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Abstract To successfully design a hexapod robot

with maneuverability over varying terrains, the kine-

matic and dynamic analyses for its motion are very

essential. This paper proposes an integrated approach

for carrying out design, analysis and simulation of the

motions and mechanisms of hexapod robots generat-

ing turning gaits. A new path planning approach is

proposed for the turning motion analysis of the robot

walking over any kind of terrain varying from flat to

rough in three-dimensional Cartesian space with the

desired gait pattern. The kinematics model of the

hexapod robot having legs of three degrees of freedom

each is developed to simulate turning motion, and its

performance is tested on a realistic computer aided

design model using the available virtual prototyping

tools. The model is capable of investigating various

kinematic parameters of the hexapod robot like

displacement, velocity, acceleration, trace of the

position of aggregate center of mass during turning

motions. A case study is solved and the theoretically

obtained results are verified by simulating the same in

a commercially available numerical solver for multi-

body dynamic analysis like MSC.ADAMS�. The

results show a close agreement between the theoretical

and simulated results, which proves the efficacy of the

proposed algorithm.

Keywords Hexapod robot � Kinematics � Varying
terrains � Turning motion � Analytical approach

Abbreviations

ADAMS Automated Dynamic Analysis of

Mechanical Systems

CAD Computer Aided Design

CAE Computer Aided Engineering

CATIA V5 Computer Aided Three Dimensional

Interactive Application Version 5

COM Center of mass

DF Duty factor

DH Denavit–Hartenberg

DOF Degrees of freedom

3D Three-dimensional

VP Virtual Prototyping
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1 Introduction

Over the past decade, the field of all terrain robots has

emerged as one of the most interesting and provoking

grounds to researchers worldwide due to its wide

choices of consideration, whether it is legged or

wheeled or tracked vehicles or hybrid vehicles for

locomotion. Today with the advancement of technol-

ogy, researchers have an urge to design and develop

robotic vehicles that can maneuver and perform tasks

like natural beings having legs (Tian et al. 2014;

Tedeschi and Carbone 2014; Khoramshahi et al. 2013;

Roennau et al. 2013; Li et al. 2012a; Murphy et al.

2011; Loc et al. 2010; Raibert et al. 2008; Soyguder

and Alli 2007). The reason is that legged robots have

high degree of terrain adaptability and maneuverabil-

ity. It can negotiate any kind of terrain by adjusting the

lengths of its legs to maintain the desired body position

and orientation during navigation. The travelled path

consists of a series of discrete points only in contact

with the terrains, not like a long continuous path

followed by a wheeled or tracked robot. However,

coordination of various leg joints so as to produce the

desired gait pattern and maintain stability during

locomotion is extremely complex (Song and Waldron

1989). Considering these aspects, a six-legged robot is

better suited than others for maneuverability over any

kind of terrain. It has many advantages compared to

two- or four-legged robots. It provides better static

stability and is less susceptible to deadlock situations.

The six-legged robot is more robust because it is able

to walk with one or two failed legs (Yang 2009; Shih

et al. 2012), since it is possible to define stable gaits by

using either four or five legs. Also, compared to eight-

or more-legged robots, its power consumption is less,

since with the increase in the number of legs; a lot of

actuators are to be controlled through a continuous

coordination in addition to complicacies in kinematics

and dynamics of legged mechanisms (Santos et al.

2006; Sandoval-Castro et al. 2013; Roy and Pratihar

2014; Akdag et al. 2012). Therefore, a six-legged

robot is a kind of optimal robotic structure to be used

for varying terrains. But then, to successfully design a

six-legged robotic structure for maneuverability over

varying terrains, the kinematic and dynamic analyses

of its complex motion mechanism are very essential.

For that, a suitable mathematical model of the

complex six-legged robotic mechanism describing its

kinematics and dynamic behavior during locomotion

is necessary to develop. So far as the kinematics is

concerned, some researchers tried to develop the

kinematic model of the robot based on Denavit–

Hartenberg (DH) parameters (Tarokh and Lee 2009;

Roy and Pratihar 2012, 2013, 2014; Barreto et al.

1998), while others tried to investigate the kinematics

of legged robots using screw theory and vector algebra

(Wang et al. 2011, 2014; Howard et al. 1996) to

eliminate the ambiguities involved with the DH

parameters.

Most of the previous studies on kinematics are

based on the consideration that legged robots are

parallel mechanism systems. But, the kinematics of

legged robots is far more complicated compared to

that of the parallel mechanism robots like Gough-

Stewart platform mechanism etc. (Qian et al. 2014;

Chi et al. 2013; Zhang et al. 2011, 2013; Alvarado

et al. 2010; Zhang and Gao 2012; Kelaiaia et al. 2012)

due to added number of DOF in the system (Lee and

Song 1990). Moreover, the foot placement and lifting

of a leg in a walking robot change the total topology of

the mechanism. Also, due to more number of driven

joints, the control of a legged robot is much more

complex than that of parallel robots. The developed

kinematics models for the six-legged robots by some

other researchers were simplified with the assumptions

like the steady-state condition of the trunk body for

different speeds, zero pitching and rolling angles of

the trunk body, no change in the leg’s position (i.e., no

slippage) in support phase (Figliolini et al. 2007;

Hauser et al. 2008; Yoneda et al. 1997). More recently,

some researches have studied the radially symmetric

six-legged robots (Wang et al. 2010, 2011; Li et al.

2012b; Bombled and Verlinden 2012), a transition

from rectangular six-legged robots. Some other stud-

ies on kinematics of multi-legged robots have also

been reported recently (Soyguder and Alli 2012). But,

those studies carried out by various investigators were

focused mainly on the design and straight-forward gait

generation of a six-legged robot. In addition to that, the

developed control algorithms were mainly suitable for

locomotion over flat terrain, although some efforts had

been made for uneven terrain locomotion.

In some other studies, the kinematics models of the

six-legged robots were developed by treating trunk

body, swing legs and support legs as separate entities

and the robots’ motion was confined to flat terrain

(Roy and Pratihar 2013; Silva et al. 2005; Shkolnik

and Tedrake 2007). However, that could not depict the
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actual motion behavior of the robotic system. If the

motion of the legged robots is studied in depth, it

reveals that the movement of a swing leg depends not

only on the motion of its own joints, but also on the

movement of support legs and angular motions (roll,

pitch, yaw motions) of the trunk body. An attempt has

been made in the present study to address this

problem, since the dependency of all the legs with

respect to others cannot be avoided while developing

the kinematics and dynamic models of the system.

Moreover, if the kinematics of the system is not

correctly analyzed, it will largely affect its dynamics

related to the study of foot-terrain interactions, power

consumption, dynamic gait stability etc.

Turning gait is one of the most general and

important gaits for omnidirectional walking robotic

vehicles (Estremera et al. 2010; Kumar and Waldron

1988; Lee and Orin 1988; Yang 2008). Still then, the

locomotion strategies for six-legged robots walking

over varying terrains with turning motion capability

have not received much attention. A very few studies

have been reported till date, which analyzed the

kinematic and dynamic analysis of turning gaits of

multi-legged robots, but the said studies compromised

with the complexity of the mathematical model. Some

studies on turning motion analysis of a rectangular six-

legged robot were carried out on flat terrain assuming

the center of gravity of the robot to be coincident with

the geometric center of the trunk body and the height

of trunk body to be at a constant height during

locomotion (Roy and Pratihar 2012, 2014; Orin 1982;

Zhang and Song 1991; Hirose et al. 1986; Miao and

Howard 2000; Pratihar et al. 2000). A few other

studies carried out by the researchers in the recent past

dealt with the locomotion of symmetrical hexapod

robot on varying terrains with the assumptions that the

gravity center of the body is maintained at a constant

height at all times, the body is kept always parallel to

the support plane formed by supporting feet during

locomotion, slippage between foot and ground is

ignored with the limitations like small turning angles,

stride length of typical gaits during turning is main-

tained at low value (Wang et al. 2010, 2011). But, in

reality, the center of gravity of the trunk body may not

coincide with the geometric center during locomotion.

Also, in addition to the above, varying body heights,

effects of trunk body on the swing and support legs,

considerable slippage between support legs and

terrain, uneven topology etc. have to be taken into

account to make the motion of the robot more realistic.

Therefore, kinematics model should be capable

enough to mimic all issues related to trunk body

movement, motion planning, gait and foot trajectory

planning of a real robot in the spatial environment.

Moreover, the kinematic model should support the

constrained dynamic model of a realistic six-legged

robot to address the issue of coupling effect. Most of

the previous models were unable to emphasize upon

these issues due to considerable simplifications

assumed in the kinematic models, as discussed above.

Further, the previously developed kinematic models

were not validated, since the process is time-consum-

ing and might not be cost effective. No such notable

studies have been reported till date for implementation

of the developed motion planning algorithms on a

virtual model of a six-legged robot and improving its

performance using virtual prototyping (VP) technol-

ogy prior to developing its physical prototype. The

present kinematic model of the realistic six-legged

robot has emphasized upon all such issues for

negotiating varying terrains during turning motion.

The main contribution of this study is the develop-

ment of a new kinematic model of a hexapod robot

using a generalized classical approach that will tackle

the coupling effects in the study of dynamics related to

locomotion in varying terrains (flat level to elevated,

even to uneven, and others) with any type of gait. The

kinematic constraint equations formulated by this

approach can be directly used with the coupled

dynamic model to solve for the feet forces, joint

torques etc. To deal with spatially complex environ-

ment, the actual behavior of robot that depends on the

motion planning algorithms for the trunk body, swing

and support legs in three-dimensional (3D) Cartesian

space with turning gaits is also proposed. Moreover,

an attempt has been made in this study to the model

slippage between the foot and terrain during support

phase of the legs to make the motion more realistic.

Further, the results of the present study on kinematics

analysis of the system have been compared with those

obtained using VP tools. To the best of the authors’

knowledge, no such study on a hexapod robot with

turning motion capabilities has been reported in the

literature.

