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Abstract A mixed numerical-experimental approach

capable to predict and optimize the performance of the

footwear adhesive joints, based on the weight compo-

sition of used raw materials was presented. The

approach based on the optimal design of adhesive

composition to achieve the targets of minimum creep

rate (CR) and maximum peel strength (PS) under

manufacturing. Two stages are considered in the

proposed approach. In the first stage, an approximation

model is built based on planned experimental measure-

ments and artificial neural network (ANN) develop-

ments. The ANN learning procedure uses a genetic

algorithm. In the second stage an optimal design

procedure is developed based onmulti-objective design

optimization (MDO) concepts. The MDO algorithm

based on dominance concepts and evolutionary search

is proposed aiming to build the optimal Pareto front.

The model uses the optimal ANN to evaluate the fitness

functions of the optimization problem. Furthermore, a

ANN-based Monte Carlo simulation procedure is

implemented and the sensitivity of the CR and PS

relatively to weight compositions of raw materials is

determined. The approach shown robustness to estab-

lish the trade-off between minimum CR properties and

minimum inverse PS (maximum PS) using the weight

composition of used raw materials. The optimal results

for both CR and PS based on proposed approach are

reached when large quantities for polyurethanes (Pus)

and for some additives are considered. The perfor-

mances of adhesive joints measured by CR and PS are

very sensitive to the influence of some PUs and in some

way are moderately sensitive to additives. The pro-

posed MDO approach supported by experimental tests

shows improved explorative properties of rawmaterials

and can be a powerfully tool for the designers of

adhesive joints in footwear industry.

Keywords Multi-objective optimization � Footwear
adhesive joints � Creep rate � Peel strength � ANN �
Dominance � Genetic algorithm

1 Introduction

The adhesives are one of the most important bonding

methods of assembling shoes components. The appli-

cation of adhesives to bond materials allows simplify

the steps production on footwear when drastically

reduced the number of production operations. Since

1970, the polyurethane (PU) adhesives solvent based

was introduced to manufacture shoes because of its
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ability to bond a wide variety of materials (Yue and

Yue 1997; Karmann and Gierenz 2001; Pizzi and

Mittal 2003; Mayan et al. 1999).

Depending on the materials used for the sole and for

the upper, various pretreatments could be needed to

improve the bond (Falco 2007; Velez-Pages and

Martin-Martinez 2005). Proper surface treatment is

the key to obtaining good adhesive bonds, allowing

removing dirt, grease, mod-release agents, processing

additives, plasticizers, protective oils and other con-

taminants that could compromise the bonds (Velez-

Pages and Martin-Martinez 2005).

There are available a lot of surface treatments, in

this work will be considered the primer, mechanical

and chemical treatments (Karmann and Gierenz 2001;

Velez-Pages and Martin-Martinez 2005). Mechanical

and chemical treatments are methods that aim to

modification the surface to enhance the adhesive forces

for high demands on bonded joints (Paiva et al. 2013;

Paiva et al. 2014; Silva et al. 2011). The application of

primer are also used in conjunction with a surface

treatment either to improve adhesion performance

(Velez-Pages and Martin-Martinez 2005; Silva et al.

2011). Primers consist in a solution of polymers in

organic solvents that, in their composition, are related

to the adhesive (Paiva et al. 2014; Silva et al. 2011;

Houwink and Salomon 1967; Snogren 1974; Cepeda-

Jiménez et al. 2003; Wake 1976).

PU is largely used for adhesives owing to their

outstanding properties (Karmann and Gierenz 2001;

Houwink and Salomon 1967). These types of adhe-

sives are characterized because of their excellent

adhesion, flexibility, low-temperature performance,

high cohesive strength and cure speed (Skeist 1976;

Siri 1984; Sultan Nasar et al. 1998). The formulation is

based on thermoplastic PU resins (Sultan Nasar et al.

1998), fillers, resins, solvents and in some cases it is

used catalysts as a crosslinking agent (Falco 2007;

Silva et al. 2011; Sultan Nasar et al. 1998). Fillers are

used to improve physical properties, like viscosity,

temperature resistance, stability, under lower cost. In

this work it will be considered the fumaric acid, silica,

nitrocellulose and chlorinated rubber (Karmann and

Gierenz 2001; Silva et al. 2011). Resins are usually

used to increase tack and temperature resistance to the

adhesive. In this work will be considered colophony,

hydrocarbon, alkyl phenolic, terpene phenolic, cumar-

one-indene and vinyl chloride/acetate vinyl types of

resins (Silva et al. 2011; Wake 1976; Skeist 1976; Siri

1984; Sultan Nasar et al. 1998). Solvents are mainly

esters and ketones. The total solvent portion ranges is

between 75 and 85 % (Sultan Nasar et al. 1998).

The PU adhesives available systems are classified

as one-component and two-component systems (Silva

et al. 2011; Skeist 1976; Siri 1984). The one-compo-

nent system consists in an adhesive formulated with

several components mixed and stored together (Silva

et al. 2011). The two-component system consists in an

adhesive and a catalyst stored separated, they are

mixed just before the application because of their short

pot life. In this system the cure develop rapidly

between the poliol of the PU resin present on the

adhesive and the NCO group of the catalyst (iso-

cyanate type; Silva et al. 2011; Skeist 1976). The two

components systems are used when heat resistance is

required (Silva et al. 2011).

In PU adhesives solvent-based, after the evaporation

of the solvent, heat and pressure are applied to melt the

polymer and press the parts for adhesion, contributing to

the crosslinking (Paiva et al. 2013; Paiva et al. 2014;

Silva et al. 2011; Sultan Nasar et al. 1998). So, for

bonding the sole, the adhesive film is activated by IR

irradiation by 2–6 s, at 55–80 �C. Upon cooling the

adhesive recrystallizes to give a strong and flexible bond

(Paiva et al. 2013; Paiva et al. 2014; Silva et al. 2011).

In the footwear industry, the manufacture of the

shoes, for assembling the sole to the upper, follow

some steps as show on the Fig. 1. Each individual

process step is important for the quality of the bonded

product (Paiva et al. 2013; Paiva et al. 2014). Indeed,

the selection of the weight composition of raw

materials plays an important role aiming to manufac-

ture the best adhesive joint, allowing accomplishing

the demands of the customers.

On other hand the creep rate and the peel strength

are the most important mechanical properties for

quality requirements of the adhesive joints to be

considered in the footwear industry (Falco 2007; Silva

et al. 2011). So, it is intended to develop a model

capable to predict and optimize the creep rate and the

peel strength depending on the composition of the raw

materials used in the adhesive joint (Silva et al. 2011).

2 Problem definition and design approach

To manufacture the shoes, in this work it is considered

the natural leather as material for the upper and the
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thermoplastic rubber (TR) as material for the sole. It is

necessary to consider surface treatment on the mate-

rials to increase the mechanicals properties, so,

physical and chemical surface treatments are applied

such as mechanical carding and halogenations, respec-

tively (Paiva et al. 2013; Paiva et al. 2014; Silva et al.

2011; Snogren 1974; Cepeda-Jiménez et al. 2003).

The adhesive formulation is composed of a number of

substances giving certain mechanical properties to

final adhesive depending on the substrates that are part

of the adhesive joint (Paiva et al. 2014; Wake 1976).

The aim of this work is to develop a model where the

design variables are the inputs on the solid raw

materials that compose the formulation of the adhe-

sives and the outputs are the mechanical properties of

the manufactured adhesive joint. Therefore, it is

considered the PU adhesives because their excellent

adhesion. So, the design variables are the constituents

such as polyurethanes (PUs), resins (REs) and addi-

tives (ADs) (Paiva et al. 2014).

The responses of the adhesive joint are measured by

their mechanical properties, the creep rate and the peel

strength. The peel strength is associated with the

strength of bonded product and the creep rate is

associated with the performance properties for tem-

perature resistance of adhesives. So, both mechanical

properties should be considered as measures of the

quality of the adhesive joint in footwear industry.

