional solids, auxetic rods expand laterally when stretched
axially while auxetic plates transform into synclastic
domes when a bending moment is applied on two
opposite sides. Through buckling and vibration analyses
of circular plates under various boundary conditions, Lim
(2014) deduced that as the Poisson’s ratio of the plate
becomes more negative, the critical bucking loads and
the natural frequencies diminish. Recently, Azoti et al.
(2013) studied free vibration of rectangular composite
sandwich plates with viscoelastic and auxetic layers,
using equivalent single-layer theories.

Vibration analysis of the single layer and sandwich
circular and annular plates with auxetic cores has not
been accomplished so far. In the present study, the
mentioned task is accomplished, including the fol-
lowing novelties:

1. Assessment of effects of using the auxetic cores
on the behavior of the sandwich plates, for the first
time.

2. Free vibration analysis of circular and annular

sandwich plates with auxetic cores and ortho-
tropic face sheets for the whole practical range of
the auxeticity, for the first time.

3. The analysis is performed using a layerwise
theory rather than the traditional equivalent
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single-layer theories whose results may encounter
serious accuracy problems in analyzing the sand-
wich plates.

4. The resulting equations are solved using a finite
Taylor’s transform whose center is located at the
outer radius of the plate. Due to this hint, the
resulting semi-analytical solution can be employed
for both solid and annular sandwich plates.

5. A comprehensive parametric study including
evaluation of effects of the auxeticity for sand-
wich plates with symmetric and asymmetric
layups, different core to sheet thickness, radius
to thickness, and inner to outer radius ratios, and
various boundary conditions, is carried out.

6. The presented conclusions extend the available
published information regarding the single-layer
isotropic auxetic circular plates and provide more
accurate results for the more complicated sand-
wich circular and annular plates with orthotropic
face sheets and auxetic cores.

7. Present results are verified by the results of the
three-dimensional theory of elasticity extracted
from ABAQUS software.

2 The layerwise constitutive laws
and displacement fields of the annular sandwich
plate with auxetic core and orthotropic face
sheets

Unlike the conventional materials, the auxetic (with
negative Poisson ratios) annular layers expand later-
ally when they are subjected to radial tensions, e.g.,
due to tensile bending stresses, and the opposite is true
as well. Therefore, the tensile regions of the thickness
expand and the compressive regions shrink laterally.
The auxetic materials may be manufactured in various
forms, among them, the fiber and foam shapes.

The traditional equivalent single-layer plate theo-
ries are generally not proper for the sandwich plates
and may lead to unreliable and sometimes, erroneous
results (Carrera et al. 2011; Carrera and Brischetto
2009; Di Sciuva et al. 2009; Maturi et al. 2014).
Indeed, this shortcoming stems from the fact that the
traditional equivalent single-layer theories assume an
identical and unique section rotation for all the layers
of the sandwich plate. The available results of the 3D

elasticity and zigzag theories (Di Sciuva et al. 1999,
2015; Turlaro et al. 2015; Carrera et al. 2011; Carrera
and Brischetto 2009; Shariyat 2010; Alipour and
Shariyat 2012) reveal that not only rotations of the
adjacent layers are different, but also rotation of the
core may be even opposite (with different sign) to
those of the face sheets. On the other hand, the
continuity condition of the in-plane displacements has
to be satisfied at the interfaces between layers.
Therefore, if the assumption of the equivalent single-
layer theories regarding the identical rotations is
employed, erroneous in-plane displacements will be
predicted at the interfaces between layers; a fact that
completely alters the resulting responses.

The layerwise or zigzag theories may be used for
the sandwich plates. At the early years of evolution of
the layerwise theories, some authors have proposed
higher-order layerwise theories. Di Sciuva et al.
(1999) presented a third-order generalized zigzag
theory that fulfilled a priori the shear traction conti-
nuity conditions at each interface of the laminated
plates. Although this condition is generally suitable for
investigation of the local effects, e.g., the resulting
stresses, it may not affect the global responses (e.g.,
lateral deflection and vibration responses) remarkably
(Reddy 2004; Di Sciuva et al. 2015). Eslami et al.
(1998) presented an mth-order layerwise theory whose
results where compatible to those of the three-
dimensional theory of elasticity (Shariyat and Eslami
1999). However, later investigations of Di Sciuva and
his co-authors and Shariyat and his co-authors have
proven that using higher-order local functions (e.g.,
zigzag function) within all the individual layer, leads
to a compliant and sometime, numerically instable
systems of equations. For this reason, they continued
their later researchers by using efficient but piecewise
linear zigzag functions (Di Sciuva et al. 2015; Shariyat
et al. 2015) releasing or retaining the continuity
condition of the transverse stresses, especially, the
normal transverse stress, at the interfaces between
layers. This approach was proven to be more efficient
and leads to numerically more robust results. For this
reason, they called these first-order zigzag theories as
Refined Zigzag Theories (lurlaro et al. 2015; Di
Sciuva et al. 2015; Shariyat et al. 2015; Khalili et al.
2014).