The paper has been divided into five major sections.

Section 2 presents the description of proposed hex-

apod walking robot. Section 3 describes the analytical

approach used for mathematical modeling and
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simulation of a realistic hexapod robot. A numerical

illustration and validation using CAD/CAE (Com-

puter Aided Engineering) approach of the simulation

results have been presented in Sect. 4. Finally, Sect. 5

ends with some concluding remarks.

2 Description of proposed hexapod walking robot

A 3D CAD model (shown in Fig. 1) of a realistic

hexapod robot is developed in a solid modeling

commercial package Computer Aided Three Dimen-

sional Interactive Application Version 5 (CATIA V5)

using the following two main steps as mentioned

below.

Step 1: Modeling of various components of the

robot in the part modeling workbench

Step 2: Assembling of the components in assembly

workbench using suitable constraints

The model consists of a rectangular type trunk body

and six identical legs. All the legs are similar with

three legs on either side of the central axis that are

evenly distributed. Each leg is composed of three

links, namely coxa, femur and tibia. The kinematic

link lengths of the links are represented by lij, where

i = 1 to 6 denotes the leg number and j = 1 to 3

indicates the joint number. The links are intercon-

nected by two revolute joints (joints i2 and i3) and

attached to the trunk body by a third rotary joint (joint

i1). The offset distance between the links are denoted

by dij. Each of the joints of a leg is independently

controlled by one actuator or DC servomotor.

Therefore, with the six DOF of the trunk body and

three DOF in each leg, it is required to synchronize

eighteen joint angles of the robotic system to accom-

plish the desired task. The main body-parts of the

robot are made of aluminum (density: 2.74e-6 kg/

mm3). Table 1 shows the physical parameters of the

realistic robot. The total mass of the robot without

payload is estimated to be equal to 2.456 kg.

3 Mathematical modeling and simulation:

analytical approach

The problem statement of the present study is as

follows: a hexapod robot has to plan its gait parameters

and path of motion simultaneously during turning on a

varying terrain maintaining a stable configuration.

The following assumptions are made in the present

study:

1. Motion planning of the robot is in 3D Cartesian

space.

2. Before computing the motion of the robot, a

number of potential feethold vertical positions

across the varying terrain are already identified.

3. The trunk body turns with constant radius in an

anticlockwise direction and its motion character-

istics are governed by a cubic polynomial. This

makes the trunk body height to vary with respect

to the ground during turning.

4. During turning, there is slippage between the foot

and ground throughout the support phase. The

magnitude of slip is small and its trajectory is

simplified to a straight path in the horizontal plane

of the local reference frame.

3.1 Reference systems in Cartesian space

In the present study, the robot is considered as a rigid

multibody system with multiple reference frames

(both global and local frames) attached to it. As

shown in Fig. 2,G0 is the static global reference frame

and G is the dynamic global reference frame. The

respective frames corresponding to XYZ coordinate

systems coincide at O. The system has been general-

ized by using orientation vector of bryant angles

(Hahn 2003), gG = [aG bG hG]
T. These angles take

into account the terrain elevation along the three axes,

i.e., aG denotes sloping angle, bG represents bankingFig. 1 A realistic six-legged robot (3D CAD model)
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angle and hG indicates the initial angular position of

the robot with respect to the frame G0. The reference

frame L0, that is fixed to the body, is attached at an

arbitrarily chosen location P0 on the trunk body (refer

to Fig. 3). At each of the joints, i.e., i1, i2 and i3, two

local reference frames are attached to indicate suc-

cessive joint states, i.e., one state at time t and the next

state after infinitesimal rotation or at time t ? Dt.
More specifically, frames L0

i and L00
i are located at

point Si; frames L0
i1 and L

00
i1 are at point Pi1 and frames

L0
i2 and L00

i2 are at point Pi2. Moreover, frames L0
i3 and

Li3 (Li3 is assumed parallel to frame G) are attached at

the tip point Pi3, which follows a pre-determined

trajectory in 3D Cartesian space. To signify the

turning angle (hLi3i3 ), one more reference frame has

been considered at point Pi3, i.e., L
000
i3 (refer to Fig. 4).

The vectors of Cartesian coordinates of P0, Pij with

respect to G are represented by pG0 ¼ ðrGP0O
; g0Þ 2 R

6,

pGij ¼ ðrGPijO
; gijÞ 2 R

108, respectively, where

rGP0O
¼ ½ xGP0O

yGP0O
zGP0O

�T , g0 ¼ ½ a0 b0 h0 �T ,
rGPijO

¼ ½ xGPijO
yGPijO

zGPijO �T , gij ¼ ½ aij bij hij �T .
The displacement vector of the trunk body and the

associated joints of each leg are first calculated with

respect to dynamic global reference frame G and

subsequently, transformed to static global reference

frame G0 using the transform AG0G. Therefore, the

vector of Cartesian coordinates of P0, Pij with respect

Table 1 Physical

parameters of the robot

Joint offsets: di1 = 8 mm,

di2 = 17.75 mm,

di3 = 19.75 mm

Components Effective dimension (mm) Density (kg/mm3) Mass (kg)

Trunk body 495 9 205 9 90 2.74e-6 0.650

Payload 150 9 90 9 40 7.86e-6 4.244

Coxa (li1) 85 2.74e-6 0.150

Femur (li2) 120 2.74e-6 0.041

Tibia (l013) 100 2.74e-6 0.110

Fig. 2 Reference Frames G0, G

Fig. 3 Reference frames and Vector diagram of Leg ‘i’ during

support phase a plan view, b elevation view
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to G0 are pG0

0 ¼ ðrG0

P0O
; g0Þ

T 2 R
6, pG0

ij ¼
ðrG0

PijO
; gijÞ

T 2 R
108, respectively. Since each of the

joints of leg i has one DOF revolute joint, the bryant

angles can be further reduced to gi1 = [0 0 hi1]
T,

gi2 = [0 bi2 0]T, gi3 = [0 bi3 0]T, respectively by

following Z–Y–Y convention.

The kinematic diagram of ith leg of the realistic

hexapod robot is shown in Fig. 3. Here, / is twisted

angle of the coxa (in the present study / = 0), li is the

projective distance between points Si and Pi3, d is

diameter of the foot-pad, l0i3 is the distance between

joint i3 and foot-pad center. From the geometrical

configuration shown in Fig. 3, the following relations

are obtained:

Bounding angle; w ¼ tan�1 d
�
2l0i3

� �
ð1Þ

Kinematic link length; li3 ¼ l0i3
�
cosw ð2Þ

The ranges of the joint variables: hi1, bi2, bi3 for

turning motions are restricted by the geometrical

structure of the robot.

3.2 Kinematic constraint equations of the system

with respect to frame G

The full kinematic model of the multi-legged robotic

system that relates the position and orientation of the

trunk body with that of the joint angles of the swing

legs and legs in contact with the terrain has been

developed in the following section. As discussed in

Sect. 2, the trunk body consists of six degrees of

freedom. Each of the legs consists of three rotary joints

located at Si, Pi1 and Pi2, while each of the feet tips is

assumed to be spherical joint in stance phase located at

Pi3 (refer to Fig. 3). In the following section, the

vector loop and orientation loop equations describing

the position and orientation of P0, Si, Pij of leg i are

considered with respect to frame G. Therefore, the

holonomic constraint equations that govern the state of

the trunk body and ith leg of the robotic system are

given by a set of equations, as shown in Eq. (3).

giðpiÞ ¼

g1ðp0Þ
g2ðp0Þ
g3iðpiÞ
g4iðpiÞ
g5iðpiÞ
g6iðpiÞ
g7iðpiÞ
g8iðpiÞ
g9iðpiÞ

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

�

rGP0O
� rGP0O

��
t¼t0

�
R
fðtÞ

g0 � g0jt¼t0
�
R
gðtÞ

rGP0O
þ AGL0rL0SiP0

þ AGL00i r
L00i
Pi1Si

� rGPi1O

PT
r ðx; yÞ:AL00i G:AGL0i :PrðzÞ

rGPi1O
þ AGL00

i1r
L00
i1

Pi2Pi1
� rGPi2O

PT
r ðx; zÞ:AL00

i1
G:AGL0

i1 :PrðyÞ
rGPi2O

þ AGL00
i2r

L00
i2

Pi3Pi2
� rGPi3O

PT
r ðx; zÞ:AL00

i2
G:AGL0

i2 :PrðyÞ
rGPi3O

� rGi

0

BBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCA

¼

03

03

03

02

03

02

03

02

03

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

ð3Þ

Further, the present problem is about solving the

joint displacements, velocities and accelerations for a

specified trunk body motion and swing leg trajectory

for a selected gait on varying terrains. Therefore, the

Fig. 4 Topography of terrain and swing leg trajectory planning

for ith leg in turning motion
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trunk body motion constraints, given by g1 (p0), g2
(p0) and swing leg motion constraints given by g9i (pi)

are basically considered as the driving constraints in

the present problem. PT
r ðx; yÞ, PT

r ðx; zÞ, Pr(z) and Pr(y)

are basically the matrix projectors (refer to Appendix

1). Further, f (t) and g (t) are the functions that govern

the motion of the trunk body at any instant of time, the

details of which are given in Sect. 3.5.1. Also, rGi is the

coordinates of the tip point of link li3 at any instant of

time for both the stance and swing phases of leg i due

to gait planning and motion planning. The local

components of Si, Pi1, Pi2 and Pi3 are fixed for a

robotic structure and are given by rL0SiP0
, r

L00i
Pi1Si

, r
L00
i1

Pi2Pi1
,

r
L00
i2

Pi3Pi2
, respectively. Also, AGL0 , AGL0i , AGL00i , AGL0

i1 ,

AGL00
i1 , AGL0

i2 , AGL00
i2 are the transformation matrices

related to different local frames with respect to frame

G. AL00i G, AL00
i1
G, AL00

i2
G are orthogonal matrices of AGL00i ,

AGL00i ,AGL00
i2 , respectively. The transformation matrices

associated with different frames in the system are

mentioned in Appendix 2.