In general, the peel strength must be maximized and

the creep rate must be minimized satisfying the size or

technological requirements. So, the optimal design

depends on the constrained multi-objective optimiza-

tion of both mechanical properties of the adhesive

joint. Since, both objectives appear contradictory a

Pareto front must be built aiming to find the trade-off

between solutions minimizing creep rate and maxi-

mizing peel strength.

The proposed strategy for the multi-objective

design optimization (MDO) of creep rate and peel

strength is based on three columns as follows: (1) the

construction of physical model representation; (2) the

adopted multi-objective optimization algorithm; and

(3) the architecture of the optimization model con-

necting the different modulus.

The first column of the proposed optimization

strategy is the definition and construction of the

physical model representing the adhesive joint of

footwear product and the relationship between the

design variables—the weight composition of raw

materials, and the inherent structural response mea-

sured by creep rate and peel strength. The proposed

approach for this first column is based on planned

experimental measurements and using these testing

results to develop the approximationmodel. First of all,

the set of experiments are planned using the Taguchi

method aiming to obtain a good coverage of the design

space for the composition of the adhesive joint.

Secondly, considering the experimental results

obtained for Taguchi design points as input/output

patterns, an Artificial Neural Network (ANN) is

developed based on supervised evolutionary learning

(Chenget al. 2008;António andHoffbauer 2010, 2013).

This ANN learning procedure is equivalent to solve an

optimization problemwhere the difference between the

experimental results and the ones obtained from the

ANN is minimized controlling the ANN parameters.

The second column of the optimization strategy is

the MDO algorithm used in the constrained optimal

design search based on creep rate minimization and

peel strength maximization. A Genetic Algorithm

based on dominance concepts is adopted supported by

short and enlarged populations of solutions.

The third column of the optimization strategy is

the architecture of optimization model connecting the

- Surface Preparation
- Application of the adhesive

- Drying time of the adhesive - Reactivation of the adhesive film - Joining
- Pressing
- Fixing
- Cure of the adhesive

Fig. 1 Application of PU adhesive solvent based and the individual steps on the assembling process
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different modulus collecting data necessary for multi-

objective optimization algorithm which comes from

the optimization problem formulation. A multi-

objective approach based on the optimal design of

adhesive composition to achieve the target of min-

imum creep rate and maximum peel strength under

manufacturing constraints is proposed. During the

optimization process the solutions are evaluated

using the optimal ANN built in the first column of

optimization strategy.

Inside the third column of the optimization strategy

at the end of ANN optimal configuration search a

ANN-based Monte Carlo simulation procedure is

implemented aiming to study the sensitivity of the

structural response of adhesive joint relatively to

design variables of the MDO process. In particular the

Sobol indices for global sensitivity analysis are used to

establish the relative importance of the design vari-

ables (António and Hoffbauer 2010, 2013). Figure 2

shows the flow diagram referring the three columns of

the proposed MDO approach.

3 Experimental tests

The proposed approach for the first column of the

optimization strategy is based on planned experimen-

tal measurements necessary for the development of the

approximation model. So, a set of experiments are

implemented aiming to obtain data used in learning

procedure of generation of the approximation model

defining the behaviour of adhesive joint.

3.1 Materials

The TR material considered in this work is TTSC TR-

2531-80C. The properties of this material were

provided by the manufacturer of the sole (technical

datasheet of the material) and are presented in Table 1.

The Halinov 2190 (www.cipade.com) is used as

halogenate for TR. The Plastik 6271 (www.cipade.

com) is selected as a primer for the leather, an adhesive

primer usually is a diluted solution of an PU adhesive

in an organic solvent (Paiva et al. 2014; Silva et al.

Design 
variables, x

Input
data

Analysis 
variables, y

Initial solution
ox

MDO formulation
yx →

Planned
experimental

measurements

Approximation
for physical 
model: ANN

developments

Transformation
xz →

MDO
GA

Algorithm

Dominance 
concepts

Multi-objective 
strategies

Evaluation 
model

Optimal
Design, *x

(Pareto front)

Normalized
variables, z

Decision on the model 
parameters

Optimization Model

Sensitivity 
analysis

Pareto front
construction

Fig. 2 Flow diagram of the proposed MDO approach for footwear adhesive joints
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2011) which depends on the nature of the substrate

surface (Snogren 1974). The Cipadur 2230T (www.

cipade.com) is applied as crosslinker to increase

temperature resistance, in a dosage of 5 % of the

adhesive trials planned by the Taguchi method.

The TR material considered in this work is TTSC

TR-2531-80C. The properties of this material were

provided by the manufacturer of the sole (technical

datasheet of the material) and are presented in Table 1.

3.2 Experimental techniques

Taking into account the composition of adhesives this

work focuses on creep rate and on peel strength

measurements aiming to evaluate the mechanical

behaviour of the PU adhesive solvent-based when

bonding natural leather uppers to TR soles.

The creep rate (CR) is a property that determines

the resistance to peeling by a constant load of the

single lap joint stored at an elevated temperature

(Silva et al. 2011; EN 1998). The principle of the creep

test is suspending the test specimen in a heated cabinet

with a constant peeling force applied between the two

adherents. After a set time it’s measured the bond

separation.

Peel strength (PS) is a property which determines the

strength required to peel of two materials. This test

enables to distinguish if an adhesive is fragile or ductile

(Paiva et al. 2013; Paiva et al. 2014; Silva et al. 2011; EN

1998). The principle of the peel test is the peeling of the

test specimen using a tensile machine while the force

required to separate the two adherents is measured.

Both methods are applicable to joints where at least

one of the adherents is flexible. To quantify these

properties are tested with a standard test (EN 1998).

The standard norm used for footwear industry adhe-

sives is described on the EN 1392:1998 (EN 1998).

This standard norm allows obtaining the creep rate in

variation of displacement per unit of time. On other

hand, the standard norm allows obtaining the peel

strength per unit width, which is the average load per

unit width, applied at an angle between 90� and 180�,
depending on the flexibility of the substrate in relation

to the joint needed to lead to failure (EN 1998).

3.2.1 Preparation of the single lap joint

The application of the surface treatment depends on

the materials that are intended to be bonded. On the

leather is necessary to apply a surface treatment,

which is the mechanical treatment, and a primer to

improve a surface interaction between adhesive and

the adherent (Velez-Pages and Martin-Martinez 2005;

Paiva et al. 2013; Paiva et al. 2014; Silva et al. 2011;

Snogren 1974). A P24 aluminum oxide abrasive cloth

is used for the mechanical treatment. The primer is

applied and allowed to dry for at least 10 min at room

temperature (Paiva et al. 2013; Paiva et al. 2014; Silva

et al. 2011). It is necessary to consider a chemical

treatment as a surface treatment on TR. In this work it

is used a halogenated agent and allowed to dry at least

1 h at room temperature (Paiva et al. 2013; Paiva et al.

2014; Cepeda-Jiménez et al. 2003).

After the surface treatment of the adherents, the

adhesives experiments planned by the Taguchi

method are applied on both substrates and allowed to

dry for 15 min at room temperature. To manufacture

the single lap joints the adhesive films are activated by

Infrared (IR) radiation at temperature of about 70 �C
and during 6 s. The substrates are bonded in the

desired position, as seen in Fig. 3, and the adhesive

joint is subjected to a pressure of 4 bars during 5 s. The

adhesive joints, after being pressed, are stored in

standard conditions (23 �C, 50 % Hr) during 72 h, in

order to ensure the complete cure of the adhesive

(Paiva et al. 2013; Paiva et al. 2014; Silva et al. 2011).

