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Abstract This paper investigates the nonlinear size-

dependent dynamics of an imperfect Timoshenko

microbeam, taking into account extensibility. Based

on the modified couple stress theory, the nonlinear

equations of motion for the longitudinal, transverse,

and rotational motions are derived via Hamilton’s

energy method. A high-dimensional finite degree-of-

freedom system of ordinary differential equations is

obtained by the application of the Galerkin scheme.

This set of equations is solved through use of the

pseudo-arclength continuation method. A stability

analysis is conducted via use of the Floquet theory.

The resonant motion characteristics of the microbeam

are examined by plotting the frequency-response and

force-response curves. The effect of system parame-

ters on the resonant response of the system is

highlighted.

Keywords Timoshenko microbeam � Nonlinear
dynamics � Timoshenko beam theory � Modified

couple stress theory

1 Introduction

Microscale continuous elements can be found in a

large class of electromechanical devices and engi-

neering components. Among them, microbeams are

present, for example in microactuators, biosensors,

microswitches, and electrostatically excited microac-

tuators (Azizi et al. 2013; Krylov et al. 2011; Li et al.

2008; Yu et al. 2012; Ghayesh et al. 2013c; Farokhi

and Ghayesh 2015b; Ghayesh and Farokhi 2015;

Gholipour et al. 2014; Farokhi and Ghayesh 2015a).

The experimental investigations discovered that

microbeams display size-dependent deformation

behaviour; classical continuum theories cannot predict

this behaviour. The necessity of taking into account

size effects resulted in the advent of new continuum

theories, namely the strain gradient and modified

couple stress theories, so as to investigate the size-

dependent deformation phenomenon.

The linear and nonlinear size-dependent motion of

Euler–Bernoulli microbeams has been examined by

several authors in the literature and is still of interest

today (Farokhi et al. 2013a, b). Starting with the linear

aspects, Kong et al. (2008) examined the size-depen-

dent natural frequencies of an Euler–Bernoulli

microbeam. Akgöz and Civalek (2011, 2013) investi-

gated the free oscillations and buckling of a

microbeam, based on both the strain gradient and

modified couple stress theories, respectively. Asghari

et al. (2010a) examined the size-dependent behaviour
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of functionally graded microbeams employing the

modified couple stress theory. Şimşek (2010)

analyzed the motion characteristics of an embedded

microbeam under the action of a moving micropar-

ticle. These investigations were extended to non-

linear analyses, for example, by Ghayesh et al.

(2013a, 2013d), who examined the size-dependent

nonlinear behaviour of a microbeam on the basis of

both the strain gradient and modified couple stress

theories.

The literature review on the motion characteris-

tics of Timoshenko microbeams can also be divided

into linear and nonlinear models (Ghayesh et al.

2013b). Starting with the linear aspects, Ma et al.

(2008) analyzed the size-dependent behaviour of a

Timoshenko microbeam by means of the modified

couple stress theory. Wang et al. (2010) examined

the similar model based on the strain gradient

elasticity theory. The bending and thermal post-

buckling of a functionally graded Timoshenko

microbeam were examined by Ansari et al. (2011,

2013) via the strain gradient theory. Nateghi and

Salamat-talab (2013) examined the thermal effects

on the size-dependent behaviour of functionally

graded microbeams. These studies were extended

and pursued for nonlinear models, for example, by

Ramezani (2012) and Asghari et al. (2010b); they

solved the equations of motion via the method of

multiple scales and examined the nonlinear free

oscillations of the system; these valuable studies

were based on the approximate analytical techniques

via a single-mode truncation.

All of the above-mentioned precious investigations

studied the motion characteristics of perfectly straight

microbeams. However, different internal or external

imperfections in manufacturing process can cause an

initial curvature (geometric imperfection) in the

microbeam. Moreover, in MEMS applications, when

the system is subject to parallel-plate electrostatic

force, such as in a parallel-plate capacitor, an initial

curvature is induced in the microbeam; moreover, in

resonators, the dynamic behaviour of the system is

influenced by both quadratic and cubic nonlinearities

which are caused as a result of the initial curvature

(electrostatic forces) and mid-plane stretching, respec-

tively (Younis 2011); hence, taking into account an

initial imperfection in the microbeam leads to a more

accurate and practical model. As we shall see in this

paper, this initial imperfection changes the motion

characteristics of the system substantially, for some

cases.