3.3 Inverse kinematics of the robotic system

To dynamically control a hexapod robot in 3D

Cartesian space, it is essential to compute the explicit

inverse kinematic solutions of the system relating both

the joint velocities and accelerations of the legs to the

given trunk body and leg tip displacement at any

instant of time.

Determination of the joint variables hi1, bi2, bi3
(both in stance and swing phases) of ith leg of the

hexapod robot are fundamental to the correct motion

of the system and consequently, its stability. In stance

phase (shown in Fig. 3), the position vector of Si with

respect to frame G and frame L0
i3 can be computed

using vector loop equations given by

rGSiPi3
¼ rGP0O

þ rGSiP0
� rGPi3O

ð4Þ

r
L0
i3

SiPi3
¼ �r

L0
i3

Pi3Pi2
� r

L0
i3

Pi2Pi1
� r

L0
i3

Pi1Si
ð5Þ

It is to be noted that the position vectors: rGP0O
and

rGPi3O
are time dependent and govern the motions of

trunk body and swing leg’s trajectory, respectively,

with respect to the frame G. These predefined time

derivative functions of the trajectories (both trunk

body and swing legs) for locomotion analysis over any

kind of terrain are basically the boundary conditions

(BCs) provided to the inverse kinematic model in

order to determine the joint angles at any instant of

time (refer to Sect. 3.5 for details).

Equation (4) can also be written as follows:

rGSiPi3
¼ AGL0

i3 :r
L0
i3

SiPi3
¼ ðai;bi;ciÞT ðsayÞ; ð6Þ

where ai, bi, ci denote the coordinates of r
G
SiPi3

and

AGL0
i3 ¼ AGL00

i2 ¼ AGL0 :AL0L
00
i2

ðframes L0i3 and L
00
i2 are parallelÞ

ð7Þ

Since AL0G and AGL0 are orthogonal transformation

matrices, Eqs. (5), (6) and (7) can be rearranged to

obtain the governing equation of the system as

follows:

AL0G:rGSiPi3
¼ AL0L

00
i2 :r

L0
i3

SiPi3
ð8Þ

Substituting the transformation matrices, as men-

tioned in Appendix 2, and coordinates of the local

components and thereafter, using the method of elim-

ination, the joint angles can be obtained as follows:

hi1 ¼ c� 2np� 2tan�1 ki1 � ki4
� ��

di þ ki2ð Þ
� �

; n

2 I

ð9Þ

bi2 ¼ /� 2np� 2tan�1 ki6 � ki7ð Þ=ki8ð Þ ð10Þ

bi3 ¼ 2np� 2tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ki5ð Þ= 1þ ki5ð Þ

p
; n 2 I

ð11Þ

where

di ¼ di1 þ di2 � di3 ð12Þ

ki1 ¼ � ai cos b0 cos h0ð Þ þ bi cos a0 sin h0ðð
þ sin a0 sin b0 cos h0Þþ ci sin a0 sin h0ð
� cos a0 sin b0 cos h0ÞÞ

ð13Þ

ki2 ¼ � �ai cos b0 sin h0ð Þ þ bi cos a0 cos h0ðð
� sin a0 sin b0 sin h0Þ
þ ci sin a0 cos h0 þ cos a0 sin b0 sin h0ð ÞÞ

ð14Þ

ki3 ¼ � ai sin b0ð Þ � bi sin a0 cos b0ð Þð
þ ci cos a0 cos b0ð ÞÞ

ð15Þ
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ki4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i1 þ k2i2 � d2i

q
ð16Þ

ki5 ¼
�
ki3 � li1: sin/ð Þ2þ ki4 � li1: cos/ð Þ2

�l2i2 � l2i3

�.
2li2:li3

ð17Þ

ki6 ¼ ki3 � li1:s/ð Þ ð18Þ

ki7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki3 � li1:s/ð Þ2þ ki4 � li1:c/ð Þ2� li2 þ li3:ki5ð Þ2

q

ð19Þ

ki8 ¼ li2 þ li3:ki5 þ ki4 � li1:c/ ð20Þ

To compute the swing phase angles, it is necessary

to substitute k0i1 ¼ �ki1, k
0
i2 ¼ �ki2 and k0i3 ¼ �ki3.

The evaluation of joint angles with respect to time

leads to that of the kinematic motion parameters (like

velocity, acceleration, trace of aggregate center of mass

etc.) for a specified gait and motion planning of the

robot on varying terrains. The velocity and acceleration

vectors of the links i1, i2 and i3 of ith leg with respect to

G are represented by vGij ¼ ð _rGPijO
;x

L0ij
L0
ij
G
Þ 2 R

108, _vGij ¼

ð€rGPijO
; _x

L0ij
L0
ij
G
Þ where i = 1 to 6, j = 1 to 3.

The translational velocities and accelerations of the

links are calculated based on the constrained kine-

matic equations set represented by Eq. (3). A close

analysis of the locomotion of a legged robot reveals

that the calculation of angular velocities (G0xij) and

accelerations (G0 _xij) of the joints of all the legs with

respect to global reference frame are very critical.

During the swing phase, they are dependent on the

coordinates of both P0 and Pi3, whereas during the

support phase, they are dependent on the coordinates

of P0 only. A summary of the mathematical details are

as given below.

For support legs,

Gxij ¼ Jrij : _p
G
0 ð21Þ

G _xij ¼ Jrij :€p
G
0 þ _Jrij : _p

G
0 ð22Þ

For swing legs,

Gxij ¼ Jrij : _p
G
0 þ J0rij : _p

G
i3 ð23Þ

G _xij ¼ Jrij :€p
G
0 þ _Jrij : _p

G
0 þ J0rij :€p

G
i3 þ _J

0
rij
: _pGi3 ð24Þ

Here, Gxij ¼ x
L0ij
L0
ij
G
, where i = 1 to 6 and j = 1 to 3.

Jrij , _Jrij , J
0
rij
, _J

0
rij
are the Jacobian matrices, the details of

which are given in Appendix 3.

The kinematic motion parameters represented with

respect to global reference frame G0 are given by the

following equations:

_rG0

PijO
¼ AG0G: _rGPijO

ð25Þ

€rG0

PijO
¼ AG0G:€rGPijO

ð26Þ

where AG0G is the transformation matrix for transfor-

mation of frame from G to G0. The angular motion

parameters with respect to frame G0 are equal to that

with respect to frame G, since the angular orientation

vector gG that defines the terrain topology as discussed

in Sect. 3.1, is constant. Therefore,

G0xij ¼ Gxij ð27Þ

G0 _xij ¼ G _xij ð28Þ

The aggregate center of mass of the robotic system

with respect to the frame G is given by the expression:

rGCmO
¼

m0r
G
C0O

þ
P6

i¼1

P3
j¼1 mijr

G
CijO

m0 þ
P6

i¼1

P3
j¼1 mij

; ð29Þ

where m0 is the combined mass of the trunk body and

payload, mij is the mass of link lij (i = 1 to 6, j = 1 to

3), rGC0O
and rGCijO

are the displacement vectors from

points C0 (location of combined Center of Mass

(COM) of trunk body and payload) and Cij (location of

COM of link lij) represented in frame G.

Therefore, aggregate center of mass of the system

with respect to frame G0 is given by,

rG0

CmO
¼ AG0G:rGCmO

ð30Þ

Equation (30) has been generalized to calculate the

aggregate COM of the robot locomoting over any kind

of terrain with the predefined motion planning and gait

planning. It is to be noted that, for the robot’s stability,

observation of the COM of the system is very

important. It gives an insight into the leg character-

istics, i.e., whether there is a proper synchronization

among the different legs and whether the legs are able

to provide necessary support to the trunk body of the

system. If the center ofmass is not correctlymonitored,
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a situation might arise, when the system loses balance

and falls, or its motion will be inefficient, causing

greater energy consumption.

3.4 Terrain model

In the present study, the terrain along which the robot

will maneuver varies from smooth to irregular

topographies like flat, slope, banking, staircase,

undulation etc. The data points of the topology are

predefined. The kinematics of the robotic system can

be intimately connected to the represented terrain in

two methods.

In the first method, the topology of the terrain is

defined with respect to frame Li3 by points Pi3 (starting

point of swing) and P0
i3 (subsequent end points of

swing). The height h0in (i is the leg number and n is the

duty cycle number) measured along Z with respect to

frame Li3 (as shown in Fig. 4) is basically the height of

the terrain, where the foot tip of swing leg i touches the

terrain in the nth cycle. The height Hmin (i is the leg

number and n is the duty cycle number) along Z with

respect to frame Li3 is the maximum height of the

terrain on the path of swing in the nth cycle. The data

points with respect to frame Li3 are transformed to

global reference frame G. The values of h0in and Hmin

are provided as inputs for simulations. It is to be noted

that the robot performs foot placement at ideal

position, which results from the path (both trunk body

and legs) and gait planning.

The second method is about the issue of map-based

foot placement and subsequently, path generation. The

robot can plan a path from the initial to final positions

based on given topographic map information as input.

The topography of the terrain is developed on a CAD

workbench and its data points with respect to the global

reference frameG are extracted. During simulation, the

algorithm calculates themaximumheight (Hmin) of the

topography in the workspace throughwhich the leg has

to traverse. Moreover, the support point coordinate

zGPi3O
with respect to global frame G, i.e., the height of

terrain h0in with respect to local frame Li3 is determined

based on the information of the coordinates xGPi3O
and

yGPi3O
. In other words, during each step, the foot-tip of

the ith leg searches for the possible foot placement

location or points and determines the coordinate that

helps the robot to continue an efficient gait. During the

swing of each leg, it is assumed that the maximum

height of swing trajectory is always greater than that of

topography by Dh.