The considered plate is shown in Fig. 1 along with
the considered global (radial, r, and transverse, z) and
local (&) coordinates. The inner and outer radii are
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Fig. 1 Geometric parameters of the considered annular sand-
wich plate with orthotropic face sheets and auxetic core

denoted respectively, by a and b and thickness of the
top, core, and bottom layers are indicated by Ay, ho,
and h3, respectively. Based on the aforementioned
brief introduction, to present a sandwich plate theory
with a best compromise between the accuracy and
computational costs, a layerwise theory with piece-
wise-defined linear local and linear global components
may be proposed in the present research. This
piecewise linear layerwise theory is sufficient for
accurately prediction of not only the global behaviors
(such as the present vibration behaviors) but also the
local responses (e.g., the resulting stresses).

Present theory is a variant of the first-order global—
local layerwise theories of Di Sciuva et al. (2015) and
Shariyat et al. (2015). According to this theory, the
displacement field within each individual layer may be
described as:

N—1

up(x,y,z) = uj + ull =up(x,y) + zo,(x,y) + Z {Z _ Z<k)} X£k> (x,y,2)H(z — Z(k))

k=1
Wk('xayv Z) = W()(-x,y)

rotations of the kth layer of the plate, H is the
Heaviside unit step function, Z*) is the z coordinate of
the bottom surfaces of the kth layer, the superscripts
g and [ denote the global and local displacement
components respectively, and N = 3 is number of the
layers. After some manipulations and incorporating
the continuity of the displacement components at the
interfaces between layers, the following description
may be introduced for the displacement field of the
entire sandwich plate:

1 h . h
up = up +5(h1 +h2+25(1))¢,+52)(£2) + (Q(l) +31) Xﬁl)

h h h h
— o+ (é(” +—‘)w£l> -5 <<

2 2 2
. h h
uy =g +E% (0, +77) =uo + EPYD - <P <2
1 h h
u;:uo——(hl+h2—2§(3))q0——2}(£2)+ 5(3)__3 X£3)
2 2 2
h @ o (s0) 1\ 0. e s
= uy — — —= ——=< <=
wo =+ (£ =2 )y 2 < <7

w=Wwq
(2)
where and 1,05k> is the total rotation (sum of the global

¢, and local ng) rotations) of the kth layer of the plate.
The transverse global and local coordinates are
measured from their relevant mid-planes.

Cauchy’s strain—displacement relations are:

Ee=Uz+ W, (3)

where uo and wy are the radial and lateral displacement

components of the reference surface of the whole

(k)

sandwich plate, ¢, and y,’ are global and local

@ Springer

where the symbol “,” stands for the partial derivative.
On the other hand, based on Hooke’s generalized
stress—strain law:
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k)
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(k)
) o o ct )8
(k) (k) (k)
o = =l =y
1= vy, 1= vy,
(k) Ey’ (k) k
Gy = ® %)’ Ciu = Gﬁz) (4)
L —=v,5ve,

where the C, E, G, and v symbols denote the elasticity
coefficients, Young’s modulus, shear modulus, and
Poisson’s ratio, respectively.

3 The governing equations of motion of the plate
The governing equations of motion of the sandwich
plate are derived based on Hamilton’s principle:

/ (6K — 8U)dt = 0 (5)

where K and U are the kinetic and potential energies of
the plate, respectively.

1
K= 5/ p(i® +v?)dV, B
Vv
1
U= 5/ (0,8, + 0080 + Tr2),)dV O
\4

According to Egs. (2), (3), (6), and (7), one may
write:

SK — / p (i + W)V, (8)
\%4

5U:/58T6dV
v

Ou u Ou Ow
:/ { 0,0 (5) +096 (;) +1,,0 (a—z—l—a) }dV
4

9)
Integrating Eqgs. (8) and (9) by parts, leads to:
0K = —/p(u'éu + Wwow)dA (10)
A
oU = / {—(0,_, 4= 09) ou + 1,.0u,;.
r
%
Trz
_(rm,—i—T)éw}dV (11)
h/2
+/ / (0,0u + 1,,0w)dz dI' =0
-y
Substituting Egs. (10) and (11) into Eq. (5) yields:
h/2
[] ] ey
r
rA —h)2
n (TW v B) Sw — p(itdu + wow) }dz dA dt
r
/2
— // / (0,0u + t,0wydOdzdt =0
t T —h)2
(12)