This paper, for the first time, examines the size-

dependent dynamics of an initially slightly curved

Timoshenko microbeam taking into account both the

longitudinal and transverse motions as well as rota-

tion. The microbeam under consideration is modelled

as a high-dimensional system with 24 degrees of

freedom—solving such a large model requires a huge

amount of computations and hence necessitates the

development of well-optimized computer codes. In

particular, the pseudo-arclength continuation tech-

nique is utilized to solve the equations of motion

numerically. A stability analysis is conducted via use

of the Floquet theory. The frequency-response and

force-response curves of the system are constructed

for different cases. A comparison between the results

associated with the modified couple stress and clas-

sical continuum theories is made.

2 Equations of motion and high-dimensional

discretization

Depicted in Fig. 1 is an initially slightly curved

Timoshenko microbeam. The length, cross-sectional

area, and second moment of area of the microbeam are

represented by L, A, and I, respectively; E and l
represent the Young’s modulus and the shear modulus,

respectively. The microbeam is hinged at both ends

and subjected to a distributed harmonic excitation load

per unit length, FðxÞ cosðxtÞ, in the z direction. x and z,
denotes the axial and transverse directions, respec-

tively. The displacements in the x and z directions (i.e.

the longitudinal and transverse displacements) are

denoted by uðx; tÞ and wðx; tÞ, respectively; /ðx; tÞ is
the rotation of the transverse normal.

Fig. 1 Schematic representation of an imperfect Timoshenko

microbeam subject to a transverse distributed harmonic

excitation load

44 H. Farokhi, M. H. Ghayesh

123



The equations of motion are obtained employing

the modified couple stress theory and by means of

Hamilton’s principle, under the following assump-

tions: (1) the Timoshenko beam theory is employed

taking into account the longitudinal displacement as

well; (2) a uniform cross-sectional area is assumed

along the entire length of the beam; (3) mid-plane

stretching is the source of the geometric nonlinearity

yielding the nonlinear strain–displacement relation;

(4) there is a small initial curvature in the transverse

direction denoted by w0ðxÞ.
The strain energy of the system, based on the

modified couple stress theory, is given by (Yang et al.

2002)

U ¼ 1

2

Z
V

r : eþm : v½ �dv; ð1Þ

where r, e,m, v represent the stress, strain, deviatoric

part of the symmetric couple stress, and the symmetric

curvature tensors, respectively.

The symmetric curvature tensor v is related to the

rotation vector h such that

v ¼ 1

2
rhþ rhð ÞT
� �

; ð2Þ

where the rotation vector h itself is related to the

displacement vector u by

h ¼ 1

2
r� u; ð3Þ

with the following displacement field

ux ¼ uðx; tÞ þ z/ðx; tÞ; uy ¼ 0;
uz ¼ wðx; tÞ þ w0ðxÞ;

ð4Þ

where /ðx; tÞ represents the rotation of the transverse

normal and w0ðxÞ stands for the initial curvature of the
microbeam associated with zero initial stresses.

Inserting Eq. (4) into Eq. (3), and substituting the

resultant equation into Eq. (2) results in the following

non-zero components of the symmetric curvature

tensor

vxy ¼ vyx ¼
1

4

o/
ox

� o2w

ox2

� �
: ð5Þ

The stress tensor and the deviatoric part of the

symmetric couple stress tensor can be written as

r ¼ ktrðeÞIþ 2le; ð6Þ

m ¼ 2l2lv; ð7Þ

where k and l are the Lame constants, and l denotes

the material length-scale parameter.

The nonlinear strain-displacement relations, asso-

ciated with zero initial stresses, and the corresponding

stresses for an initially slightly curved Timoshenko

microbeam are given by

exx ¼
ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

dw0

dx
þ z

o/
ox

;

exz ¼ ezx ¼
1

2

ow

ox
þ /

� �
;

ð8Þ

rxx ¼ E
ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

dw0

dx
þ z

o/
ox

" #
;

rxz ¼ rzx ¼ lKs

ow

ox
þ /

� �
;

ð9Þ

where Ks is the shear correction factor.