The adhesive joint studied is composed of two

substrates (150 mm 9 30 mm) bonded together in an

Table 1 Physical

properties of the TTSC TR-

2531-80C

Physical properties Method units Sonaflex TTSC-2531-80C

Density ASTM D792 g/cm3 0.92–0.98

Hardness DIN 53505 Shore A 77–83

Tensile DIN 53504 MPa C4

Elongation at rupture DIN 53504 % C300

Abrasion resistance DIN 53516 mm3 B250

Flexion resistance BS 5131:2.1 (150,000 cycles) mm/Kc \0.1

Multiobjective optimization of mechanical properties 5

123

http://www.cipade.com
http://www.cipade.com


area of 100 mm 9 30 mm, as shown in Fig. 3. The

experimental portion of this work consisted of the

analysis of the creep rate and the peel strength in the

single lap joint, subjected to tensile loading as shown

in Fig. 4 according to the procedures defined in EN

1392:1998 (EN 1998).

3.2.2 Creep rate test

The creep test is performed in a heated cabinet at

temperature of 60 �C. Considering the unbonded ends
of the test specimen of the single lap joint, carefully

fold back the more flexible material of the both

adherents taking care do not to peel any of the

adhesive bonds. Then use a pen to make a mark on the

stiffer of the two adherents at the point of separation.

Firmly clamp the free end of the more flexible

adherent of a single lap joint specimen into each of

moveable clamps. On each moveable clamp support is

applied a mass of 1.5 kg, as shown in Fig. 4a.

To obtain the results, it is necessary to open the

heated cabinet over the time and mark the separations

(in mm) of the bonds substrates while still loaded, to

complete separation (EN 1998). With the creep

experiment it is obtained a bond failure envelope that

can be divided into three phases: primary, secondary,

tertiary. Primary phase correspond to an instantaneous

elastic strain, secondary phase represent the creep rate

and the tertiary phase happen with the failure of the

bond of the specimen (Silva et al. 2011). The primary

and the tertiary phase are ignored on the calculation of

the mean of the separation lengths of the bond (Silva

et al. 2011; EN 1998).

The results are expressed as displacements (mm)

versus time (minutes, min). Three adhesive joint

specimens for each test were considered. The heated

cabinet used is a Memmert (Germany), model UM

400.

3.2.3 Peel test

The peel test is performed in the testing machine at a

speed of 50 mm/min. One of the free ends of the test

specimen is firmly clamp into the jaw of the tensile

testing machine. As the jaw separate it is possible to

observe the bond failure. The results are expressed as

load (N) versus displacement (mm). The peel strength

per unit of width is determined by the ratio between

the maximum force and the width of the overlap joint.

For each test specimen when divide the average

peeling force by the width of the specimen in

millimeters, it’s possible to obtain the peel strength

of each bond in N/mm. Three adhesive joint

Fig. 4 a Creep rate test; b Peel strength test

Fig. 3 Test piece geometry
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specimens for each test were considered. The tensile

machine used is an Instron (Norwood, MA, USA),

model 3367, with load cell of 30 kN, as shown in

Fig. 4b.

3.3 Planning of experimental measurements

The Taguchi method (Taguchi and Konishi 1987) is

adopted to plan the experimental tests (DOE) that

further will be used in the ANN learning procedure.

The objective of DOE is to reduce the variation in a

process through robust design of experiments (DOE).

The effect of many different parameters on the

performance characteristic in a set of experiments

can be analyzed by using orthogonal arrays. Once the

parameters affecting the measuring process have been

determined, the levels at which these parameters

should be varied must be determined. In this work, the

design of experiments are implemented using the

Taguchi table L27(313) (Paiva et al. 2013; Paiva et al.

2014; Taguchi and Konishi 1987).

4 Multi-objective design optimization

4.1 Multi-objective based design formulation

The generic form of a MDO problem can be mathe-

matically expressed as:

Minimize fðxÞ
¼ fiðxÞ : <n 7!<; i ¼ 1; . . .; m; m[ 1f g; over x

subject to

gjðxÞ� 0; gjðxÞ : <n 7!< ; j ¼ 1; . . .; p
� �

ð1Þ

and

hkðxÞ ¼ 0; hkðxÞ : <n 7!< ; k ¼ 1; . . .; rf g

with contradictory objectives. In the above formula-

tion fi ði ¼ 1; . . .; mÞ are the objective functions, the

constraints gjðxÞ� 0 and hkðxÞ ¼ 0 (j = 1,…, p and

k = 1,…, r) define the feasible space Q � <n. Usu-

ally, the corresponding minimum with respect to all

objective functions is located outside Q. There is no

unique solution to a problem with more than one

conflicting objectives and the existing solutions

are denoted by Pareto-optimal solutions. The

classification as ‘‘Pareto-optimal’’ depends on the

concept of dominance according the following defini-

tions (Deb 2001; Conceição António 2013):

Definition 1 (dominance) Let be Q � <n the subset

in the minimization problem formulated in (1). A

solution x1 2 Q dominates a solution x2 2 Q, if the

objective value for x1 is smaller than the objective

value for x2 in at least one objective and is not bigger

with respect to the other objectives:

x1 � x2 ,
8i : 1� i�m ) fiðx1Þ � fiðx2Þ

^
9j : 1� j�m ; fjðx1Þ \ fjðx2Þ

8
<

:

ð2Þ

where x1 � x2 denotes x1 dominates x2.

Definition 2 (Pareto optimal design): Let be Q �
<n the subset in the minimization problem formulated

in (1). A solution x� 2 Q is classified as Pareto optimal

design if and only if it is not dominated by any other

solution in Q. The set of all Pareto solutions is called

the Pareto front, represented by X*,

x� 2 X� , x 2 Q : x � x�f g ¼ £f g ð3Þ

The above definitions are essential for further

Pareto evolutionary search developments for multi-

objective optimization of composite structures.

4.2 Bi-objective optimization problem

of adhesive joint

The proposed approach follows the problem definition

established in previous section. The multi-objective

optimization (MDO) problem formulated is based on

minimization of objective functions in Eq. (1). How-

ever, in the proposed approach the performance of

structural response of the footwear adhesive joints is

measured by creep rate (CR) and the peel strength (PS).

In general, the optimal design of adhesive joint is

performed based on minimization of creep rate and

maximization of peel strength. So, this design proce-

dure must be formatted according the formulation in

Eq. (1). The minimization of inverse of peel strength

(1/PS) is adopted as second objective function to

overcome this apparent difficulty.

Therefore, it is intended to develop a model capable

to predict and simultaneously minimize the creep rate

and the inverse of peel strength depending on the

weight percentage of raw materials used in the

Multiobjective optimization of mechanical properties 7

123



composition of the adhesive joint. These design

variables denoted by vector x with components xk,

are the weight percentages of PUs, resins and additives

in the adhesive composition. The mathematical for-

mulation of the bi-objective optimization problem of

adhesive joint is defined as creep rate and inverse of

peel strength minimizations subject to technological

constraints as follows,

Minimize f1ðxÞ; f2ðxÞð Þ; over x ð4Þ

with f1ðxÞ ¼ CRðxÞ and f2ðxÞ ¼
1

PSðxÞ

subject to:

10�
Xn

k¼1

xk � 20 ð5Þ

Xr

k¼1

xnþk � 1 ð6Þ

Xa

k¼1

xrþk � 7 ð7Þ

xlk � xk � xuk ; k ¼ 1; . . .; nþ r þ a ð8Þ

where n, r and a are the number of materials of each

group of PUs, resins and additives considered for the

adhesive joint, respectively. Those numbers will be

defined in design process. The constants xk
l and xk

u are

the lower and upper bounds of design variable xk,

respectively.

4.3 Stages of MDO approach

The proposed MDO approach is based on mixed

experimental–numerical procedures according

Sect. 2. The strategy to build the MDO approach to

solve the bi-objective optimization problem formu-

lated from Eqs. (4) to (8) is based on three columns as

previously referred: (1) the construction of physical

model representation; (2) the adopted multi-objective

optimization algorithm; and (3) the architecture of the

optimization model connecting the different modulus.

The experimental data obtained in Sect. 3 is

essential to build the numerical model of physical

phenomenon, which is the adhesive joint behavior.