where I is the boundary of the plate, i.e., the edges. The
governing equations have to be valid for any arbitrary
time interval. Therefore, the integrand of the time
integral has to be zero for the entire time interval. Using
this evidence and expanding the integrand of Eq. (12)
based on the layers quantities gives the following result:
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The displacement components may be substituted Equation (14) may be rewritten by performing the
according to Eq. (2). Therefore, Eq. (13) becomes: integrations in the thickness direction to achieve:
/2
(1) )
T o oot ()
A /2
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While the governing equations may be derived based on &//(1) £0:
the first integral, the essential and natural boundary " '

1 1 1 1
conditions of the plate may be defined based on the last hy Nﬁ = Nf(; ) SN 4 Mﬁ ) — Mé )
(boundary) integral. 2 r rr r
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Based on Egs. (2)-(4), (21) may be rewritten in the
following form:
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Based on Egs. (23) and (24), the governing Eqs. (16)-
(20) may be rewritten as:

ouy # 0:
(At + i A (w0, +77)
uo ]’ll
(Agz) +A§2) +A§2)> + <2 A<11) "‘B(n))
(1) (1)
a Vs hy m\ ¥,
X (‘//r,rr—i_ r ) (2A +BZQ> l"2
(2)
h2 1 2 h2 lpr.r
+ (71451) +B{} —7A< >) (wﬁﬁT
(h

2
M0 @
2722 ] 2

(1) (2)
Ay +By;

h2
+<4A3+mﬂ3+0@)

+<é”+hﬂ)+41m>¢m (27)

@ Springer



134 M. M. Alipour, M. Shariyat
Sy £0: ow # 0:
(a8 20 (1 +2) AL A AR ()
@A&Q +BY - %A;;) “ e (Zl A + Bﬁﬁ) + Ay (tﬂﬁ,‘) + @) + AL <l//5,2) + @)

(1)
R hy h1A<1) B<1)
<l//r,rr+ r ) 2 (2 22 +
(2)
v e B\ (e Y
r2 + 4A11 +D11 + 4A l//r,rr_'_ r

n h @
- <—2A“> +DY) + ZAS)) v

4 22 4 r2
()
h h r,r
= (B(3> —*A§l> v+ wr’ )

2\

hy (3 h3 £3)
+E(Bg2) 2A§2>) 2

h h

—Aﬁ)(l//ﬁz)ﬂ-W‘r):(Zz 11 - 221((,”)
o h oy () (1)

— (1
Up + 3 < +—= 2 lﬁ,

h3 RO, hy (1) hs
(B0 a2 i - (1 - i

~ o~

- (0 - meBy +7543 )
—AR WY+

B o\ o hy (h .
+<,§3> ht® + 43153)>¢§3)+ 2( YO ,fa))lwz)

(29)

@ Springer

3)
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4 The mathematical forms of the edge conditions

The governing Egs. (26)—(30) have to be solved along
with the boundary conditions. As mentioned in
Sect. 3, the essential (kinematic) and natural boundary
conditions may be defined based on the second
integral of Eq. (15). In this regard, the following
combinations of the edge conditions may be defined:

e (Clamped immovable edge:

uy = 0

l//(l) -0

WP =0 (31)
lp(3) =0

w=20
e Simply-supported immovable edge:

up =0

%Nﬁ” +MY =0
%Nﬁ‘) +MP —
—%Nﬁ” +M® =0
w=20

@Nﬁ” =0 (32)

e Roller-supported movable edge:

N LN L N® — g

th()—&-M =0

by oy 2 P2 ne) (33)
2 T
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e Free edge:

N+ N+ N =0

%N(') +MY =0

’122N( +M? %NP) =0 (34)
—%N( S+ M =0

0+ 07 +07 =0

5 The differential (Taylor’s) transform solution
of the resulting eigenvalue problem

The governing Egs. (26)—(30) may be solved using
finite Taylor transformation of the displacement
parameters [i.e.,
MO(r)v W(}"), lﬂ(’”)a %1)("), lp;(-Z)(r)? and 1/15,3)(7‘)]. In
contrast to the conventional transformations, since
present plate is mainly an annular one, the transfor-
mation cannot be expressed in terms of series about the
central point of the plate. The displacement parame-
ters are assumed to be analytical functions. Using
finite Taylor series transformation about the outer
radius of the sandwich plate, i.e., r=>b, and a
Kantorovich-type separation of variables, these func-
tions may be expressed as follows:

MO—ZU J iot l//(l):Zal(l)(r_b)jeiwt,

k=0
] lwl

E 19] r—>)

k=0

= 3)
2 19]( ] l(ut7W:

j=0

3

Wi(r—b)ye (35)

gk

~
I

0

where i is the unit imaginary number. Based on
Taylor’s series expansion, the 1 and terms appeared
in Egs. (26) to (30) may be expressed by the following
power series whose centers are located at r =b.

| S (36)
= (k+ )2 - )"
k=0

where ¢ = — %. Substituting Egs. (35) and (36) into the
governing Egs. (26) to (30) and performing some
manipulations, the transformed form of the governing
equations may be obtained as:

5140 7’5 0:

o

<~
Il
=}

1 2 3
{(af) +af) +48)

J+1
><<(I+2 G+ DU =Y - k+1)U./—k+l>

k=0

J
(Azz +A22 +A22 ) Z l+2Ujf/<
k=0
h
+ EIAIII) +B<111>>
(1) S (1)
x| G+2)G+ )0, — ng+1(]~—k+ 1)19,-k+1>

k=0

- <—‘A§12> +B§12>> Z (k+1)c 20",
k=0

h
A(,)+B§,>—?2A( )

2

(

x((j+2)(j+1 2, ng“(; k+1)19]<)k+1>
k=0

hy ) h @3
A+ 83 - 2240
N D@ (g0 0
X;( + 1) 0,5+ | By, 540
3) - (3)
((]+2)(}+1) o ng“(j—k‘H)ﬁij)

k=0

<B - )Z(k+ )29

k=0
o <>+,<>>ij

(-0
h
S0+ 12 521(() >> w9

+(1* ——1 ) 0?0 (r— b)Y =0
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oyl £0:

= n, hoa
Z{<B§1)+2A(11)>
=0
j+1

2)U+1)Uk+2_z = k+1)Uj i1

(+
=0
m h ! i+2
- B ?AZZ Z(k+l)g l]jfi
=0
o 1 1
<_1A(11)+h13(11)+D51)

4
(1) = (1)
G+2)G+ 1905 — > S i—k+ 100,

k=0
]’l2
(S nip - o) s o)

=0
hy

+2 <B<> %A”)[(]JrZ)(]Jrl) 92,

Jj+1

2}“% k+1)07,)
hz M, : 1290)
5 By, _A22 Z ;7

i=0

hy
—Al [0+ G+ 1) ,+1]+<2I”+1“> U]

W
+ I(l)+hlli')+—‘l<'>)w2ﬂ(')

40 J
2 (B ) w20y by
2\270
=0
(38)
oy? £ 0:
o0
h2 1 2 h2 3
Z{(jA(n) +B§1) 5‘4(11))
j=0
j+1
(+2)G+ 1)U Z@Hl(l —k+ 1DUjps1
k=0
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(G+2)G+1) k+2+z G- k+1191(>k+1‘|
= 0
7h2 h3A B(3) k 1 k+2,'9(2)
2 Z( +1)¢
2\2 —

h2
R +fAﬁ))
G+2)(+1) ,+2+§ : H G-k 1) >]
/
3
_( ( ) h3B22 3A22> Z k+2191('_)k

k=0
h
7A34){ 39+ G+1) ;4*(’9 31“))@20,

2
hy 3) 03\, 2,40
+—= > (2 Iy =1 o™,

+ (1§3> — sl + 43 IS )> 0?9} (r—b) =0
(40)
ow # 0:
3 {(AfM) +AY +A<”>
=0
j+l
|}]+ﬂ([+ 1) /+2—Z G —k+ D)W k+11
k=0

), 1
A4(14)(] + 1)Fj(+)1

(41)

By solving Eqgs. (37)—(41), an algebraic homogeneous
system of equations including the unknown displace-
ment parameters Uj,, 19;22, ﬂ}i)z, 191@2 and W,

(G = 0,1,2,...)is obtained. These equations have to be
solved with the transformed form of the edge condi-
tions, e.g., the transformed form of Eqs. (31) to (34)
that are as follows:

2 {(ZIAH +BH)(/+ 1)

+1+ 19+1+ Q9j+1)