The size-dependent strain energy of the system can

be obtained by substituting Eqs. (5) and (7)–(9) into

Eq. (1) as follows

U¼ 1

2
EI

Z L

0

o/
ox

� �2

dx

þ1

2
EA

Z L

0

ou

ox
þ1

2

ow

ox

� �2

þow

ox

dw0

dx

" #2
dx

þ1

2
lA
Z L

0

Ks

ow

ox
þ/

� �2

þ l2

4

o/
ox

�o2w

ox2

� �2
" #

dx

ð10Þ

The kinetic energy of the system can be expressed as

T ¼ 1

2
qA
Z L

0

ou

ot

� �2

þ ow

ot

� �2
" #

dx

þ 1

2
qI
Z L

0

o/
ot

� �2

dx: ð11Þ

The variations of the works done by the distributed

harmonic excitation load and the viscous damping can

be formulated as

dWF ¼
Z L

0

FðxÞ cosðxtÞdwdx; ð12Þ

Nonlinear resonant response of imperfect extensible 45

123



dWD ¼ �cd

Z L

0

ou

ot
duþ ow

ot
dw

� �
dx

� cr

Z L

0

o/
ot

d/

� �
dx; ð13Þ

where cd denotes the viscous damping coefficient of

the longitudinal and transverse displacements and cr
represents that of the rotation. Inserting Eqs. (10)–(13)

into generalized Hamilton’s principle results in the

following nonlinear equations of motion:

qA
o2u

ot2
� EA

o2u

ox2
þ ow

ox

o2w

ox2
þ dw0

dx

o2w

ox2
þ ow

ox

d2w0

dx2

� �

þ cd
ou

ot
¼ 0; ð14Þ

qA
o2w

ot2
� EA

ou

ox

o2w

ox2
þ o2u

ox2
ow

ox
þ ou

ox

d2w0

dx2

�

þ o2u

ox2
dw0

dx
þ o2w

ox2
dw0

dx

� �2

þ2
d2w0

dx2
dw0

dx

ow

ox
þ 3

2

d2w0

dx2
ow

ox

� �2

þ3
dw0

dx

o2w

ox2
ow

ox
þ 3

2

o2w

ox2
ow

ox

� �2
#

� lAKs

o2w

ox2
þ o/

ox

� �
þ lAl2

4

o4w

ox4
� o3/

ox3

� �

� FðxÞ cosðxtÞ þ cd
ow

ot
¼ 0; ð15Þ

qI
o2/
ot2

� EI
o2/
ox2

þ lAKs

ow

ox
þ /

� �

þ lAl2

4

o3w

ox3
� o2/

ox2

� �
þ cr

o/
ot

¼ 0; ð16Þ

with the following equations for the boundary

conditions

EA
ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

dw0

dx

" #
du

�����
L

0

¼ 0; ð17Þ

EA
ow

ox
þ dw0

dx

� �
ou

ox
þ 1

2

ow

ox

� �2

þow

ox

dw0

dx

" #(

þlA Ks

ow

ox
þ/

� �
þ l2

4

o2/
ox2

� o3w

ox3

� �� �	
dw

����
L

0

¼ 0

ð18Þ

EI
o/
ox

þ lAl2

4

o/
ox

� o2w

ox2

� �� �
d/

����
L

0

¼ 0; ð19Þ

lAl2

4

o/
ox

� o2w

ox2

� �
d

ow

ox

� �����
L

0

¼ 0; ð20Þ

which can be further simplified for a hinged-hinged

microbeam as

ujx¼0¼ ujx¼L¼ 0; ð21Þ

wjx¼0¼ wjx¼L¼ 0; ð22Þ

EI
o/
ox

þ lAl2

4

o/
ox

� o2w

ox2

� �
 	����
x¼0;L

¼ 0 ð23Þ

lAl2

4

o/
ox

� o2w

ox2

� �����
x¼0;L

¼ 0: ð24Þ

Introducing the following dimensionless parameters

x�¼ x

L
;u�¼u

L
;w�¼w

L
;w�

0¼
w0

L
;

b¼
ffiffiffiffiffiffiffiffiffiffiffi
EAL2

EI

r
;a¼

ffiffiffiffiffiffiffiffiffiffiffi
lAL2

EI

r
;t�¼t

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
;X¼x

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r
;

c�d¼
cdL

4

EI

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
;c�r ¼

crAL
4

EI2

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
;g¼ l

L
;F�¼FL3

EI
;