The numerical representation will be used in optimal

design procedure. So, two stages are identified in

numerical part of the proposed mixed experimental–

numerical approach as shown in Fig. 5. These two

stages are:

1. ANN learning procedure where the experimental

results are used to obtain the optimal ANN

configuration, which supports the relationship

between the weight composition of raw materials

and the performance functions as creep rate and

the peel strength;

2. Optimal design procedure where the MDO con-

cepts are applied to search the constrained bi-

objective optimization of the adhesive joint based

on creep rate minimization and peel strength

maximization using the weight composition of

raw materials as design variables.

The procedure of the first stage begins defining the

set of planned experiments based on Taguchi method is

proposed in Sect. 3. Then, the experimental input/

output patterns are used in learning procedure aiming

to obtain the optimal ANN configuration (Cheng et al.

2008; Gupta et al. 2003). The ANN learning procedure

is equivalent to solve an optimization problem based on

minimization of the differences between the experi-

mental results and the simulation values obtained from

the ANN. So, detailing the process the optimal

configuration of ANN is obtained minimizing the error

between the simulated network outputs and the exper-

imental data for creep rate (CR) and the peel strength

(PS). In this stage the design variables are the weights of

synapses, m
ðpÞ
ij , and the biases, r

ðpÞ
k , of the ANN.

The minimization of ANN learning procedure is

performed using a single Genetic Algorithm denoted

by GAð1Þ with appropriated genetic parameters. Since

the GA is a population-based evolutionary method in

this stage a population of solutions for ANN config-

uration denoted by PðtÞ is considered at each t-

generation. After the ANN learning procedure the

optimal configuration denoted by P
opt
ANN is obtained

and the construction of physical model representation

is finished. This corresponds to optimal values for the

weights of synapses, m
ðpÞ
ij , and the biases, r

ðpÞ
k , of the

ANN.

During the optimal design procedure, the bi-

objective optimization problem formulated from

Eqs. (4) to (8) is solved using the MDO concepts.

The evaluation of the objective functions are based on

8 R. M. M. Paiva et al.
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optimal configuration P
opt
ANN of the ANN obtained at

the first stage. The optimal design procedure is a

multi-objective constrained minimization performed

using the genetic algorithm denoted by GAð2Þ with

genetic parameters different from previous stage.

The trade-off between minimum creep rate and

minimum inverse peel strength, depending on given

size and technological constraints imposed on the

weight composition of raw materials used in adhesive

joint, is searched. A short population of solution, XðtÞ,

is used to evolve through the GAð2Þ based on an elitist
strategy. These solutions are associated with different

compositions of PUs, resins and additives for the

adhesive joint.

The best solutions ofXðtÞ are stored into an enlarged

population, EPðtÞ based on dominance concepts. The

global Pareto-optimal front is built at this enlarged

population using the concept of Pareto dominance

(Conceição António 2013). The enlarged population is

updated and ranked every generation and the worst

ranking solutions are eliminated. The search method

adopts an elitist strategy storing non-dominated

solutions found during the evolutionary process into

the enlarged dominance-based population. After the

stopping criteria are reached, it is obtained the

optimum adhesive composition. Figure 5 shows the

integrated ANN learning and optimal design

procedures.

Inside the integrated ANN learning and optimal

design procedures at the end of ANN optimal config-

uration search a ANN-based Monte Carlo simulation

procedure is implemented aiming to study the sensi-

tivity of the structural response of adhesive joint

relatively to design variables of the MDO process.

This procedure is called sensitivity analysis (SA) as

shown in Fig. 5.

4.4 First stage: ANN learning procedure

The ANN is a nonlinear dynamic modeling system

inspired by our understanding and abstraction on the

biological structure of the human brain. Its architec-

ture and operating procedures are based on a large

number of highly interconnected processing units

denoted by neurons and the linkages are similar to the

tt XX ←+1

)1(
1,i

m
)2(
1,j

m

)1(
p,i

m

)2(
2,j

m
CR,1/PS

Optimal 
ANN

)1(
1
r

)1(
p

r

)2(
1
r

(1)GA

MDO - based (2)GA

tt PP ←+1

Optimal “Pareto 
front” for 

adhesive joint 
composition

Yes

Yes

No

PUs

Resins

Additives

ANN
learning procedure

Optimal 
design 

procedure

)2(
2
r

CR

PS

Enlarged population 
based on dominance 

concepts

Stopping 
criteria

No

GSA

Fig. 5 Integrated ANN learning and optimal design procedures

Multiobjective optimization of mechanical properties 9

123



brain synapses as in biological sense. The operating

procedures include attributes such as learning, think-

ing, memorizing, remembering, rationalizing and

problem solving (Gupta et al. 2003).

In the ANN development a weight value is

associated with each synaptic connection between

processing units that is defined as the connection

importance. The weight value acts as a multiplicative

filter together with the activation procedure performed

by an appropriated function. The ANN architecture is

formed by several layers of neurons and different

matrices with synaptic weights can be identified as

linkage elements between layers. Learning of ANN

occurs while modification of connection weight

matrix is undertaken at the learning process. From

examples of a phenomenon with particular behavior

and following an appropriate learning rule the ANN

acquires knowledge or relationship embedded in the

input/output data. The ANNs are robust models having

properties of universal approximation, parallel dis-

tributed processing, learning, adaptive behaviour and

can be applied to multivariate systems (Cheng et al.

2008; Gupta et al. 2003).

In this work, the proposed ANN is organized into

three layers of nodes (neurons): input, hidden and output

layers. The synapses between input and hidden nodes

and between hidden and output nodes are associated

with weighted connections that establish the relation-

ship between input data and output data. Deviations on

neurons belonging to hidden and output layers are also

considered in the proposed ANN model. In the devel-

opedANN, the input data vectorDinp is defined by a set

of experimental values for design/input variables x,

which are the weight composition of raw materials of

the adhesive joint, such as PU’s, resins and additives

as referred in previous sections. The corresponding

output data vector Dout contains the experimental

values of the creep rate and of the peel strength.

The data vectors Dinp and Dout used to build the

ANN needs to be normalized aiming to avoid numer-

ical error propagation during the learning process.

Then each component of normalized vectors are done

as follows,

Dk ¼ ðDk � DminÞ �
Dmax

N � Dmin
N

Dmax � Dmin

þ Dmin
N ð9Þ

where Dk is the k-th component of the vector of

experimental values before normalization, Dmin and

Dmax are the minimum and maximum values of Dk,

respectively, in the input/output data set to be

normalized. According to Eq. (9), the data set is

normalized to values Dk, verifying the conditions

Dmin
N � Dk � Dmax

N ð10Þ

Depending on the input or output data, different

maximum and minimum normalized values are used

in Eq. (9).

The weights of the synapses, m
ðpÞ
ij , and biases in the

nodes or neurons at the hidden and output layers, r
ðpÞ
k ,

are controlled during the learning procedure as shown

in Fig. 5. The signal in each node is C
ðpÞ
k defined as the

components of the vector CðpÞ given by

CðpÞ ¼ MðpÞ DðpÞ þ rðpÞ ð11Þ

where MðpÞ is the matrix of the weights of synapses

associated with the connections between input and

hidden layer (p = 1) or between hidden and output

layer (p = 2), rðpÞ is the biases vector considered for

the nodes of the hidden (p = 1) or output (p = 2)

layers, DðpÞ is the input data vector for the hidden

(p = 1) or output (p = 2) layer.

The sums of the changed signals (total activation)

in Eq. (11) are inserted in the Activation Functions. A

sigmoid function is applied on each node on hidden

layer while a linear function is considered for output

layer. The activation of the k-th node of the hidden

layer (p = 1) or output layer (p = 2) and is obtained

through sigmoid functions as follows:

A
ð1Þ
k ¼ 1

1þ e�gCð1Þ
k

ð12Þ

A
ð2Þ
k ¼ C

ð2Þ
k ð13Þ

where A
ð1Þ
k and A

ð2Þ
k represent the activation functions

of the signal of the nodes or neurons of the hidden and

output layers, respectively. The scaling parameters g
influence the sensitivity of the sigmoid activation

function and must be controlled.