3.5 Motion planning

To carry out inverse kinematics of a realistic hexapod

robot, it is necessary to consider realistic motion

characteristics of the trunk body (for location P0) and

tip of swing legs (for locationPi3) during locomotion. It

is assumed that themotions are regulated by a function,

which is basically ADAMS (Automated Dynamic

Analysis of Mechanical Systems) step function that

approximates the Heaviside step function with a cubic

polynomial. It is given by the following expression:

h ¼ ha þ a:D2 3� 2Dð Þ; for ta to tb ð31Þ

where

a ¼ hb � ha;

ðha ¼ initial step value at time ta;

hb ¼ final step value at time tbÞ
ð32Þ

D ¼ ðt � taÞ=ðtb � taÞ ð33Þ

It is to be noted that Eq. (31) has a smooth function

value during the transition over a specified interval of

an independent variable. It also has smooth changes in

the first derivatives of the function at the transition

points of the function making the first derivative

continuous. This is the basis for consideration of

Eq. (31) in the present study.

3.5.1 Trunk body motion planning

During locomotion, the trunk body should have an

uninterrupted and continuous motion for the given

initial position, orientation (roll, pitch and yaw) and

maximum rate of change of angular displacement of

the trunk body. In the present study, the authors have

tried to formulate the angular constraint derivatives

g(t) = [gx(t) gy(t) gz(t)]
T along with the translational

constraint derivative f(t) = [fx(t) fy(t) fz(t)]
T. The six

driving constraint equations (i.e., three translational

and three angular constraints) constituting the six

degrees of freedom of the trunk body, govern the state

of the inverse kinematics problem. This makes the

locomotion more realistic, such that the body can be

raised, lowered or tilted in accordance with the legs’

movements. This is very much essential for a robot to
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maneuver in an uneven terrain with stable gaits

strategy. These constraints are assumed to follow a

cubic polynomial as discussed earlier.

During turning, the function that governs the yaw

motion, i.e., the rate of change of angular displacement

( _h0ðtÞ) of the trunk body at any instant of time along

z-axis of frame G is given by,

gzðtÞ ¼ _h0
��
t¼t0

þ a _h0
D2
að3� 2DaÞ for t0 to t1

¼ _h0
��
t¼t1

for t1 to t2

¼ _h0
��
t¼t2

� a _h0
D2
dð3� 2DdÞ for t2 to t3

ð34Þ

where,

a _h0
¼ _h0

��
t¼t1

� _h0
��
t¼t0

ð35Þ

Da ¼ ðt � t0Þ=ðt1 � t0Þ ð36Þ

Dd ¼ ðt � t1Þ=ðt2 � t1Þ ð37Þ

Here, t0 is the initial time of start of trunk bodymotion,

t1 is the time taken to reach the maximum angular

displacement rate, t2 is the time of start of retardation

of the trunk body, t3 is the total time of motion of the

robot. Similarly, the functions: gx(t) and gy(t) that

govern the pitching and rolling motions of the trunk

body, respectively, are regulated by a cubic polyno-

mial like that given in Eq. (31). Once the angular

constraint derivative g(t) is determined, the angular

velocity of the trunk body (xL0
L0G

) can be easily

calculated and is given by the expression:

xL0
L0G

¼
cb0ch0 _a0 þ sh0 _b0
�cb0sh0 _a0 þ ch0 _b0
sb0 _a0þ _h0

0

@

1

A ð38Þ

The function f(t) governs the translational motion of

the trunk body at any instant of time, such that,

_rGP0O
¼ fðtÞ ¼ ½fxðtÞ fyðtÞ fzðtÞ�T

¼ �q0gzðtÞ sin h0 q0gzðtÞ cos h0 _zGP0O

	 
T

ð39Þ

where q0 is the turning radius of point P0, _z
G
P0O

is the

translational motion of the trunk body along z-axis of

frame G and follows a cubic polynomial like that in

Eq. (31).

Hence, the velocity vector of the trunk body, vG0 ¼
ð _rGP0O

;xL0
L0G

Þ 2 R
6 is considered to be one of the basic

inputs to the inverse kinematics of the system.

Subsequently, the velocity vector of the trunk body

can be transformed to static global reference frame G0

using the transformation matrix AG0G.

3.5.2 Swing leg trajectory planning

Trajectory planning of the swing legs with turning gait

strategy is computationally intensive though it is a

fundamental step in the study of kinematics and

dynamics of the hexapod robot. In the present model,

the robot has the ability to adjust its parameters

according to the topography of the terrain. The swing

leg moves through a predefined trajectory in 3D

Cartesian space with the strokes of the swing legs

positioned on the inner side are shorter compared to

those of the swing legs placed on the outer side. The

trajectory of the swing is considered to be a local

behavior of the leg with respect to frame Li3. After

successful computation, the local coordinates are

transformed to the global coordinates of the leg with

respect to the frame of reference G.

The following steps are required to compute the

coordinates of the feet-tips during swing phase and

their relevant feetholds in stance phase.

Step 1 Selection of initial inputs for calculation of

the trajectory of swing leg i with respect to

frame G. The relevant inputs are as follows:

For trunk body: (a) angular stroke sc0 (for

turning motion), (b) initial position and

orientation, (c) maximum rate of change of

displacement (both angular and translation).

For Legs: (a) initial joint positions with

respect to local frames, (b) initial joint

angles, (c) trajectory ascend (cxz, cyz) and

descend angles (c0xz ; c
0
yz).

For Terrain: (a) terrain height at the initial

point of support, i.e., hin (height of point Pi3

w.r.t. frame G) and subsequent heights at the

end of swing phases, i.e., h0in, (b) maximum

height of terrain Hmin, (c) minimum gap

between maximum height of swing and

maximum height of terrain Dh (refer to

Fig. 4).

Other Relevant Input is the turning radius

q0.
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Step 2 Calculation of the foot tip’s motion

parameters during swing leg trajectory

planning with respect to the frame Li3 using

BCs Pi3 (initial foothold position),Qi3 (point

at which swing height reaches the maximum

and translational velocity along Z with

respect to frame G is zero), Ri3 (point at

which translational velocity along X with

respect to frame G reaches the maximum),

Ti3 (point of start of retardation) and P0
i3

(point of foothold after the end of swing

phase). Refer to Appendix 4 for details. Also,

the turning foot tip radius qi, as shown in

Fig. 4, is calculated from the forward

kinematics discussed in Sect. 3.2.

Step 3 Transformation of the foot tip’s motion

parameters from local reference frame Li3

to dynamic global reference frame G.

Once the motion parameters have been

computed with respect to frame Li3, it is

important to transform the same to frame G

using vector loop equations as stated below

(refer to Fig. 4). Therefore,

rGPs
i3
O ¼ rGPi3O

þ AGL000
i3 :r

L000
i3

Ps
i3
Pi3

ð40Þ

Here, the suffix s for the point Ps
i3 represents

swing, AGLi3 ¼ I3 (identity matrix), AGL000
i3 ¼

ALi3L
000
i3 . Refer to Appendix 1 for details.

Step 4 Transformation of the foot tip’s motion

parameters from frame G to G0 for a fixed

orientation vector gG using the transform

AG0G.

3.6 Foot slip during support phase

In the present study, an attempt has been made to make

the motion of the legs more realistic by taking into

account foot slip during foot-terrain interaction in

support phase. The translational velocity along Z-

direction gradually comes to zero and thereafter, slip

occurs till the start of the next swing phase. It is

assumed that the slip of the leg tip occurs in XY plane

of global frame G at a slip angle, es and the slip

velocity, vNi3
xy with respect to local frame Ni3 (refer to

Fig. 5a) instantaneously comes to zero at the time of

lift from point Pi3 of the next phase. It is to be noted

that the slip velocity of the support leg instantaneously

comes to zero at the time of take off at point Pi3. Also,

the slip trajectory is simplified to a straight path, which

starts at the beginning of support phase (point P0
i3) and

ends at the start of next swing phase Pi3, as shown in

Fig. 5a. The slip velocity vNi3
xy is assumed to be

regulated by a cubic polynomial like the Eq. (31)

and is given by,

vNi3

xy ðtÞ ¼ vNi3

xy

���
t¼tsu

0

þaxy:D
2
axy
ð3� 2Daxy

Þ for tsustart to t
su
1

¼ vNi3

xy

���
t¼tsu

1

for tsu1 to tsu2

¼ vNi3

xy

���
t¼tsu

2

�axy:D
2
dxy
ð3� 2Ddxy

Þ for tsu2 to tsuend

ð41Þ

where for every support phase of leg i, tsustart, t
su
1 , t

su
2 and

tsuend (suffix su represents support) indicate the initial

start time (at point P0
i3), time taken to reach maximum

slip velocity, time of start of retardation, and end time

of leg’s slip (at point Pi3 of the next swing phase),

respectively (refer to Fig. 5b). Also,

axy ¼ vNi3

xy

���
t¼tsu

1

�vNi3

xy

���
t¼tsu

0

ð42Þ

Daxy
¼ t � tsu0

� �
= tsu1 � tsu0
� �

ð43Þ

Ddxy
¼ t � tsu1

� �
= tsu2 � tsu1
� �

ð44Þ

The values of tsustart and t
su
end can easily be computed for

a leg in support phase during a duty cycle as discussed

in the next Sect. 3.7. Further, assuming the relation as

mentioned below, the values of tsu1 and tsu2 can also be

obtained.

Dtsu ¼ tsu1 � tsustart ¼ tsuend � tsu2 ð45Þ

The slip velocity with respect to global frame G is

given by the expression:

vGxy ¼ AGNi3 :vNi3

xy

Here, the transformation matrix AGNi3 ¼ I3, since the

frame local Ni3 is assumed to be parallel to global

frame G.