ð25Þ

substituting them into Eqs. (14)–(16), and dropping

the asterisk notation for brevity gives the following

nonlinear equations of motion for the longitudinal,

transverse, and rotational motions, respectively

o2u

ot2
�b2

o2u

ox2
þow

ox

o2w

ox2
þdw0

dx

o2w

ox2
þow

ox

d2w0

dx2

� �

þcd
ou

ot
¼0; ð26Þ

o2w

ot2
� b2

ou

ox

o2w

ox2
þ ou

ox

d2w0

dx2
þ o2u

ox2
ow

ox
þ o2u

ox2
dw0

dx

�

þ 3

2

o2w

ox2
ow

ox

� �2

þ 3

2

d2w0

dx2
ow

ox

� �2

þ o2w

ox2
dw0

dx

� �2

þ2
d2w0

dx2
dw0

dx

ow

ox
þ 3

dw0

dx

o2w

ox2
ow

ox

�

� a2Ks

o2w

ox2
þ o/

ox

� �
þ 1

4
a2g2

o4w

ox4
� o3/

ox3

� �

� FðxÞ cosðXtÞ þ cd
ow

ot
¼ 0; ð27Þ
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o2/
ot2

� b2
o2/
ox2

þ a2b2Ks

ow

ox
þ /

� �

þ 1

4
a2b2g2

o3w

ox3
� o2/

ox2

� �
þ cr

o/
ot

¼ 0: ð28Þ

A discretized model of the system is obtained by the

application of the Galerkin method to the equations of

motion. In other words, the nonlinear partial differen-

tial equations of motion are discretized into a set of

nonlinear ordinary differential equations via the

Galerkin scheme such that

wðx;tÞ ¼
XM
k¼1

ukðxÞqkðtÞ; ð29Þ

/ðx;tÞ ¼
XN
k¼1

wkðxÞpkðtÞ; ð30Þ

uðx; tÞ ¼
XQ
k¼1

ukðxÞrkðtÞ; ð31Þ

where uk represents the kth eigenfunction for the

transverse motion of a linear hinged-hinged beam and

wk = uk

0
/(kp); qk(t), pk(t), and rk(t) denote the kth

generalized coordinates of the transverse, rotational,

and longitudinal motions, respectively.

The application of the Galerkin scheme with

F(x) = f1u1(x) and w0(x) = A0u1(x) results in

XQ
j¼1

Z 1

0

uiujdx

� �
€rj � b2

XQ
j¼1

Z 1

0

uiu
00
j dx

� �
rj

"

þ
XM
j¼1

XM
k¼1

Z 1

0

uiu
0
ju

00
kdx

� �
qjqk

þ
XM
j¼1

Z 1

0

A0u
0
1uiu

00
j

� �
qj

þ
XM
j¼1

Z 1

0

A0u
00
1uiu

0
jdx

� �
qj

#

þ cd
XQ
j¼1

Z 1

0

uiujdx

� �
_rj ¼ 0; i ¼ 1; 2; . . .;Q;

ð32Þ

XM
j¼1

Z 1

0

uiujdx

� �
€qj � b2

XQ
j¼1

XM
k¼1

Z 1

0

uiu
0
ju

00
kdx

� �
þ

Z 1

0

uiu
00
j u

0
kdx

� �� �
rjqk

� b2
XQ
j¼1

Z 1

0

A0u
0
1uiu

00
j dx

� ��

þ
Z 1

0

A0u
00
1uiu

0
jdx

� ��
rj

�b2
XM
j¼1

Z 1

0

A0u
0
1

� �2
uiu

00
j dx

� ��

þ2

Z 1

0

A2
0u

0
1u

00
1uiu

0
jdx

� ��
qj

� b2
XM
j¼1

XM
k¼1

3

2

Z 1

0

A0u
00
1uiu

0
ju

0
kdx

� ��

þ3

Z 1

0

A0u
0
1uiu

0
ju

00
kdx

� ��
qjqk

� 3

2
b2
XM
j¼1

XM
k¼1

XM
l¼1

Z 1

0

uiu
0
ju

0
ku

00
l dx

� �
qjqkql

�a2Ks

XM
j¼1

Z 1

0

uiu
00
j dx

� �
qj

� a2Ks

XN
j¼1

Z 1

0

uiw
0
jdx

� �
pj

þ 1

4
a2g2

XM
j¼1

Z 1

0

uiu
0000
j dx

� �
qj

 