The supervised learning of ANN followed in this

approach is an evolutionary optimization procedure

performed by GAð1Þ. This procedure is based on the

minimization of the error between experimental

output data and ANN simulated results. In the

optimization process the weights of synapses and the

biases in neurons are used as design variables. For

10 R. M. M. Paiva et al.
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each set of input data and any configuration of the

weight matrices MðpÞ and biases rðpÞ, with p = 1 and

p = 2, a set of output results is obtained. These

simulated output results are compared with the

experimental output values obtained for the same

input data to evaluate the difference (or error), which

must be minimized during the learning procedure

(Gupta et al. 2003).

The supervised learning of the proposed ANN is

based on several measures of the error with the

objective to accelerate and stabilize the learning

process. The first measure is the root-mean-squared

error defined as

RMSE¼ 1

Nexp

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNexp

i¼1

CRsim
i �CR

exp
ið Þ2þ PSsimi �PS

exp
ið Þ2

h i
vuut

ð14Þ

where Nexp is the number of experiments considered in

the set of design points of Taguchi and the superscripts

sim and exp denote the simulated and experimental

data of creep rate, CR and peel strength, PS. To

reinforce the error minimization a second measure is

introduced based on the following mean relative error

component:

RE ¼ 1

Nexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNexp

i¼1

CRsim
i �CR

exp
i

CR
exp
i

� �2

þ PSsimi �PS
exp
i

PS
exp
i

� �2
" #vuut

ð15Þ

The influence of the biases of the neurons of the

hidden and output layers is also included to stabilize

the learning process:

C ¼ 1

Nexp

XNexp

i¼1

1

Nhid

XNhid

k¼1

r
ð1Þ
k

� �2

þ 1

Nout

XNout

k¼1

r
ð2Þ
k

� �2

" #

ð16Þ

where Nhid and Nout are the number of neurons of the

hidden layer and of the output layer, respectively.

The error measures presented from Eqs. (14) and

(15) and biases component in Eq. (16) are aggregated

using the following formula:

F1 Mð1Þ; rð1Þ; Mð2Þ; rð2Þ
� �

¼ c1 RMSE þ c2 RE þ c3 C ð17Þ

being the constants ck used to regularize the numerical

differences of the three error terms stabilizing the

numerical procedure. The weights of the synapses and

biases can be changed until the value of F1 falls within

a prescribed value.

The adopted supervised learning process of the

ANN is based on a Genetic Algorithm denoted by

GAð1Þ (António 2001, 2002; António et al. 2004) using

the weights of synapses MðpÞ, and biases of neural

nodes at the hidden and output layers rðpÞ, as design
variables as shown in Fig. 5. At this stage a population

of solutions for ANN configuration denoted by PðtÞ is
considered at each t-generation.

A binary code format is used for these variables.

The number of digits of each variable can be different

depending on the connection between the input-

hidden layers or hidden-output layers. The domain

of the learning variables MðpÞ and rðpÞ (p = 1 and

p = 2) and scaling parameter g can be tuning together
the code format of design variables of the ANN

learning procedure. The optimization problem formu-

lation associated with the ANN learning process is

based on the minimization of the function defined in

Eq. (17) without constraints, as follows

Maximize FIT ð1Þ ¼ Kð1Þ

� F1 Mð1Þ; rð1Þ; Mð2Þ; rð2Þ
� �

over MðpÞ and rðpÞ

subject to MðpÞ; rðpÞ 2 X p ¼ 1 and p ¼ 2ð Þ ð18Þ

where X is the domain of design variables in learning

procedure, FIT ð1Þ is the fitness function in GA search

to obtain the optimal ANN configuration, Popt
ANN for the

weight of synapses and biases in neurons. Since the

selection operator of GA is fitness-based the function

FIT ð1Þ must take positive values. So, the constant Kð1Þ

must be large enough to obtain always positive fitness

values.

The single Genetic Algorithm GAð1Þ used to solve

the constrained optimization problem (with size

constraints) defined in Eq. (18) performs in following

sequence:

• Step1: Initialization of population Pð0Þ. The initial
population of design solutions for the learning

variables MðpÞ and rðpÞ (p = 1 and p = 2) is

randomly generated using a uniform probability

distribution function (PDF).

Multiobjective optimization of mechanical properties 11

123



• Step 2: Mating selection mechanism. The popula-

tion PðtÞ is ranked according to individual fitness

obtained using the formulae defined from

Eqs. (15) to (18). The best-fitted elite group of

PðtÞ is determined. One couple of parents p1 and p2
per each offspring individual is generated. The

procedure is elitist: one from the best-fitted group

(elite) and another from the least fitted one.

• Step 3: Offspring generation mechanism. The

crossover operator generates a new chromosome

(offspring) by recombination of the genetic mate-

rial of each couple of parent chromosomes p1 and

p2. The offspring genetic material is obtained

using the multi-point combination technique

known as parameterized uniform crossover (Antó-

nio 2002; António et al. 2004). This crossover

operator is applied with a predefined probability to

select the offspring genetic material from the best-

fitted chromosome. The offspring generation

mechanism is repeated until the offspring group

BðtÞ is completed.

• Step 4: Intermediate selection. The current popu-

lation PðtÞ is transferred to an intermediate stage

where is joined to the offspring group BðtÞ

generating the enlarged population PðtÞ [ BðtÞ.
• Step 5: Elimination/Replacement by genetic sim-

ilarity control. The enlarged population PðtÞ [ BðtÞ

is ranked according to the individual fitness. Then,

the similarity control is performed gene by gene

following an updating scheme during the evolu-

tionary process. The objective is to control the

population diversity keeping it in good level and

reducing the endogamy properties of Crossover

operator. This is followed by elimination of

solutions with similar genetic properties and

subsequent replacement by new randomly gener-

ated individuals. The new population Pðtþ1;�Þ is

ranked and the individuals with worst fitness are

replaced by a group of new solutions obtained

from the Mutation operator. During this procedure

the original size of the population is recovered.

• Step 6: Mutation. In the presented approach the

mutation genetic operator is used to overcome the

problem induced by selection and crossover oper-

ators where can happen some generated solutions

have a large percentage of equal genetic material.

So, aiming to improve the diversity level a

chromosome set group which genes are generated

in a random way is introduced into the population.

Since this new group of chromosomes will be

recombined with the remaining individuals into

the population during next generations this oper-

ation is called Implicit Mutation (António 2001).

• Step 7: Final selection. After mutation, the new

population Pðtþ1Þ is obtained and the evolutionary

process will continue until the stopping criteria are

reached.

• Step 8: Stopping criterion analysis. The stopping

criterion used in the convergence analysis is based

on the relative variation of the mean fitness of a

reference group inside Pðtþ1Þ. The search is

stopped if the mean fitness of the reference group

does not evolve after a finite number of genera-

tions. Otherwise, the population evolves to the

next generation returning to Step 2.

4.5 Second stage: optimal design procedure

The optimal design procedure is based on MDO

concepts applied to solve the bi-objective constrained

minimization problem formulated from Eqs. (4) to

(8). The objectives to be minimized are the creep rate

and the inverse of peel strength subject to technolog-

ical constraints associated to the weight percentages of

raw materials used in the composition of the adhesive

joint. These design variables denoted by vector x with

components xk, are the weight percentages of PUs,

resins and additives in the adhesive composition.