The components of slip velocities along X and Y

axes are given by the following expressions:

vGx ¼ vGxy: cos es ¼ vNi3

xy : cos es ð46Þ

vGy ¼ vGxy: sin es ¼ vNi3

xy : sin es ð47Þ
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The displacement of the leg tipwith respect to frame

G at any instant of time during slip (i.e., rGPsu
i3
O as shown

in Fig. 5a) can be calculated by integrating Eq. (46)

and (47) with respect to time t respectively. Thereafter,

using the transformation matrix AG0G, the displace-

ment of the tip can be computed with respect to fixed

global reference frame G0. The magnitude of slip

velocity is assumed to be small, since too much slip of

the leg tip will make the robotic structure staggered

and the desired robot motion may not be achieved for a

specific task. It is to be remembered that the effect of

the foot-terrain interaction is more important to study,

while tackling the coupled-dynamics problems.

3.7 Gait planning

To move the robot’s legs in a sequential manner, it is

necessary to have an effective gait planning and an

efficient algorithm to address the movement of the

trunk body and legs walking on the curved path in

varying terrains. In the present study, focus has been

made on the gait strategieswith duty factor (DF) = 1/2

(refer to Fig. 6) for locomotion alongwith the total gait

cycle time, swing phase time and stance phase time

(Song and Waldron 1989). During turning motion, the

robot starts to maneuver in a circular path with radius,

q0 (at pointP0) and angular stroke, s
c
0 of the trunk body.

At the start of motion, the initial rate of change of

angular displacement of the trunk body with respect to

point P0 is considered to be _h0
��
t¼t0

, while the

maximum rate of change of angular displacement is
_h0
��
t¼t1

, as discussed in Sect. 3.5.1. Figure 7 shows the

rate of change of angular displacement of the trunk

body along z-axis of frame G with n gait cycles. The

total time of motion of the robot is equivalent to the

time taken to complete n duty cycles, i.e., ts3
��
n
¼ t3

(suffix s represents swing) and is calculated as follows:

t3 ¼ t0 þ 2Dt þ 1
.

_h0
��
t¼t1

� �

h
n: 6s000
� ��

q0 � _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �

� _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �i
ð48Þ

Fig. 5 Foot slip during support phase of ith leg a a scheme of foot-terrain interaction kinematics, b slip velocity versus time

Fig. 6 Wave gait (DF = 1/2) under investigation
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where s000 is the displacement of trunk body per division

in a gait cycle shown in Fig. 6; D0
a and D0

d are the first

derivatives of Da and Dd with respect to time,

respectively; _h0
��
t¼t0

and _h0
��
t¼t1

are the minimum and

maximum rate of change of angular displacements of

the trunk body along z-axis of frameG at time t0 and t1
respectively, Dt is the duration of acceleration and

deceleration of the trunk body (refer to Appendix 5 for

details).

The end time for each of the gait cycles is calculated

as follows:

ts3
��
1
¼ t1 þ 1

.
_h0
��
t¼t1

� �h
6s000

�
q0

� _h0
��
t¼t0

þ _h0
��
t1t2

.
2

� �
: 1

�
D0
a

� �i
;

ð49Þ

ts3
��
2
¼ ts3

��
1
þ 6s000

.
q0: _h0

��
t¼t1

� �
; ð50Þ

..

. ..
. ..

.

ts3
��
n�1

¼ ts3
��
n�2

þ 6s000

.
q0: _h0

��
t¼t1

� �
; ð51Þ

ts3
��
n
¼ t3: ð52Þ

After the calculation of end time for each of the gait

cycles, the time of swing and support phase of each of

the legs during the cycle can be sequenced according

to the gait diagram, as shown in Fig. 7. This helps to

form a proper synchronization between the legs and

trunk body.

4 Numerical illustrations and validation

In this section, the capabilities of the developed

kinematic model to tackle varying terrain conditions

are tested with two case studies adopting the tripod

wave gait (DF = 1/2), since it is a standard gait for

hexapod walking robots. A flowchart shown in Fig. 8

illustrates the steps to be followed to carry out the

inverse kinematic analysis.

Furthermore, the numerically simulated results

have been verified through the application of VP tools

like MSC.ADAMS�. The components of the robot

have complex geometries and therefore, it is difficult

to model the same in MSC.ADAMS� workbench.

Moreover, perfectly defining the constraints like

revolute joints of the robot is also cumbersome.

Therefore, to execute an error-free model in

MSC.ADAMS�, it is necessary to preprocess it. The

following important preprocessing steps are followed

to achieve the same:

Step 1: Translating the CAD model into CATIA

SimDesigner (commercially available CAD pack-

age) workbench

Step 2: Defining the constraints like joints, contacts

in the CAD parts etc.

Step 3: Exporting the model into MSC.ADAMS�

keeping all the complex geometries, material,

constraints etc. intact.

Step 4: Importing the .cmd file in MSC.ADAMS�

workbench

In ADAMS workbench, the imported model is

further preprocessed by defining the trunk body and tip

point motion parameters as inputs. These inputs are

basically the computed results obtained from the

analytical approach, which is discussed in Sect. 3.

Suitable markers that define the location and orienta-

tion of the motion on the bodies (trunk body and the

legs) in 3D space are added to the points P0 and Pi3

Fig. 7 Rate of change of angular displacement of the trunk

body along Z-axis of frame G with respect to time

Fig. 8 Flowchart of computational algorithm for the inverse

kinematic analysis
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(i = 1 to 6). In the general point motion tool (added to

the defined markers) of MSC.ADAMS�, the input

motions are prescribed by using Akima fitting func-

tion. The input motion corresponds to the rate of

change of displacement of the trunk body (both

translational and angular) and leg tip (translational)

with respect to terrain as reference and defined in

global coordinates. After preprocessing, the simula-

tion is executed inMSC.ADAMS� solver for the same

number of step size and end time, as solved analyt-

ically. Thereafter, post processing of the computed

results is done and these are compared with the

analytical results.

4.1 Case study I: Turning motion along a banked

surface

In the present case study, an attempt has been made to

maneuver the robot without payload over a banking

surface using its turning motion capabilities with

DF = 1/2. The rate of change of translational dis-

placement (along X, Y and Z) of the trunk body with

respect to global frame G follows the relationship, as

given below (also refer to Eq. (39)).

_rGP0O
¼ �q0 _h0 sin h0; q0 _h0 cos h0; 0

� �T

ð53Þ

At time t = 0, the position and orientation of P0

with respect to global frame G is given by pG0 = {1.3,

0.75, 0.15, 0, 0, 30}T. The initial velocity components

are assumed to be equal to zero. The maximum rate of

change of angular displacement of the trunk body

along Z direction with respect to frame L0 is assumed

to be equal to _h0
��
max

= _h0
��
t¼t1

= ?0.1 rad/s with _a0

= 0, _b0 = 0, in the present case. The turning radius of

the trunk body throughout the motion of the robot is

considered as q0 = 1.5 m. The initial joint angles hi1
of all the joints of the robot are calculated using some

geometrical relations described Appendix 4.III. Here,

all the joint angles are noted in the order of [hi1, bi2,
bi3] (for i = 1 to 6) as [5�,-16�,-69�] for leg 1, [12�,
16�, 69�] for leg 2, [12�,-16�,-69�] for leg 3, [18.5�,
16�, 69�] for leg 4, [22�,-16�,-69�] for leg 5, [27.5�,
16�, 69�] for leg 6. In addition to the above, the other

necessary inputs are gG = [0, -15�, 0]T, maximum

height of swing along Z with respect to frame

Li3 = 0.005 m (=Hmin ? Dh) for all duty cycles.

Since the terrain surface is flat, h0in = 0 for all duty

cycles. Also, the maximum slip velocity is assumed to

be equal to 0.001 m/s with a slip angle of es = 45�.
The simulations are run for three duty cycles, i.e.,

n = 3 with DF = 1/2 and sc0 = 0.120 m in

MATLAB.

The total time of motion of the robot for three duty

cycles is calculated to be equal to 5.75 s (1st cycle—

2.05 s, 2nd cycle—1.65 s, and the 3rd cycle—2.05 s,

respectively) as calculated using Eq. (49). The 2nd

cycle time is less compared to the 1st and 3rd cycle

time due to the effects of acceleration and deceleration

on the trunk body in the starting and ending cycles,

respectively. The variations of the angular displace-

ment rates of the trunk body during the robot’s motion

along the banked surface are computed using

Eqs. (31) and (34) followed by the computation of

the translational displacement rates of the trunk body,

based on the Eq. (53) (Refer to Fig. 9a, b). It can be

observed from Fig. 9a, b that the translational dis-

placement rate along Z axis and angular displacement

rate along X and Y axes are zero. This means that the

trunk body is always at a constant height with respect

to the frame G in the present case study.

The position, velocity and acceleration of the leg tip

Pi3 (i = 1 to 6) are computed with respect to frame G0

based on the motion and gait planning algorithms, as

discussed in Sects. 3.5.2, 3.6 and 3.7. The trace of the

position of Pi3 (i = 1 to 6) is plotted in 3D cartesian

space, as shown in Fig. 10. The projections of the 3D

motion trajectories of all the legs to the XY plane show

the curve paths followed by the robot’s legs to execute

turning motion. Here, the effect of slip is negligible,

since the slip velocity (in XY plane) is very less

compared to the swing velocity of the legs. In Fig. 11,

it is interesting to note the motion of the tip of leg 1 in

XY plane of frame G during the support phase for a

given gait sequence, which actually illustrates the

slippage condition. The maximum slip distance as

obtained from calculations is approximately equal to

0.001 m.

After the computations in MATLAB are over, the

relevant motion data (velocity) of the trunk body and

leg tip are imported into MSC.ADAMS�, as the

inputs. The simulations are subsequently run in

MSC.ADAMS� solver for a total cycle of 5.75 s with

a time-step of h = 0.05 s. Some of the snapshots of

the robot simulated in MSC.ADAMS�, while
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traversing the banked surface using wave gait strategy

and turning motion capabilities are shown in Fig. 12.

The visualized motion of the robotic system is as

desirable with the gait sequences: 1–4–5 and 2–3–6.