N\
IS

hi
+< B§1)+D11>(I+ )J+)1

h
<2 Agz) +B(12)>
h h
xngH(U]_ + 119 e+ 219 >
0
hy - I
(2 B 4 pl! >>ng+1ﬁ;>k’

k=0
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o G _ ) _pyi—
> P =0=> 0P -b) =0, > =025 9=y =0,
=0 or
bt N+ MP) =0=
or 2
al 3 h e\,
Z{(Bn _7A11 )(I‘H)
hy hy j=0
> —ND M 2N =0 = h h
2 (o -50)
0 + (DD 50 i+ 1)0?)
hy (1),. hi oy | ha ( 1T i
Z {ZA(“)(I 1 (UH] " 319’(*)1 " 219"(*)1) @ e\ hs o3 ha o)
T 3 3 3 k 3
Jj=0 (BIZ 7? lz)zg + <(]jk?ﬂjk7ﬂjk)
k=0
h J h h / 3 M3y 46
S (et ) e (o) f-mro
k=0 =
hy 1),. R 1 2),. (45)
‘*‘7351)(/‘*‘ 1)19;+)1 _739 Qkﬂﬂj(‘—)k +B§1>(I
k=0 00
J > o w=0=)Y W(r—b) =0,
T St 2"
k=0
02+ 192 + DR z’:ﬁmﬁ(z) g0 N
11 1 22 < Uik 54N > 0 4+0? 4+ 08 =0=>
hs s3)  ha ) N :
+1) (U,H F0 =5 % > [(al) +48 +A) G+ DWyr + a0
) =0
+ @A@) i A Eﬁﬁ) . @19(2) 2) o(2) (3) o(3) j
7 12 2 S ik T Vi T 5 Yk +A 07 + A Y; ] (r—=»’=0 (46)
h h U _ ,
—SBGHDIY +FB Y c"“ﬂfi«} r Substiuting Upsa, 0y )25, V)% and Wy =
) k=0 2...n 4 2) from Egs. (37) to (41) into the appropriate
—b)’ transformed form of the boundary conditions appeared
=0 in Egs. (42) to (46), leads to the following system of
(44) equations:
_ - ( Uy
(D(w)m <D(a))172 (D(w)w (D((U)Llo U 0
(D(w)m (D(w)z,z (D(w)zg (D(w)z,lo 9 1) 0
q’(w)m (D(w)m (I’(w)3,9 (D(w)3,10 19?1) 0
(D(C‘)>4,1 (D(G))4,z d)(a))w (D<w)4,10 %2) 0
O(w)s; DP(w)s, D(w)sg  P(w)s g Uy _)0 (47)
D(w)g; P(w)g, O(w)gy P(w)g g 1952) 0
O(w),; P(w);, O(w); 9  @(w); 1983) 0
q’(w)s,l (D(w)s,,z (I’(w)w (D(w)g,lo 19(3) 0
(D(w)Q.l <D(a))9’2 (D(w)979 (D(w)9,10 W}o 0
_(D(w)lo,] (D(w)lo,z (D(w>10,9 (D(G))l()‘l() 1w, 0
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Existence of non-trivial solutions for the resulting
system of equations requires that:

(), , ‘I)(w)l,z - P(w)g P(w) 19

(CU) ‘p(w)z‘z : ‘D(U))z.y ‘I)(w)z,lo
‘D((D) ¢(w)3,2 : dj(w)w D(w)310
@(w) ‘15(0))4,2 : ‘p(w)w gD(w)4,10
Q)(w) ‘p(w)s,z : ‘p(w)sg ‘p(w)s,lo
45(60)( <I>(ca)6‘2 : dj(w)ﬁ.y ‘D(w)s.,u)
‘15(60)7 1 <1')(w)772 : ‘p(w)w D(w)719
(15(0))8 1 qj(w)s,z : @(w)sy D(w)g 10
D(w), ‘p(w)g,z : (D(w)” <15(a))9710
‘I’(w)lo,l ‘p(w)lo 2 : ‘15(‘0)10,9 ‘p(w)m,lo
=0

(48)

Solution of Eq. (48) gives the natural frequencies of
the annular/circular sandwich plate with auxetic core.

6 Results and discussions

Effects of the core auxeticity on the resulting natural
frequencies of the sandwich plates with isotropic or
orthotropic face sheets are evaluated in the present
section. Moreover, both symmetric and asymmetric
lamination schemes are examined. After presenting
results of the single-layer auxetic plates, for the first
time, results of the circular and annular sandwich plates
are reported for various boundary conditions. Since the
present results are the first reported results for the circular/
annular sandwich plates, no available results may be
found in literature to be used for comparison purposes.
For this reason, present results are verified by results of
the three dimensional theory of elasticity extracted from
ABAQUS finite element analysis software. The results
presented for the simple single-layer circular auxetic
plates by Lim (2014) for the first time, show discrepancies
with respect to ABAQUS results. For this reason, they
have not been used here for the verification purposes.
Results of ABAQUS finite element analysis code
for the circular and annular sandwich plates are
derived using axisymmetric quadratic (eight-node)
CAXS8R solid elements with reduced integration
(Fig. 2). To ensure that the resulting nodes of the