The fitness assignment is based on an aggregation

function of the two objectives f1ðxÞ ¼ CRðxÞ and

f2ðxÞ ¼ 1
PSðxÞ, and a graded penalization of constraint

violation (António 2001, 2002). So, the original bi-

objective optimization problem is transformed as

follows:

Maximize FIT ð2Þ ¼ Kð2Þ � a1 f1ðxÞ � a2 f2ðxÞ

� a3
XNg

i¼1

UiðxÞ; over x

ð19Þ

with

UiðxÞ ¼
0; if u iðxÞ� 0

Ri uiðxÞj jqi ; if u iðxÞ[ 0

	
ð20Þ
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where u iðxÞ are the constraints defined from Eqs. (5)

to (7) after normalization. Here, u iðxÞ� 0 are asso-

ciated to the feasibility of the constraint u iðxÞ. The Ng

constraints defined from Eqs. (5) to (7) must be

normalized relatively to their bound limits aiming to

avoid scaling effects. Unfeasible solutions of the

problem are penalized depending on the total magni-

tude of the constraints violation. Furthermore, the

penalization is applied on the graded degree of

severity according to the difference between the

current and the allowable constraint values. The

constants qi and Ri are evaluated considering two

constraint violation degrees, i.e., strong penalization

for large violation value and fair penalization for

negligible violation of the constraints (António 2001,

2002; António et al. 2004). The constants ai are

introduced for numerical regularization. Since the

stochastic permutation of data in genetic search is

performed using fitness-based selection procedures

the fitness function FIT ð2Þ must be positive. So, the

constant Kð2Þ is large enough to obtain always positive
fitness values. The size constraints in Eq. (8) are not

included in described procedure of penalization. They

are imposed directly to the design space at the binary

code format transformation used on genetic algorithm

development.

The MDO process evolution is based on a short

population of solutions XðtÞ updated during the

evolutionary search driven by the genetic algorithm,

GAð2Þ. An elitist strategy is adopted at evolution of

XðtÞ. Each solution in XðtÞ is ranked according its

fitness value, which is related with the objective

functions and the constraints of the problem. The

trade-off between minimum creep rate and minimum

inverse peel strength, depending on given size and

technological constraints imposed on the weight

composition of raw materials used in adhesive joint,

is searched.

From Eqs. (19) and (20) it can be established that

designs with good fitness and satisfying the constraints

have priority in the rank process. Although this is

necessary for bi-objective optimization problem it is

not essential to build the optimal Pareto front. Indeed,

the Pareto front depends on the dominance concept,

which is applied at enlarged population. Here, the

short population XðtÞ is used as a nest where the good

solutions are generated through the GAð2Þ based on an

elitist strategy. At each generation the best solutions of

XðtÞ are stored into an enlarged population, EPðtÞ based
on dominance concepts. The global Pareto-optimal

front is built at this enlarged population using the

concept of Pareto dominance (Conceição António

2013).

Inside the enlarged population defined here as set

EPðtÞ � <n, individuals are sorted and ranked accord-

ing to non-constrain-dominance. Following the defi-

nition by Deb (Deb 2001), an individual xi 2 EPðtÞ is

said to constrain-dominate an individual xj 2 EPðtÞ, if

any of the following conditions are verified:

1. xi and xj are feasible, with

(i) xi is no worse than xj for all objectives,

and

(ii) xi is strictly better than xj in at least one

objective,

2. xi is feasible while individual xj is not,

3. xi and xj are both infeasible, but xi has smaller

total constraint violation.

The constraint violation of an individual x is

defined to be equal to the sum of the violated

constraint function values in the multi-objective

optimization problem formulated from (4) to (8)

(Conceição António 2013):

nðxÞ ¼
XNg

i¼1

CiðxÞ ð21Þ

where CiðxÞ ¼ Ci uiðxÞ½ 
, with

Ci uiðxÞ½ 
 ¼ 0 if uiðxÞ� 0

uiðxÞ if uiðxÞ[ 0

	
ð22Þ

where u iðxÞ are the constraints defined from Eqs. (5)

to (7) after normalization. The concept of constrain-

domination enables to compare two individuals in

problems having multiple objectives and constraints,

since if xi constrain-dominates xj, then xi is better than

xj. If none of the three conditions referred above are

verified, then xi does not constrain-dominate xj.

The Genetic Algorithm GAð2Þ is used to solve the

bi-objective constrained optimization problem defined

from Eqs. (4) and (8) and performs in following

sequence (Conceição António 2013; António 2001,

2002; António et al. 2004):
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• Step1: Initialization of the short population Xð0Þ.
The initial population of design solutions for x is

randomly generated using a uniform probability

distribution function (PDF).

• Step 2: Mating selection mechanism. The short

population XðtÞ is ranked according to individual

fitness defined in Eqs. (19) and (20). The elite

group of XðtÞ is determined. One couple of parents

z1 and z2 per each offspring individual is gener-

ated. The mating selection is elitist: one parent

comes from the elite group and another from the

least fitted one.

• Step 3: Offspring generation mechanism. The

crossover operator generates a new offspring

chromosome by recombination of the genes of

each couple of parent chromosomes z1 and z2. The

offspring genetic material is obtained using the

multi-point combination technique known as pa-

rameterized uniform crossover (António 2001,

2002). This crossover operator is applied with a

predefined probability to select the offspring

genetic material from the best-fitted chromosome.

The procedure is repeated until the offspring group

OðtÞ is completed.

• Step 4: Intermediate selection. The current short

population XðtÞ is transferred to an intermediate

stage where is joined to the offspring group OðtÞ

generating the intermediate short population

XðtÞ [ OðtÞ.
• Step 5: Elimination/Replacement by genetic sim-

ilarity control. The population XðtÞ [ OðtÞ is ranked
according to the individual fitness. Then, the

similarity control is performed gene by gene

followed by elimination of solutions with similar

genetic properties and subsequent replacement by

new randomly generated individuals. The new

short population Xðtþ1;�Þ is ranked and the indi-

viduals with worst fitness are replaced by a group

of new solutions obtained from the Mutation

operator. During this procedure the original size

of the short population is recovered.

• Step 6: Implicit Mutation. A chromosome set group

which genes are generated in a random way is

introduced into the population. This new group of

chromosomeswill be recombinedwith the remaining

individuals into the population during next genera-

tions (António 2001, 2002). After mutation, the new

short population Xðtþ1Þ is obtained.
• Step 7: Building of global Pareto front. At the

beginning (t = 0), all individuals of short popula-

tion, Xðtþ1Þ are transferred to enlarged population,

EPðtÞ. At each generation, for t[ 0, the individ-

uals generated by ‘‘new’’ inside Xðtþ1Þ are trans-

ferred to EPðtÞ. A genetic similarity control is

performed at EPðtÞ. The EPðtÞ is organized based

on the concept of dominance applied in each t-th

generation of the evolutionary process (Conceição

António 2013). To do this the concepts of dom-

inance previously described are applied to indi-

viduals stored at EPðtÞ. Given the size and history

of this population, the dominance is applied in the

global sense, allowing the progressive construc-

tion of global Pareto front. As the process is

continuously applied at every generation, it is

possible that an individual with non-dominated

status will be subsequently dominated. After some

generations the individual solution xi 2 EPðtÞ is

eliminated if rankðxiÞ� r, where r is the maximum

ranking of EPðtÞ. This leads to an increased

historical record of global rank 1 individuals/

non-dominated solutions inside EPðtÞ during the

course of the evolutionary process obtaining

finally the global Pareto front (Conceição António

2013). The enlarged population EPðtÞ is continu-
ously updated during the evolutionary process.

• Step 8: Final selection. The new short population

Xðtþ1Þ is transferred to next generation and the

evolutionary process will continue until the stop-

ping criteria are reached.

• Step 9: Stopping criterion analysis. The stopping

criterion used in the convergence analysis is based

on the relative variation of the mean fitness of a

reference group inside short population Xðtþ1Þ

considering the constraints feasibility. The search

is stopped if the mean fitness of the reference group

does not evolve after a finite number of genera-

tions. Otherwise, the short population, Xðtþ1Þ

evolves to the next generation returning to Step

2. If the convergence is reached then the optimal

Pareto front (rank 1) is found inside enlarged

population EPðtÞ (rank 1 solutions).
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5 Global sensitivity analysis

The study of the influence of the weight composi-

tion of raw materials on the structural response of

adhesive joint is performed based on the Global

Sensitivity Analysis (GSA) supported by variance-

based methods (António and Hoffbauer 2010, 2013;

Borgonovo et al. 2003; Saltelli et al. 2006; António

and Hoffbauer 2008). The creep rate, CR and the

peel strength, PS are considered as measures of

structural response of the adhesive joint. On other

words, the objective is to measure and to rank the

importance of the variability of design variables—

the weight percentages of PUs, resins and additives

in the adhesive composition, on the structural

response of adhesive joint measured by creep rate,

CR and the peel strength, PS.