The simulated results are in agreement with the

computed data of the proposed motion planning

algorithm, which further prove its efficacy. The

corresponding simulation time is indicated for each

snapshot. The results of kinematic analysis of leg 1

obtained in MATLAB are compared with those of

MSC.ADAMS�, and a close match has been obtained

(refer to Fig. 13). The joint angles are lying within the

expected limits, which show that at no time during the

motion, the configuration of the robot is staggered and

there is no interference between the legs during the

motion. The differences in the values of angular

displacement of the legs vary in the range of (-3.8�,
9.1�) approximately. Also, the magnitude of angular

velocities of joint 12 and 13 (refer to Fig. 13e, h) are

less compared to that of joint 11 (refer to Fig. 13b).

Moreover, Fig. 13b shows that the angular velocity of

joint 11 during swing phase varies steadily at a faster

rate compared to that during support phase. Maximum

angular velocity of the joint occurs during swing phase

of the cycle, which is due to the effect of trunk body

motion on the swing motion of the robot’s leg. Further,

the position of the aggregate COM of the system in 3D

Cartesian space obtained analytically is compared

with the simulated results in MSC.ADAMS�. The

analytical data are in close agreement with those

obtained with MSC.ADAMS� (refer to Fig. 14).

4.2 Case study II: Turning motion on an uneven

terrain

Locomotion analysis of a hexapod robot over an

uneven terrain is complex. An attempt has been made

in the present case study to explore the turning motion

capabilities of the robot with payload on such terrains

with DF = 1/2. The surface irregularities of the terrain

are assumed to be small with values ranging from

5 mm to 8 mm with respect to local frame Li3 on the

path of the leg swing. To make the motion of robot

realistic on such topography, both translational and

angular displacement rates of the trunk body are taken

into consideration. The angular displacement rates of

the trunk body are governed by functions gx(t),

gy(t) and gz(t) along their respective axes, whereas

the translational displacement rates (along X, Y and Z)

of the trunk body are governed by the Eq. (39), as

discussed in Sect. 3.5.1.

In the present case, at time t = 0 s, the position and

orientation of the point P0 with respect to frame G is

given by pG0 = {1.73, 1.0, 0.15, 1, -2, 30}T. The

initial velocity components of the bodies in the system

are assumed to be equal to zero. The maximum and

minimum rate of change of angular displacements of

the trunk body along the axes X and Y with respect to

Fig. 9 Trunk body motion on a banked surface for three duty cycles a rate of change of translational displacement, b rate of change of

angular displacement
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frame L0 are given by _a0jmax;min = ±0.01 rad/s,

_b0
��
max;min

= ±0.01 rad/s, whereas the maximum rate

of change of angular displacement of the trunk body

along Z is assumed to be equal to _h0
��
max

¼ _h0
��
t¼t1

= ?0.1 rad/s. Similarly, the maximum rate of change

of translational displacements of the trunk body along

the respective axes with respect to frame G are given

by _xGP0O

��
max

¼ �q0 _h0
��
max

sinh0jt¼t1
, _yGP0O

��
max

¼
�q0 _h0

��
max

cosh0jt¼t1
and _zGP0O

��
max

= 0.005 m/s (refer

to Fig. 15). The turning radius (q0) of the point P0 on

the trunk body is assumed to be equal to 2.0 m. Also,

the joint angle hi1 (i = 1to 6) for the robot’s initial

configuration are calculated using geometrical rela-

tions given in Appendix 4.III. If the joint angles of leg i

are in the order of [hi1, bi2, bi3] (for i = 1 to 6), then the

corresponding joint angles are [11.5�,-16�,-69�] for
leg 1, [18�, 16�, 69�] for leg 2, [16.5�,-16�,-69�] for
leg 3, [22.5�, 16�, 69�] for leg 4, [24�,-16�,-69�] for
leg 5, [29.5�, 16�, 69�] for leg 6. The other relevant

inputs are related to the topography of the terrain,

namely (i) Hmin and (ii) h0in with respect to frame Li3

(refer to Fig. 4). For three duty cycles (n = 3), the

values ofHmin is in the order of [Hmi1,Hmi2,Hmi3] for

i = 1 to 6, such that, [0.005, 0.005, 0.005] corresponds

to Leg 1, [0.006, 0.008, 0.003] corresponds to Leg 2,

Fig. 10 3D motion trajectory of leg tip Pi3 on a banked surface with respect to frame G0 a legs 1 and 2, b legs 3 and 4, c legs 5 and 6
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[0.004, 0.005, 0.002] corresponds to Leg 3, [0.006,

0.006, 0.004] corresponds to Leg 4, [0.006, 0.008,

0.003] corresponds to Leg 5 and [0.005, 0.005, 0.005]

corresponds to Leg 6 (all values are in m). Similarly,

the values of h0in are in the order of [h0i1, h
0
i2, h

0
i3] for

i = 1 to 6, such that, [0.003, 0.005, -0.003] corre-

sponds to leg 1, [0.004, 0.006, 0.0] corresponds to leg

2, [0.0042, 0.004, -0.002] corresponds to leg 3,

[0.002, 0.002, -0.003] corresponds to leg 4, [0.0064,

0.006, 0.0] corresponds to leg 5 and [0.003, 0.005,

0.003] corresponds to leg 6 (all values are in m). The

value of Dh is kept equal to 0.002 m. In addition to the

above, the other necessary inputs are gG = [0, 0, 0]T.

Since, there is slippage of the legs during support

phase, the maximum slip velocity is assumed to be

equal to 0.005 m/s with a slip angle of es = 45� for all
the legs. The simulations are run for three duty cycles

with DF = 1/2 and sc0 = 0.150 m in MATLAB.

The total simulation time computed inMATLAB to

execute the motion of the robot for three duty cycles is

5.45 s (1st cycle—2.0 s, 2nd cycle—1.45 s, 3rd

cycle—2 s), as calculated using Eq. (49). It is to be

noted that the robot completes the 2nd cycle faster

than the other two. This is due to the effect of

Fig. 11 Translational velocities of tip point P13 (Leg 1) with

respect to frame G, showing slip motion during support phase in

XY plane

Fig. 12 Snapshots of a

realistic six-legged robot

simulated in

MSC.ADAMS� for

maneuverability over a

banking surface with

turning motion capabilities

using wave gait (DF = 1/2)
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acceleration and deceleration time of the robot during

the 1st and 3rd cycles, respectively. In the present case

study, the vertical height of the trunk body is not kept

constant and it varies with time due to the rate of

change of translational displacement along Z and that

of angular displacement in YZ and XZ planes (refer to

Fig. 15).

The kinematic motion parameters (like position,

velocity and acceleration) of the tip point Pi3 (i = 1 to

6) are calculated with respect to frameG0 based on the

motion and gait algorithm (refer to Sects. 3.5.2, 3.6

and 3.7). The data points of the path followed by the

robot’s leg tip during turning motion are plotted in 3D

Cartesian space, as shown in Fig. 16. Also, the

projected data points on the XY plane show the

curved path followed by the robot during turning. The

effect of slip velocity on the path of trajectory of the

robot’s leg is small, though there is a slippage of

approximately 0.005 m in the XY plane during the

support phase of the legs.

To validate the computed results in MATLAB, the

velocity data of the trunk body and the leg tip Pi3 are

imported into MSC.ADAMS� as relevant inputs and

preprocessed. The simulations are run in

MSC.ADAMS� solver for the total cycle time of

5.45 s with a time step of h = 0.05 s, as computed in

Fig. 13 Comparative graphs of the kinematic analysis of a

realistic six-legged robot during turning motion on a banked

surface using wave gait (DF = 1/2) for leg 1. Joint 11 a angular
displacement, b angular velocity, c angular acceleration. Joint

12 d angular displacement, e angular velocity, f angular

acceleration. Joint 13 g angular displacement, h angular

velocity, i Angular acceleration
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MATLAB. Visualization of the simulated data (refer

to Fig. 17) of the robot maneuvering on an uneven

terrain shows that the motion of the robot is stable and

according to the desired sequence of 1–4–5 and 2–3–6

walking gait. This also proves the efficacy of the

proposed motion planning algorithms. The corre-

sponding simulation time is indicated for each snap-

shot. Moreover, the comparative study of the

kinematic motion parameters of leg 6 shows that the

results are in close agreement (refer to Fig. 18). The

joint angles are within the expected limit, which also

proves that the robot’s configuration is not staggered

and collision between the legs can be avoided during

the robot’s motion. The deviation of the angular

displacement of leg 6 is in the approximate range of

(5.9�,-12.2�). Another observation can be made from

the plotted graphs of the angular velocities of joints 61,

62 and 63 (refer to Fig. 18b, e, h) like the magnitude of

angular velocity of joints 62 and 63 is less compared to

that of joint 61. A close look on Fig. 18b shows that

during the swing phase, the angular velocity of joint 61

varies steadily at a faster rate compared to angular

velocity of that joint during support phase. Moreover,

the maximum angular velocity of the joint occurs

during the swing phase of a cycle. This is due to the

effect of trunk body motion on the swing motion of the

robot’s leg. So, the joint i1 (i = 1 to 6) is the most

predominate joint, since it controls the motion

sequence of the legs of the robot. Further, comparative

analysis of the displacement of the aggregate COM of

the robot with payload is carried out. The results are

plotted in Fig. 19 to show that the analytical results are

in close agreement with the MSC.ADAMS� results.

Moreover, the COM varies in 3D Cartesian along X,

Y, and Z with respect to frame G0, which gives a

realistic picture of the robot’s motion in varying

terrains. The results further prove the efficacy of the

method of analysis introduced in this contribution for

the kinematics of the system.