�
XN
j¼1

Z 1

0

uiw
000
j dx

� �
pj

!
þ cd

XM
j¼1

Z 1

0

uiujdx

� �
_qj

�
Z 1

0

f1/1/idx cosðXtÞ ¼ 0; i ¼ 1; 2; . . .;M;

ð33Þ
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XN
j¼1

Z 1

0

wiwjdx

� �
€pj � b2

XN
j¼1

Z 1

0

wiu
00
j dx

� �
pj

þ a2b2Ks

XM
j¼1

Z 1

0

wiu
0
jdx

� �
qj

 

þ
XN
j¼1

Z 1

0

wiwjdx

� �
pj

!

þ 1

4
a2b2g2

XM
j¼1

Z 1

0

wiu
000
j dx

� �
qj

 

�
XN
j¼1

Z 1

0

wiw
00
j dx

� �
pj

!

þ cr
XN
j¼1

Z 1

0

wiwjdx

� �
_pj ¼ 0; i ¼ 1; 2; . . .;N;

ð34Þ

where the dot and prime notations represent the

differentiations with respect to the dimensionless time

and axial coordinate, respectively.

Equations (32)–(34) represent a set ofM ? N ? Q

second-order ordinary differential equations which are

transformed into a new set of double-dimensional

2(M ? N ? Q) first-order nonlinear ordinary differ-

ential equations through use of a change of variables

via xi ¼ _qi,yi ¼ _pi, and zi ¼ _ri. A high-dimensional

system is selected in the present study by choosing

M = N = Q = 16; due to symmetrical configuration

of the system and the external forces, the dynamic

response of the system is defined by only the

symmetric modes (i.e. with odd subscripts for trans-

verse and rotational motions and even subscripts for

the longitudinal motion). As a result, the continuous

system is truncated into a 24-degree-of-freedom

system. An eigenvalue analysis (Ghayesh 2010,

2011) is conducted upon the linear terms of the

discretized equations of motion to obtain the linear

natural frequencies of the system. The pseudo-ar-

clength continuation technique is employed to solve a

set of 48 first-order nonlinear ordinary differential

equations, consisting of both quadratic and cubic

nonlinear terms, and to obtain the frequency-response

and force-response curves of the system. A stability

analysis is conducted via use of the Floquet theory; see

Ref. (Argyris et al. 2015) for more detailed informa-

tion of this theory.

3 Results

The numerical calculations are performed for an

epoxy microbeam with the following mechanical

properties: E = 1.44 GPa, l = 521.7 MPa,

q = 1220 kg/m3, and l = 17.6 lm. The shear correc-

tion factor, Ks, is set to 5/6 throughout the numerical

simulation (Ma et al. 2008).

The frequency-response curves under primary

excitation are illustrated in Fig. 2 through a, b the

maximum and minimum amplitudes of the first

generalized coordinate of the transverse motion,

respectively, and (c, d) those of the first generalized

coordinate of the rotation, respectively. The numerical

calculations are carried out for a microbeam with

dimensions h = 2 l = 35.2 lm, L = 80 h, and

b = 15 h, with the following dimensionless parame-

ters: b = 277.128, a = 166.803, A0 = 0.003,

g = 0.00625, cd = cr = 0.05, and f1 = 0.0075. As

seen in this figure, the system displays a hardening

behaviour; as shown in panel 2 (a), theoretically, the

maximum amplitude of the stable periodic motion

increases with increasing frequency of external exci-

tation until point A (X ¼ 1:1344x1) is hit, where the

stability is lost via a limit point bifurcation—the

maximum amplitude of the q1 motion at point A is

equal to 0.00748. As the excitation frequency is

decreased, theoretically, this now unstable solution

branch decays until the next limit point bifurcation at

point B (X ¼ 1:0115x1) is reached. Beyond that point,

the amplitude of the stable response decreases with

increasing excitation frequency. It is worthwhile

noting that, as seen in panels (a) and (b), due to the

initial curvature of the microbeam, the maximum and

minimum amplitudes of the q1 motion are not equal.