successive layers are coincident at the interfaces
between layers, all the layers are constructed by
partitioning a single hollow or solid cylinder. For this
reason, they appeared integrated in a single solid, in
Fig. 3 which has been depicted for sandwich plates
with hy/b = h3/b=0.1,h/b=0.15. The conver-
gence analysis (whose results are not included here for
the brevity sake) shows that even choosing two
elements (five nodal points) along the thickness of
the individual layers may lead to convergent results.
However, more elements are used to guarantee
convergence in all situations. Results of Tables 1, 2,
3,4, 5 and 6 are derived based on 900, 1800, 3500,
4000, 3150, and 2800 axisymmetric quadratic element
(in the radial section), respectively.

The extracted ABAQUS results may be considered
as 3D elasticity results. Indeed, merely using ABA-
QUS software, cannot lead to “3D elasticity” results.
For example, if one models the sandwich plate by
using shell/plate elements of the ABAQUS software,
the results will surely not be “3D elasticity” ones but
they will be associated with the classical or Mindlin
plate theories. Present results of ABAQUS software
correspond to 3D elasticity theory only because “Solid
3D elements” are used and not due to using the
ABAQUS code itself (plate theories are 2D ones). The
formulation used by ABAQYS for the solid elements,
is derived based on the energy-version of the 3D
elasticity theory. Washizu (1975), has proven that
minimization of the functional of the total potential
energy of the structure is equivalent to directly solving
the equilibrium equations in terms the stress compo-
nents, i.e., equations of the 3D elasticity.

The material properties chosen for the isotropic top,
core, and bottom layers are as follows:

Aluminium: E=70GPa, p=2700kg/m*, v=0.33
Core: E=10GPa, p=950kg/m’

Steel : E=210GPa, p=7850kg/m>, v=0.3
Alumina: E=380GPa, p=3800kg/m’, v=0.26

Material properties of the orthotropic face sheets are
mentioned in Sect. 6.4 along with the relevant
discussions.
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6.1 Results of a single-layer auxetic annular plate

As a first verification and investigation example,
effects of the auxetic nature of the material properties
on the first two dimensionless natural frequencies
(2 = way/p/E) of the single-layer auxetic annular
plate (a/b = 0.1) are assessed. The results are
extracted for various Poisson’s ratios and boundary
conditions and given for moderately thick (2/b = 0.1)
and thick (h/b =0.2) plates in Tables | and 2,
respectively. Results show that by decreasing the
Poisson’s ratio from 0.5 to —0.9, the natural frequen-
cies first decrease but then grow as the Poisson’s ratio
becomes more negative. The same trend has been
observed for the solid circular plate; for this reason,
the relevant results are not included, to save space. The
trend may be observed for all of the considered
boundary conditions of the moderately thick and thick
plates. However, ABAQUS results that show a good
agreement with the present results (the maximum
relative discrepancy is less than 2 %), confirm accu-
racy of the present conclusions. It should be mentioned
that since in the present study, the plate is a single-
layer one, present layerwise theory becomes a first-
order shear-deformation theory for which Hutchin-
son’s (1984) k = 5/(6 — v) shear correction factor is
selected. Results show that the trend transition is a
complicated phenomenon and depends on many
factors, among them: thickness to radius ratio, radius
ratio, material properties of the plate, boundary
conditions, and some other factors.

6.2 Effects of the core auxeticity on free vibration
of circular sandwich plates with various
boundary conditions

In the present section, a comprehensive sensitivity
analysis for evaluation of the auxeticity, boundary
conditions, thickness ratio, and lamination scheme
effects is presented. In this regard, sandwich plates
with the isotropic layers mentioned in Sect. 6.1 are
considered, for verification and investigation
purposes.

Results of the first two natural frequencies of
aluminium/auxetic core/alumina sandwich plates with
thick isotropic face sheets (h;/b = h3/b =0.1) are
extracted and compared respectively, in Tables 3 and
4 for two core thickness to outer radius ratios