Fig. 14 Comparison of the analytical results of the aggregate

COM of the system with respect to frame G0 during turning

motion on a banked surface with that of MSC.ADAMS�

Fig. 15 Trunk bodymotion on an uneven terrain for three duty cycles a rate of change of translational displacement, b rate of change of
angular displacement
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5 Conclusion

In this contribution, kinematic model of a hexapod

robot for turning gaits in varying terrains has been

developed, simulated and its performance is tested (or

validated) on a CAD model, and visualized using the

available VP tools. All feasible solutions related to

translational and angular displacements, velocities

and accelerations of the joints of all the legs are

computed with the help of this model. The analytical

results of the kinematic model are in good agreement

with those obtained with MSC.ADAMS�. It also

shows that the developed motion planning algorithms

(both trunk body and swing leg trajectory planning)

have significant effects on the inverse kinematic

analysis of the closed chain formed by the feet in

stance phase relative to the trunk body motion or open

chains formed by the feet in swing phase. This

approach can be used for locomotion analysis of

legged robots with other types of gaits and for

straight-forward motion, crab motion etc. on any kind

of terrain.

Fig. 16 3D motion trajectory of leg tip Pi3 on an uneven terrain with respect to frame G0 a legs 1 and 2, b legs 3 and 4, c legs 5 and 6
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A number of iterations can be carried out to

improve the desired performance of the realistic robot

in the present study using the VP tools prior to the

development of its first physical prototype. The

proposed method can also be extended to tackle the

problems related to kinematics of general multi-

legged walking robots with turning gaits in complex

environment. Moreover, the developed constraint

equations can be used as the direct aid to study the

constrained, coupled multibody dynamics of the robot

with impact and slip phenomena. This has been kept in

the scope of future work.

Appendix 1: Matrix projectors

PT
r ðx; yÞ ¼

1 0 0

0 1 0

� �
ð54Þ

PT
r ðx; zÞ ¼

1 0 0

0 0 1

� �
ð55Þ

PrðyÞ ¼ 0 1 0½ �T ð56Þ

PrðzÞ ¼ 0 0 1½ �T ð57Þ

Appendix 2: Important transformation matrices

AGG0 ¼
cos bG cos hG cos aG sin hG þ sin aG sin bG cos hG sin aG sin hG � cos aG sin bG cos hG
� cos bG sin hG cos aG cos hG � sin aG sinbG sin hG sin aG cos hG þ cos aG sin bG sin hG

sin bG � sin aG cos bG cos aG cos bG

2

4

3

5 ð58Þ

Fig. 17 Snapshots of a

realistic six-legged robot

simulated in

MSC.ADAMS� for

maneuverability over an

uneven terrain with turning

motion capabilities using

wave gait (DF = 1/2)
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AL0G is obtained in the similar way by substituting a0,
b0 and h0, respectively, in the above equation.

AL0Lk

¼
cosðc� hi1Þ cos k1 sinðc� hi1Þ � cosðc� hi1Þ sin k1
� sinðc� hi1Þ cos k1 cosðc� hi1Þ sinðc� hi1Þ sin k1

sin k1 0 cos k1

2

64

3

75

ð59Þ

where

(i) If L k = L00i , then k1 ¼ 0

(ii) If Lk = L00i1, then k1 ¼ /� bi2;
(iii) If Lk = L00i2, then k1 ¼ /� bi2 � bi3

ALi3L
000
i3¼

sin hLi3i3 cos hLi3i3 0

� cos hLi3i3 sin hLi3i3 0

0 0 1

2

4

3

5 ð60Þ

Appendix 3: Jacobian matrices

J ¼
0 0 0 0 0 0

b21 b22 b23 b24 b25 b26
c31 c32 c33 c34 c35 c36

2

4

3

5 ð61Þ

Fig. 18 Comparative graphs of the kinematic analysis of a

realistic six-legged robot during turning motion on a uneven

terrain using wave gait (DF = 1/2) for leg 6. Joint 11 a angular
displacement, b angular velocity, c angular acceleration. Joint

12 d angular displacement, e angular velocity, f angular

acceleration. Joint 13 g angular displacement, h angular

velocity, i angular acceleration
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For i = 1 to 6

1. For Jacobians Jrij and J0rij

(i) j ¼ 1; m ¼ 1 to 6;

b2m = 0

c3m ¼ ohij=oV;
whereV 2 pG0 for Jrij orV 2 pGi3 for J

0
rij

(ii) j ¼ 2 to 3; m ¼ 1 to 6;

b2m ¼ obij=oV ;
c3m = 0

whereV 2 pG0 for Jrij orV 2 pGi3 for J
0
rij

2. For Jacobians _Jrij and _J
0
rij

(i) j ¼ 1; m ¼ 1 to 6;

b2m = 0

c3m ¼ _pT0 :Dhij;V ;whereV 2 pG0 for _Jrij ¼ _pT0 :

Dhij;V þ _pTi3:D
0
hij;V ;whereV 2 pGi3 for

_J
0
rij

(ii) j ¼ 2 to 3; m ¼ 1 to 6;

b2m ¼ _pT0 :Dbij;V ;whereV 2 pG0 ¼ _pT0 :

Dbij;V þ _pTi3:D
0
bij;V ;whereV 2 pGi3 for

_J
0
rij

c3m = 0

Also,

DA;V ¼

o

oxGP0O

oA

oV

 �
o

oyGP0O

oA

oV

 �
o

ozGP0O

oA

oV

 �

o

oa0

oA

oV

 �
o

ob0

oA

oV

 �
o

oh0

oA

oV

 �

2

6664

3

7775

T

ð62Þ

D0
A;C ¼

o

oxGPi3O

oA

oV

 �
o

oyGPi3O

oA

oV

 �
o

ozGPi3O

oA

oV

 �

o

oai3

oA

oV

 �
o

obi3

oA

oV

 �
o

ohi3

oA

oV

 �

2

6664

3

7775

T

ð63Þ

A 2 hi1; bi2; bi3ð Þ;

bi3 ¼ f rGP0O
; rGPi3O

; g0
� �

ð64Þ

_bi3 ¼
obi3
oxGP0O

obi3
oyGP0O

obi3
ozGP0O

obi3
oa0

obi3
ob0

obi3
oh0

� �

� _xGP0O
_yGP0O

_zGP0O
_a0 _b0 _h0

h iT

þ
obi3
oxGPi3O

obi3
oyGPi3O

obi3
ozGPi3O

� �
_xGPi3O

_yGPi3O
_zGPi3O

	 
T

ð65Þ

Fig. 20 A kinematic scheme of the robot (top view) during

turning motion with tripod wave gait (only one-half cycle)

Fig. 19 Comparison of the analytical results of the aggregate

COM of the system with respect to frame G0 during turning

motion on an uneven terrain with that of MSC.ADAMS�
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€bi3 ¼
obi3
oxGP0O

obi3
oyGP0O

obi3
ozGP0O

obi3
oa0

obi3
ob0

obi3
oh0

� �

� €xGP0O
€yGP0O

€zGP0O
€a0 €b0 €h0

h iT

þ
obi3
oxGPi3O

obi3
oyGPi3O

obi3
ozGPi3O

� �

� €xGPi3O
€yGPi3O

€zGPi3O

	 
T

þ

o2bi3

o xGP0O

� �2

o2bi3

o yGP0O

� �2

o2bi3

o zGP0O

� �2

o2bi3
oa20

o2bi3
ob20

o2bi3
oh20

2

666664

3

777775

� €xGP0O

� �2

_yGP0O

� �2

_zGP0O

� �2

_a20 _b20 _h20

� �T

þ
o2bi3

o xGPi3O

� �2

o2bi3

o yGPi3O

� �2

o2bi3

o zGPi3O

� �2

2

4

3

5:

� _xGPi3O

� �2

_yGPi3O

� �2

_zGPi3O

� �2
� �T

ð66Þ

Appendix 4: Trajectory planning of swing leg

Trajectory planning of tip point Pi3 of the swing is

carried in 3D Cartesian space (refer to Fig. 4).

Calculation of coordinates of points Pi3, Qi3, Ti3,

P0
i3 with respect to frame Li3

Coordinates of Pi3

xLi3Pi3
¼ 0; ð67Þ

yLi3Pi3
¼ 0; ð68Þ

zLi3Pi3
¼ 0 ð69Þ

Coordinates of Qi3

zLi3Qi3
¼ Hmi1

þ Dh ð70Þ

DzPi3Qi3
¼ zLi3Qi3

� zLi3Pi3
¼ Hmi1

þ Dh ð71Þ

xLi3Qi3
¼ xLi3Pi3

þ DzPi3Qi3
: tan cxz ð72Þ

yLi3Qi3
¼ yLi3Pi3

þ DzPi3Qi3
: tan cyz ð73Þ

Coordinates of Ti3

zLi3Ti3
¼ zLi3Qi3

¼ zLi3Ri3
¼ Hmi1

þ Dh ð74Þ

DzP0
i3
Ti3 ¼ zLi3Ti3

� zLi3
P0
i3

¼ Hmi1
þ Dh� h0i3 ð75Þ

xLi3Ti3
¼ xLi3

P0
i3
þ DzP0

i3
Ti3 : tan c

0
xz ð76Þ

yLi3Ti3
¼ yLi3

P0
i3

� DzP0
i3
Ti3 : tan c

0
xz ð77Þ

(cxz, cyz) are the angle of ascend and (c0xz, c
0
yz) are the

angle of descend of the trajectory in XZ and YZ plane

respectively.

Coordinates of P0
i3

xLi3
P0
i3

¼ xLi3Pi3
¼ 0; ð78Þ

yLi3
P0
i3
¼ yLi3Pi3

þ sfw; ð79Þ

zLi3
P0
i3

¼ h0i3 ð80Þ

Here sfw designates the full stroke of swing leg during

the turning motion.