Selecting a higher value for the initial curvature

(i.e. A0 = 0.005) from A0 = 0.003 in Fig. 2, a new set

of frequency-response curves are obtained, shown in

Fig. 3. As seen in this figure, as a result of increased

amplitude of the initial curvature, the contribution of

the quadratic nonlinear terms becomes dominant

initially and the system displays a softening behaviour

first and then tends to a hardening one. As shown in

Fig. 3a, corresponding to the first generalized coordi-

nate of the transverse motion, the maximum amplitude

of q1 motion increases until point A (X ¼ 0:9890x1) is

reached, where the first limit point bifurcation occurs.

The stability is regained at point B (X ¼ 0:9799x1) by
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means of the second limit point bifurcation. The

amplitude of the stable periodic response increases

with the excitation frequency until point C

(X ¼ 1:0138x1) is hit, where the stability is lost via

the third limit point bifurcation. This now unstable

solution branch lasts until point D (X ¼ 0:9837x1) is

hit, where the stability is regained once again via the

forth limit point bifurcation. From comparison of

Figs. 2 and 3, one can draw the conclusion that due to

increased amplitude of the initial curvature, the

number of limit point bifurcations increases to four

and the system displays both softening and hardening

behaviours.

Figure 4 illustrates a comparison between the results

obtained via themodified couple stress and the classical

continuum theories, in order to examine the effect of the

length-scale parameter on the system response. As seen

in this figure, as a result of taking into account the

length-scale parameter both the initial softening and the

latter hardening behaviours of the system decrease; the

modified couple stress theory predicts a weaker non-

linear behaviour compared to the classical theory.
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Fig. 2 Frequency-response curves of the system: a, b the

maximum and minimum amplitudes of the first generalized

coordinate of the transverse motion, respectively. c, d the

maximum and minimum amplitudes of the first generalized

coordinate of the rotation, respectively; b = 277.128,

a = 166.803, A0 = 0.003, g = 0.00625, f1 = 0.0075, and

cd = cr = 0.05. Solid and dotted lines represent the stable and

unstable solutions, respectively
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Figure 5 shows the effect of the amplitude of the

initial curvature, A0, on the resonant response of the

system. As seen in panel (a), due to increased

amplitude of the initial curvature the initial soften-

ing behaviour becomes stronger which is due to the

dominant effect of the quadratic nonlinear terms for

higher A0. As a result, the size-dependent nonlinear

resonance occurs at lower excitation frequencies—

for A0 = 0.006, the nonlinear resonance occurs at

an excitation frequency less than the first linear

natural frequency of the transverse motion.

Moreover, due to increased amplitude of the initial

curvature, the maximum amplitude of the q1 motion

decreases while that of the p1 motion increases

slightly.

The frequency-response curves of the system for

various forcing amplitudes are depicted in Fig. 6. As

shown in the figure, for lower forcing amplitudes, the

dominant nonlinear behaviour of the system is a

softening-type. However, it is seen that that for higher

forcing amplitudes the initial softening behaviour is

continued by a secondary hardening behaviour.
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Fig. 3 Frequency-response curves of the system: a, b the

maximum and minimum amplitudes of the first generalized

coordinate of the transverse motion, respectively. c, d the

maximum and minimum amplitudes of the first generalized

coordinate of the rotation, respectively; b = 277.128,

a = 166.803, A0 = 0.005, g = 0.00625, f1 = 0.0075, and

cd = cr = 0.05. Solid and dotted lines represent the stable and

unstable solutions, respectively
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Moreover, the entire response region becomes wider

as a result of increased forcing amplitude.

The force-response curves of the system are

depicted in Fig. 7 through a, b the first generalized

coordinate of the transverse motion and rotation,

respectively. These curves are obtained by varying the

forcing amplitude f1 for a fixed excitation frequency.

As seen in panel (a), the amplitude of the q1 motion

increases from zero with increasing forcing amplitude

until point A (f1 = 0.01664) is reached, where the

motion becomes unstable via a limit point bifurcation.

Decreasing the forcing amplitude, the amplitude of

this now unstable branch increases until point B

(f1 = 0.00320) is hit where the second limit point

bifurcation occurs.