Lets consider bj the response functional, denoting

the creep rate or the peel strength. Assuming that the

variables are independent, the variance of the condi-

tional expectation var Ehbjjxii

 �

is used as an indicator

of the importance of the design variable xi on the

variance of bj. This indicator is directly proportional to
the importance of xi. In particular, the first-order

global sensitivity index of Sobol (António and Hoff-

bauer 2010, 2013; Borgonovo et al. 2003; Saltelli et al.

2006; António and Hoffbauer 2008) is used as

normalized indicator:

SiðbjÞ ¼
var Ehbjjxii


 �

varðbjÞ
ð23Þ

In this work, the above first-order global sensitivity

index of Sobol is calculated using the Monte Carlo

simulations method together ANN. So, the GSA is

implemented using the optimal network configuration

Popt
ANN obtained at the end of first stage: ANN learning

procedure of the proposed approach. Thus, is possible

to avoid the exhaustive and costly experimental tests

to obtain the variability of the input variables struc-

tural on response.

The methodology to obtain the first-order global

sensitivity index of Sobol is based on the algorithm

proposed by António and Hofbauer (António and

Hoffbauer 2013, 2008), which is described as follows:

• Step 1: Lets consider the non-correlated design

variables vector x following a uniform probability

distribution function Unif ð0; 1Þ.

• Step 2: Considers a set of random numbers kfix
following a uniform probability distribution func-

tion Unif ð0; 1Þ. These Nf random numbers are

used to generate the fixed values for the design

variable xi.

• Step 3: For each design variable xi (not for itself) a

sample matrix Ja is generated by independently

collecting samples of (p - 1) random numbers

following a uniform distribution Unif ð0; 1Þ,
where the size of the sample is Nr.

• Step 4: For each design variable xi a combination

of values of kfix and Ja is defined. The structural

response of bj is evaluated for x using the optimal

configuration of the ANN, Popt
ANN. The conditional

expectation of structural response of adhesive joint

is estimated and the mean values of this condi-

tional expectation are calculated. Finally, the

variance of the conditional expectation of struc-

tural response fixing each design variable xi is

estimated. The procedure is repeated for all design

variables.

• Step 5: The variance of structural response varðbjÞ,
is estimated considering the previous simulations.

• Step 6: Calculation of the global Sobol sensitivity

index using Eq. (23) for all design variables.

6 Results, analysis and validation

6.1 Planned experimental testing and results

According to the first column of the proposed

optimization strategy it id needed to built physical

model representing the adhesive joint of footwear

product and the relationship between the design

variables—the weight composition of raw materials,

and the inherent structural response measured by creep

rate and peel strength. Then, these testing results are

used the ANN learning procedure aiming to develop

the approximation model.

Several compositions of raw materials are consid-

ered in the proposed planned tests, as shown in

Table 2. The design points used to plan the experi-

ments are considered as input values in the ANN

learning procedure. A number of training data sets are

selected inside the interval domain of each design

(random) variable and levels defined in Table 2. The
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Taguchi values are selected according to the approach

proposed by Taguchi and Konishi (Taguchi and

Konishi 1987).

A number of 13 raw materials are considered in

adhesive joint with variable weight percentage. The

raw materials are grouped into PUs, resins (REs) and

additives (ADs). Some constraints are imposed to the

three groups as presented in Table 3. These constraints

are associated with some technological acknowledge

on adhesive joins used in footwear industry.

Using the Taguchi Table L27(313) (Taguchi and

Konishi 1987) the actual composition for each design

point is obtained, as shown in Table 4. The values

presented in Tables 4 and 5, are used as input/output

patterns for learning procedure of ANN.

From a first analysis of Tables 4 and 5 it is possible

to see that maximizing the amount of colophony and

hydrocarbon resin on the adhesive formulation, a very

high creep rate is obtained. On other hand, maximizing

the amount of resins and additives and minimizing the

amount of PU on the adhesive formulation, we obtain

very low peel strength. These features show the needs

to implement a MDO procedure.

6.2 First stage: results and analysis of ANN

learning procedure

As previously established a number of 13 raw

materials are considered as input parameters against

2 output parameters, the creep rate CR and the peel

strength, PS. A number of 8 neurons are considered for

the hidden layer of the ANN topology. The ANN

learning procedure described in Sect. 4.4 is applied in

the ANN developments. The procedure is based on the

solution of the maximization problem of fitness

function FIT ð1Þ with size constraints that is defined

in Eq. (18). The ANN learning procedure is performed

by GAð1Þ using a population PðtÞ with 30 individuals in

evolutionary search. The population PðtÞ is composed

by 10 and 3 individuals/solutions in elite and mutation

groups, respectively (António 2001, 2002; António

et al. 2004). The binary code format with five digits is

adopted for weights of synapses and biases of neural

nodes. The domain of learning design variables X is

associated with the intervals [-3, 3] and [-2, 2] for

both input-hidden and hidden-output linkages, respec-

tively. After 30.000 generations the ANN learning

procedure is concluded. The constants in Eq. (18) are

c1 = 5000, c2 = 1000, c3 = 0 and Kð1Þ ¼ 5:	 105.

Figures 6 and 7 show the evolution of the error

parcels at ANN learning procedure based on GAð1Þ

along first stage of the proposed optimization strategy.

The root-mean-squared error (RMSE) mean relative

error (RE) components are defined in Eqs. (14) and

(15), respectively. Themean relative error of 3.45 % is

reached for optimal configuration Popt
ANN at the end of

ANN learning procedure.

Table 2 Materials used in

adhesive joint and Taguchi

levels definition

Raw-materials % weight on formula Levels Real value

PU’s

Caprolactone with extremely high crystallization 0–20 1/2/3 2.5/5/10

Polyester with extremely high crystallization 0–20 1/2/3 2.5/5/10

Polyester with very high crystallization 0–20 1/2/3 2.5/5/10

Resin’s

Colophony WW 0–1 1/2/3 0/0.2/0.5

Hydrocarbon (C9) 0–1 1/2/3 0/0.2/0.5

Alkyl phenolic 0–1 1/2/3 0/0.2/0.5

Terpene phenolic 0–1 1/2/3 0/0.2/0.5

Coumarone-indene 0–1 1/2/3 0/0.2/0.5

Vinyl chloride/acetate vinyl 0–1 1/2/3 0/0.2/0.5

Additive’s

Fumaric acid 0–0.6 1/2/3 0/0.3/0.6

Hydrophobic silica 0–2 1/2/3 0/1/2

Nitrocellulose 0–2 1/2/3 0/1/2

Chlorinated rubber 0–3 1/2/3 0/1.5/3
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6.3 Second stage: results and analysis

of the optimal design procedure

The objectives to be minimized are the creep rate,

CR and the inverse of peel strength, 1/PS (equivalent

to maximize PS) subject to technological constraints

associated to the weight composition of raw materials

used in the adhesive joint. The design variables are the

weight percentages of PUs, resins and additives in the

adhesive composition. The bi-objective optimization

was formulated from Eqs. (4) to (8).