@ Springer

(hy/b = 0.15 and 0.2) with the results of the three-
dimensional theory of elasticity extracted from
ABAQUS. Results are extracted for various edge
conditions and the practical range of the Poisson ratio
to present an adequate sensitivity analysis. It is known
that the auxeticity extent (value of the Poisson’s ratio)
depends on the employed manufacturing process.
Present results are derived using as much as twenty
series terms to ensure that significantly high accurate
results are achieved. Results of even the present thick
sandwich plates are in excellent agreement (the
maximum relative discrepancy is about 2.5 %), even
though an asymmetric lamination scheme (that leads
to a tension-bending coupling) is used. However, part
of this discrepancy stems from the approximate nature
of the finite element method (ABAQUS); so that, the
actual differences may be much smaller. Both types of
results, i.e., present layerwise results and results of the
ABAQUS software reveal that unlike the single-layer
auxetic plates, the auxeticity generally increases the
rigidities of the sandwich plates, and consequently,
leads to higher natural frequencies. Results given in
Tables 3 and 4 reveal that the auxeticity affects the
natural frequencies of the clamped sandwich plates
more considerably than the free (or even the roller
supported) plates. For positive Poisson’s ratios, natu-
ral frequencies of the sandwich plate with free edge are
higher whereas natural frequencies of the clamped
plate become higher for the more negative Poisson’s
ratios.

To present a better imagination of the trend of
variations of the first two natural frequencies of the
aluminium/auxetic core/steel plate, results of the
clamped, roller supported, and free sandwich plates
are plotted in Figs.3, 4 and 5, respectively
(h1/b=h3/b=0.1).

Recalling from Eq. (4) that the denominator of the
elastic coefficients is a parabolic (even) function of the
Poisson ratio, it may be expected that an absolute
extremum occurs at v = 0, e.g., in Fig. 3. However,
effect of the elasticity constants C;, = C,; of the core
material, that are directly affected by magnitude and
especially, sign of the Poisson ratio, cannot be ignored.
For this reason, the mentioned transition point has not
appeared in Figs. 3, 4 and 5.

Results presented in Figs. 3, 4 and 5 for the
fundamental (first) natural frequency belong to the
first lateral vibration and increase with the Poisson’s
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(a)

(b)

Fig. 2 Discretization of a the circular and b the annular sandwich plates, in ABAQUS software

ratio with a higher rate for the plate with clamped
edge. The second natural frequency of the clamped
plate is associated with the second lateral (or radial)
vibration mode. However, the second natural frequen-
cies of the roller supported plate are associated with
the second lateral (or radial) vibration mode for
Poisson ratios larger than —0.75. The vibration mode
associated with the Poisson’s ratios that are smaller
than —0.75, is an axial one. This issue may be checked
through investigation of the radial vibration modes
depicted for the three edge conditions, in Figs. 6,7 and
8, respectively. Therefore, for this range of Poisson’s
ratio, the axial vibration mode occurs before the
second lateral vibration mode. The Poisson ratio does
not affect the mode shapes of the lateral vibration
considerably. For this reason, the lateral vibration
modes are not depicted here. Similarly, for the plate
with free edge, the second vibration mode corresponds

to Poisson ratios higher than v, = —0.25 are lateral (or
radial) ones and the vibrations modes associated with
the smaller Poisson ratios are axial ones.

6.3 Effects of the core auxeticity for annular
sandwich plates with various boundary
conditions

Now, a comprehensive sensitivity analysis is per-
formed for some annular sandwich plates having
different lamination schemes and edge conditions. As
before, the annular (a/b = 0.1) sandwich plate is
considered to be thick to use advantages of the
layerwise theory proposed in the present research
(h1/b=h3/b=0.1, hy/b=0.15). In this regard,
sandwich plates with aluminium/auxetic core/alumina
and aluminium/auxetic core/steel are considered and
the relevant results are given in Tables 5 and 6,
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Fig. 3 Trends of variations (a) 1000
of the a first and b second )‘-_
natural frequencies of a
clamped sandwich plate 900 =%+ hy/b =0.15
with an auxetic core RS
\ - - - hZ/b =0.2
800 \\ %, -+ hy/b=025
@, 700
600
500
400 T T
1 0.75 0.5 0.25 0 0.25 0.5
Va
(b) 2800
%
. e hz/b =0.15
2600 - .
1{ y - - h2/b =02
2400 1 \% -+ h,/b=0.25
\
2200 1 :
@,
2000 1
1800 1
1600 -
1400 1
1200 r .
1 0.75 0.5 -0.25 0 0.25 0.5
Va

respectively. Results of Table 6 are derived for two
inner to outer radii ratios, i.e., a/b = 0.1 and 0.2. In
Tables 5 and 6, the edge conditions are denoted by two
terms phrases wherein the first one corresponds to the
inner edge. The conclusions made in the preceding
section for the circular sandwich plates are also
confirmed by results of Tables 5 and 6; e.g., the
natural frequencies increase monotonically as Poisson
ratio decreases. Furthermore, influence of the auxetic-
ity is more remarkable for the more rigid plate, i.e., the

@ Springer

roller supported and the free-clamped sandwich plates.
The discrepancies between present results and results
of the 3D elasticity theory are still small and in many
cases, ignorable.