The comparison between the force-response curves

of the system obtained via the modified couple stress

and the classical continuum theories is depicted in

Fig. 8. It can be concluded that, the classical theory

predicts the occurrence of the first limit point bifur-

cation at significantly higher forcing amplitude.
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Fig. 4 Comparison between the frequency-response curves of

the system obtained via modified couple stress and classical

continuum theories: a, b the first generalized coordinate of the

transverse motion and rotation, respectively; b = 277.128,

a = 166.803, A0 = 0.004, f1 = 0.007, and cd = cr = 0.05;

g = 0.003125 for the modified couple stress theory and g = 0

for the classical theory. Solid and dotted lines represent the

stable and unstable solutions, respectively
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Fig. 5 The effect of A0 (the amplitude of the initial curvature)

on the frequency-response curve of the system: a, b the first

generalized coordinate of the transverse motion and rotation,

respectively. The values of A0 are denoted on the curves;

b = 277.128, a = 166.803, g = 0.00625, f1 = 0.0075, and

cd = cr = 0.05. Solid and dotted lines represent the stable and

unstable solutions, respectively
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The force-response curves of the system for a

higher value of the amplitude of the initial curvature

(A0 = 0.005) are shown in Fig. 9. As seen in this

figure, the system displays more complex behaviour

with four limit point bifurcations shown by A, B, C,

and D, in the figure. In other words, the system

displays a stable periodic response until point A

(f1 = 0.00650) is reached where the response becomes

unstable; the stability is regained at point B via the

second limit point bifurcation. As the forcing ampli-

tude is increased form point B (f1 = 0.00255) an

initial stable periodic response up to point C

(f1 = 0.02696) occurs, which is continued by an

unstable solution branch between points C and D.

Beyond point D (f1 = 0.00603), the amplitude of the

stable periodic response increases with the forcing

amplitude.

Figure 10 shows the force-response curves for

various amplitudes of the initial curvature, A0. It is

seem that as a result of increased amplitude of the

initial curvature, the entire response region becomes

wider which increases the difference between the first

and second limit point bifurcations. Moreover, the

occurrences of the first and second limit point

bifurcations are delayed to higher forcing amplitudes,

due to increased A0.
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4 Concluding remarks

The nonlinear motion characteristics of an imperfect

Timoshenko microbeam have been examined numer-

ically. The potential energy stored in the system was

obtained on the basis of the modified couple stress

theory. Hamilton’s principle was then utilized in order

to obtain the nonlinear equations of motion for the

longitudinal, transverse, and rotational motions. The

equations of motion of the continuous system were

discretized into a high-dimensional set of ordinary

differential equations via the application of the

Galerkin technique. The discretized equations of

motion were solved by means of the pseudo-arclength

continuation technique in order to obtain the resonant

responses. A stability analysis was also conducted via

use of the Floquet theory.

The numerical results for the frequency-response

curves showed that for lower amplitudes of the initial

curvature, the system displays a hardening behaviour

while for higher values, the system displays both

softening and hardening behaviours. Comparing the

results obtained via the modified couple stress theory

and classical theories showed that the modified couple
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Fig. 8 Comparison between the force-response curves of the

system obtained via modified couple stress and classical

continuum theories: a, b the first generalized coordinate of the

transverse motion and rotation, respectively;b = 277.128,

a = 166.803, A0 = 0.003, X = 1.015 x1, and cd = cr = 0.05;

g = 0.003125 for the modified couple stress theory and g = 0

for the classical theory. Solid and dotted lines represent the

stable and unstable solutions, respectively
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generalized coordinate of the transverse motion (a) and rotation
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stress theory predicts weaker softening and hardening

nonlinear behaviours. It was shown that the secondary

hardening behaviour occurs only at higher forcing

amplitudes. The results for the force-response curves

of the system showed that, there are two or four limit

point bifurcations depending on the system parame-

ters. It was also shown that the modified couple stress

theory predicts a lower forcing amplitude for the first

limit point bifurcation, compared to the classical

continuum theory. Examining the effect of the ampli-

tude of the initial imperfection on the force-response

curves showed that the occurrences of both limit point

bifurcations are shifted to higher forcing amplitudes as

A0 is increased.
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