Table 2 hLi3i3 ði ¼ 1 to 6Þ at the start of leg swing for tripod gait

Cycle Leg’s 2, 3,6 Leg’s 1, 4, 5

1 hLi3i3

��
t¼t0

¼ wSi

��
t¼t0

þDhc0
�
2 hLi3i3

��
t¼tc j1

¼ wSi

��
t¼tc j1

þDhc0
�
2wSi

��
t¼tc j1

¼ wSi

��
t¼t0

þ3Dhc0
�
2

2 hLi3i3

��
t¼ts

3j1
¼ wSi

��
t¼ts

3j1
þDhc0

�
2

wSi

��
t¼ts

3j1
¼ wSi

��
t¼t0

þ5Dhc0
�
2

hLi3i3

��
t¼tc j2

¼ wSi

��
t¼tc j2

þDhc0
�
2

wSi

��
t¼tc j2

¼ wSi

��
t¼t0

þ7Dhc0
�
2

3 hLi3i3

��
t¼ts

3j2
¼ wSi

��
t¼ts

3j2
þDhc0

�
2

wSi

��
t¼ts

3j2
¼ wSi

��
t¼t0

þ9Dhc0
�
2

hLi3i3

��
t¼tc j3

¼ wSi

��
t¼tc j3

þDhc0
�
2

wSi

��
t¼tc j3

¼ wSi

��
t¼t0

þ11Dhc0
�
2

NB: wSi
¼ tan�1ðmSiOÞ, tc indicates half cycle time
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Swing leg trajectory planning with respect to frame

Li3

Along X-axis:

xei¼ai0þai1:tþai2:t
2
�
2þai3:t

3
�
3 ðPi3 toQi3Þ

¼bi0þbi1tþbi2t
2þbi3t

3þbi4t
4þbi5t

5 ðQi3 toTi3Þ
¼ ci0þci1:tþci2:t

2
�
2þci3:t

3
�
3 Ti3 toP

0
i3

� �

ð81Þ

The coefficients ai0, ai1, ai2 and so on are computed

using suitable boundary conditions.

Along Y-axis (Pi3 to P0
i3):

yei ¼ yPi3
þ ayPP0

i
:D2

PP0 :ð3� 2DPP0 Þ ð82Þ

where

ayPP0
i

¼ yP0
i3
� yPi3

ð83Þ

DPP0 ¼ t � tsstart
� ��

tsend � tsstart
� �

ð84Þ

dDPP0=dt ¼ 1
�

tsend � tsstart
� �

ð85Þ

Along Z-axis:

zei ¼ zPi3
þ azPQ

i
:D2

PQ:ð3� 2DPQÞ ðPi3 toQi3Þ

¼ zQi3
ðQi3 to Ti3Þ

¼ zTi3 � azTP0
i
:D2

TP0 :ð3� 2DTP0 Þ ðTi3to P
0
i3Þ

ð86Þ

where

azPQ
i

¼ zQi3
� zPi3

ð87Þ

azTP0
i

¼ zTi3 � zP0
i3

ð88Þ

DPQ ¼ t � tsstart
� ��

ts1 � tsstart
� �

;
DTP0 ¼ t � ts2

� ��
tsend � ts2
� � ð89Þ

Superscript ‘s’ indicates swing. For every swing phase

of leg i, tsstart, t
s
1, t

s
2 and t

s
end indicate the start (point Pi3),

end of acceleration (point Qi3), start of deceleration

(point Ti3) and end (point Pi3
0) time, respectively.

Calculation of turning angle hLi3i3 (i = 1 to 6)

for the tripod gait configuration

From Fig. 20, the following trigonometrical relations

are established with respect to frame G:

(a) Angular displacement per stroke of the trunk

body,

Dhc0 ¼ sc0
�
q0 ð90Þ

where

sc0 ¼ 3s000 ð91Þ

(b) Angular stroke of the swing leg (full swing),

sfw ¼ 2qi:Dh
c
0 ð92Þ

(c) For interior legs (i = 1, 3, 5),

fi ¼ p� \SiPi3O ð93Þ

hi1jt¼t0
¼ fi � Dhc0

�
2� di for i ¼ 1; 3

¼ fi � Dhc0
�
2þ di for i ¼ 5

ð94Þ

(d) For exterior legs (i = 2, 4, 6)

fi ¼ \SiPi3O ð95Þ

hi1jt¼t0
¼ fi þ Dhc0

�
2� di for i ¼ 2; 4

¼ fi þ Dhc0
�
2þ di for i ¼ 6

ð96Þ

(e) \SiPi3O ¼ sin�1 qSi sin ðDh
c
0

�
2Þ

� ��
li

� �
ð97Þ

(f) di ¼ tan�1 mS2S1
�mSiO

1þmS2S1
:mSiO

� �
for i ¼ 1 to 2 ¼ tan�1

mS4S3
�mSiO

1þmS4S3
:mSiO

� �
for i ¼ 3 to 4 ¼ tan�1

mS6S5
�mSiO

1þmS6S5
:mSiO

� �
for i ¼ 5 to 6 ð98Þ

(g) Slopes:

mSiO ¼ yGSiO

.
xGSiO; for i ¼ 1 to 6 ð99Þ

mS2S1 ¼ yGS2O � yGS1O

� �.
xGS2O � xGS1O

� �
;

ð100Þ

mS4S3 ¼ yGS4O � yGS3O

� �.
xGS4O � xGS3O

� �
;

ð101Þ

mS6S5 ¼ yGS6O � yGS5O

� �.
xGS6O � xGS5O

� �
ð102Þ

The turning foot tip radius (qi) and the turning

radius of joint i1 of leg ‘i’ (qSi) are calculated
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from the forward kinematics of the system as

discussed in Sect. 3.1, such that

qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xGPi3O

� �2

þ yGPi3O

� �2
r

; ð103Þ

qSi ¼¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xGSiO

� �2

þ yGSiO

� �2
r

: ð104Þ

Therefore, the turning angle hLi3i3 (i = 1 to 6) for

the tripod gait configuration are obtained using

the relations as shown in Table 2.

Appendix 5: Time calculations for gait planning

Calculation of total time taken to complete n-duty

cycles

For all the n-duty cycles, the angular stroke (Dhc0) and
radius of rotation (q0) of the trunk body are assumed to

be constant. Hence, the total angular displacement is

given by

h0ð ÞT¼ n:ð2Dhc0Þ ¼ 2n:sc0
�
q0 ðrefer to Eq: ð90ÞÞ

ð105Þ

where 2Dhc0 is the angular displacement per cycle for

duty factor = 1/2.

Angular displacement of the trunk body at time t1
can be obtained by integrating Eq. (34) with respect to

time, such that,

h0
��
t¼t1

¼ h0
��
t¼t0

þ _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �
ð106Þ

or

h0
��
t¼t0

¼ h0
��
t¼t1

� _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �
ð107Þ

Similarly, angular displacement of the trunk body at

the end of the motion, i.e., at the time ts3
��
n
can be

obtained by integrating Eq. (34) with respect to time,

such that,

h0
��
t¼ts

3
jn
¼ h0

��
t¼t2

þ _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �
ð108Þ

Referring to Fig. 7, the total angular displacement is

given by

h0ð ÞT¼ h0
��
t¼ts

3
jn
� h0

��
t¼t0

ð109Þ

Substituting Eqs. (107) and (108) in Eq. (109) and re-

arranging the terms, we get

h0ð ÞT¼ h0
��
t¼t2

� h0
��
t¼t1

þ _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �

þ q0 _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �

ð110Þ

Since the rate of change of angular displacement is

constant from time t1 to t2 (refer Fig. 7), we have

h0
��
t¼t1

¼ _h0
��
t¼t1

:t1 ð111Þ

h0
��
t¼ts

3j1
¼ _h0

��
t¼t1

:ts3
��
1

ð112Þ

h0
��
t¼ts

3j2
¼ _h0

��
t¼t1

:ts3
��
2

ð113Þ

..

. ..
.

h0
��
t¼t2

¼ _h0
��
t¼t1

:t2 ð114Þ

Substituting Eqs. (111) and (114) in Eq. (110)

h0ð ÞT ¼ _h0
��
t¼t1

: t2 � t1ð Þ þ _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �

þ _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �

ð115Þ

Comparing Eqs. (105) and (115), we get

2n:sc0
�
q0 ¼ _h0

��
t¼t1

: t2 � t1ð Þ
þ _h0

��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �

þ _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �
ð116Þ

or

t2 � t1 ¼ 1
.

_h0
��
t¼t1

� �h
2n:sc0

�
q0 � _h0

��
t¼t0

þ a _h0

.
2

� �
:

� 1
�
D0
a

� �
� _h0

��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �i

ð117Þ

Since the acceleration and deceleration times of the

trunk body are assumed to be equal, we have
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Dt ¼ t1 � t0 ¼ t3 � t2 where t3 ¼ ts3
��
n

ð118Þ

Substituting Eqs. (118), (91) in Eq. (117) and rear-

ranging the terms, we get

t3 ¼ t0 þ 2Dt þ 1
.
_h0
��
t¼t1

� �

�
h
n: 6s000
� ��

q0 � _h0
��
t¼t0

þ a _h0

.
2

� �
: 1

�
D0
a

� �

� _h0
��
t¼t1

� a _h0

.
2

� �
: 1

�
D0
d

� �i
ð119Þ

Calculation of end time for each of the duty cycles

Refer to Fig. 7:

Angular displacement of each cycle = 6s000
For 1st cycle (time t0 to t3

s |1),

6s000 ¼ st0t1 þ st1ts3j1
¼ q0ðh0jt¼t1

� h0jt¼t0
Þ þ q0ðh0jt¼ts

3j1� h0jt¼t1
Þ

¼ q0ðh0jt¼ts
3j1� h0jt¼t0

Þ

ð120Þ

Substituting Eqs. (106), (111) and (112) in Eq. (120)

and rearranging the terms, we get

ts3
��
1
¼ t1 þ 1

.
_h0
��
t¼t1

� 6s000
�
q0 � _h0

��
t¼t0

þ a _h0

.
2

� �� �
: 1

�
D0
a

� �

ð121Þ

For 2nd cycle (time t3
s |1 to t3

s |2),

6s000 ¼ sts
3j1ts3j2 ¼ q0


h0

����
t¼ts

3j2
� h0

��
t¼ts

3j1

�
ð122Þ

Substituting Eqs. (112) and (113) in Eq. (122) and

rearranging the terms, we get

ts3
��
2
¼ ts3

��
1
þ 6s000

.
q0: _h0

��
t¼t1

� �
; ð123Þ

and so on.
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