6.4 Sandwich annular plates with orthotropic face
sheets

Finally, influence of the core auxeticity on natural
frequencies of annular sandwich plates with
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Fig. 4 Trends of variations
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orthotropic face sheets is investigated for various
radius ratios (a/b = 0.1 and 0.2), various lamination
schemes, and various combinations of the edge
conditions. The results are given in Tables 7 and 8
for moderately thick (h;/b=h;/b=0.1, hy/b=
0.15) and thick (h;/b=h3/b=0.1, hy/b=0.2)
plates, respectively. The face sheets are assumed to
be fabricated from an ultra-high modulus graphite-

0.5 -0.25
\p)

0 0.25 0.5

epoxy material with the following material properties

and types:

Material E, Ey G, Vo o (kg/
(GPa)  (GPa)  (GPa) m)

Mat I 310 6.2 4.1 0.26 1613

Mat II 6.2 310 1.35 0.0052 1613

@ Springer
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Fig. 5 Trends of variations
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Materials indicated by Mat I and Mat II are
identical with the exception of the fiber orientation
that is radial and circumferential, in the first and
second materials, respectively. Results of Tables 7
and 8 reveal that although Young modulus of the core
is significantly lower than those of the face sheets, a
trend similar to that observed in the preceding sections
may be noticed; so that the natural frequencies grow
monotonically with the decrease in the Poisson’s ratio.

@ Springer

-0.5 -0.25 0 0.2§ 0.5
\o)

Moreover, effect of the core auxeticity is more
remarkable for the more rigid plates (i.e., roller
supported-clamped plates), higher radius ratios, and
radial orientation of the fibers (i.e., for the Mat
I/auxetic core/Mat I lamination scheme).
Investigation of the discrepancies between the 3D
elasticity and present results in Tables 1, 2, 3, 4, 5 and
6 show that generally, the errors have not shown a
robust trend and in some cases, this trend is an
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Fig. 6 Variations of the (a) 0.07

radial vibration modes of the v, =0.5 =——
clamped sandwich plate, for v, =0.25 ——
a first and b second natural 006 1 e, .. v, = —
frequencies (v. = vy ) o v, =0.25 ===
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oscillatory one. Moreover, the relative errors are
small. However, the main source of discrepancy may
be attributed to natures of the employed solution
techniques in derivation of the two categories of
results; as ABAQUS uses the relatively accurate but
approximate finite element method and present
method uses a series solution that is sensitive to
number of the terms of the series (although number of
the terms is adopted based on an accurate convergence
study).

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/b

7 Conclusions

In the present research, influences of using the core
auxeticity on the free vibration of circular and annular
sandwich plates with isotropic or orthotropic face
sheets is investigated for the practical range of
auxeticity and for different combinations of the
boundary conditions, using a layerwise plate theory.
The resulting equations are solved using Taylor’s
transform whose center is located at the outer radius of

@ Springer
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Fig. 7 Variations of the
radial vibration modes of the
roller supported sandwich
plate, for a first natural
frequency, b second natural
frequency with

v, = —0.5,...,0.5, and

¢ second natural frequency
with v, = —0.75 and 0.9
(Ve =m2)
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Fig. 8 Variations of the
radial vibration modes of the
sandwich plate with free
edge, for a first natural
frequency, b second natural
frequency and positive
Poisson ratios, and ¢ second
natural frequency and
negative Poisson ratios
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the plate. After investigation of vibration behavior of a
single-layer annular auxetic plate, a comprehensive
parametric study including evaluation of effects of the
auxeticity for sandwich plates with isotropic and
orthotropic face sheets, symmetric and asymmetric
layups, different core to sheet thickness, radius to
thickness, and inner to outer radius ratios, and various
boundary conditions is carried out. Novelties of the
present research are listed at the end of the introduc-
tion section. The main practical conclusions may be
summarized as:

e Present results are accurate and in an excellent
agreement with results of the 3D theory of
elasticity extracted from ABAQUS.

e The single-layer auxetic plates exhibit a trend with
a transition state that begins by reductions in the
natural frequencies by decreasing the Poisson’s
ratio and ends by an opposite trend.

e Decreasing the Poisson’s ratio, considerably and
monotonically increase the natural frequencies and
rigidities of the circular/annular sandwich plates.

e The axeticity may affect the order of the mode
shapes of the lateral vibration.

e The trend transition is dependent on many factors,
among them: lamination scheme, thickness to
radius ratio, radius ratio, material properties of the
core, and boundary conditions.

¢ Influence of the core auxeticity is more remarkable
for plates with more rigid edges, higher radius
ratios, and plates with radially oriented fibers.
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