In the second stage the original constrained bi-

objective optimization problem is transformed for

evolutionary search format in Eqs. (19) and (20). The

MDO process evolution is based on a short population

of solutions XðtÞ updated during the evolutionary

search driven by the genetic algorithm, GAð2Þ and

supported by an elitist strategy as explained in

Sect. 4.5. Furthermore the global Pareto-optimal front

is built along the evolutionary process at enlarged

population, EPðtÞ using the concepts of Pareto dom-

inance detailed in Sects. 4.1 and 4.5. The fitness

Table 3 Constraints considered in adhesive joint optimization

definition

Constraints % weight on formula

Total % PU 10–20

Total % Resins 0–1

Total % Additives 0–7

Table 4 Taguchi design

points: % weight on

formulation (design

variables values)

Design point Material number

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2.5 2.5 2.5 0 0 0 0 0 0 0 0 0 0

2 2.5 2.5 2.5 0 0.2 0.2 0.2 0.2 0.2 0.3 1 1 1.5

3 2.5 2.5 2.5 0 0.5 0.5 0.5 0.5 0.5 0.6 2 2 3

4 2.5 5 5 0.2 0 0 0 0.2 0.2 0.3 2 2 3

5 2.5 5 5 0.2 0.2 0.2 0.2 0.5 0.5 0.6 0 0 0

6 2.5 5 5 0.2 0.5 0.5 0.5 0 0 0 1 1 1.5

7 2.5 10 10 0.5 0 0 0 0.5 0.5 0.6 1 1 1.5

8 2.5 10 10 0.5 0.2 0.2 0.2 0 0 0 2 2 3

9 2.5 10 10 0.5 0.5 0.5 0.5 0.2 0.2 0.3 0 0 0

10 5 2.5 5 0.5 0 0.2 0.5 0 0.2 0.6 0 1 3

11 5 2.5 5 0.5 0.2 0.5 0 0.2 0.5 0 1 2 0

12 5 2.5 5 0.5 0.5 0 0.2 0.5 0 0.3 2 0 1.5

13 5 5 10 0 0 0.2 0.5 0.2 0.5 0 2 0 1.5

14 5 5 10 0 0.2 0.5 0 0.5 0 0.3 0 1 3

15 5 5 10 0 0.5 0 0.2 0 0.2 0.6 1 2 0

16 5 10 2.5 0.2 0 0.2 0.5 0.5 0 0.3 1 2 0

17 5 10 2.5 0.2 0.2 0.5 0 0 0.2 0.6 2 0 1.5

18 5 10 2.5 0.2 0.5 0 0.2 0.2 0.5 0 0 1 3

19 10 2.5 10 0.2 0 0.5 0.2 0 0.5 0.3 0 2 1.5

20 10 2.5 10 0.2 0.2 0 0.5 0.2 0 0.6 1 0 3

21 10 2.5 10 0.2 0.5 0.2 0 0.5 0.2 0 2 1 0

22 10 5 2.5 0.5 0 0.5 0.2 0.2 0 0.6 2 1 0

23 10 5 2.5 0.5 0.2 0 0.5 0.5 0.2 0 0 2 1.5

24 10 5 2.5 0.5 0.5 0.2 0 0 0.5 0.3 1 0 3

25 10 10 5 0 0 0.5 0.2 0.5 0.2 0 1 0 3

26 10 10 5 0 0.2 0 0.5 0 0.5 0.3 2 1 0

27 10 10 5 0 0.5 0.2 0 0.2 0 0.6 1 2 1.5
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function FIT ð2Þ, depends on design variables associ-

ated with the weight percentages of raw material

constituents used in the adhesive formulation. The

fitness evaluation is based on optimal configuration

Popt
ANN of the end of first stage of ANN learning

procedure of the proposed MDO strategy approach as

shown in Fig. 5.

The bi-objective optimization problem is solved

with imposition of technological constraints defined

from Eqs. (5) to (7). The constraints in those equations

are normalized as previously referred in Sect. 4.5. The

constants qi and Ri in constraint terms on Eqs. (19) and

(20) are calculated considering two constraint viola-

tion degrees, as follows:

• a penalization equal to 100 for strong violation

value equal to 0.1;

• a penalization equal to 1 for fair violation value

equal to 0.01.

The constants a1 = a2 = 0.5, a3 = 1. and Kð2Þ ¼
1:	 104 are select for fitness function FIT ð2Þ defined
in Eq. (19).

A short population XðtÞ with 30 individuals is

considered on the evolutionary search performed by

GAð2Þ. The elite and mutation groups used in GAð2Þ

have 10 and 6 solutions, respectively (António 2001,

2002; António et al. 2004). The side constraints in

Eq. (8) associated with upper and lower limits for

design variables—the weight composition of raw

materials are according to the third column of Table 2.

The design variables are encoded using a binary code

format with 5 digits. A number of 8000 generations is

considered in MDO evolutionary search performed by

GAð2Þ on to this second stage of the proposed

optimization strategy approach.

Figure 8 shows the distribution of solutions at two

moments of evolution of the enlarged population,

EPðtÞ, namely for t = 2000 generations and t = 8000

generations. The concepts of Pareto dominance are

applied to individuals stored in EPðtÞ. After some

generations the individual solution xi 2 EPðtÞ is
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Fig. 6 Evolution of root-mean squared error at ANN learning

procedure based on GAð1Þ

Table 5 Peel strength

(N/mm) and Creep rate

(mm/min) for Taguchi

design points obtained

by experiments

Design point Peel strength Creep rate Design point Peel strength Creep rate

1 4.128 0.084 15 7.588 0.057

2 2.356 0.155 16 7.183 0.035

3 0.283 0.700 17 7.662 0.025

4 8.924 0.134 18 7.134 0.018

5 5.24 0.155 19 7.911 0.020

6 4.791 0.097 20 7.414 0.029

7 7.437 0.633 21 7.858 0.029

8 8.284 0.043 22 7.769 0.095

9 7.959 0.085 23 5.478 0.106

10 5.514 0.159 24 7.724 0.058

11 7.411 0.078 25 4.778 0.022

12 2.313 0.334 26 6.558 0.031

13 7.596 0.057 27 7.119 0.119

14 3.879 0.144
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eliminated if rankðxiÞ� r, where r ¼ 20 is the max-

imum ranking of EPðtÞ as established in Sect. 4.5. An

improvement is observed from generation t = 2000 to

generation t = 8000 in ranked solutions. The mini-

mization of both objectives drives the ranked solutions

toward the left and lower corner of the graph.

At the end of the optimization process, the Pareto

front representing the frontier of the trade-off between

the minimum creep rate and minimum inverse peel

strength (maximum peel strength) for footwear adhe-

sive joints is obtained, as shown in Fig. 9. The global

dominance measured in enlarged population EPðtÞ at
end of optimal design procedure is used to trace the

associated Pareto front. The performance of the

proposed approach to search for Pareto front’s solu-

tions considering the MDO problem can be observed.

According to the considerations made in Sect. 4.3,

the point on the optimal Pareto front associated with

the minimum distance to origin (utopia point) can be

defined as the best mathematical trade-off between

the minimum creep rate and minimum inverse peel

strength (maximum peel strength). Two points are

identified by dashed line circle in Fig. 9. Their values

of the objective functions of the bi-objective opti-

mization problem and the corresponding optimal best

trade-off solutions for the weight composition of raw

material of the adhesive joint are presented in

Fig. 10. The design variables are numbered accord-

ing Table 2.

The optimal values shown in Fig. 10 are obtained

under constraints on weight composition of raw

materials of the adhesive joint as referred in Table 3.

The feasibility of composition group values for the

two trade-off solutions can be observed by comparison

with constraint intervals presented in Table 6.
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The optimal results corresponding to the two best

trade-off solutions of the constrained bi-objective opti-

mization problem solved using the proposed approach is

consistent with the experimental testing data used to

implement the model. Indeed, the creep rate and the

inverse of peel strength are minimized when large

quantities for PUs (design variables 1–3) and for some

quantities of additives (design variables 10–13) are

considered. In this case the resins‘ group is not important

except theweight percentageofVynil (designvariable9).

6.4 Experimental validation of results

Experimental tests are implemented using the optimal

design values presented in previous section. In partic-

ular, the best trade-off Pareto front solution corre-

sponding to numerical values CR = 0.011198

(mm/min), PS = 7.985 (N/mm) shown in Fig. 10, is

used for experimental validation. The weight formula-

tion (%) of rawmaterials of the solution is considered to

build the test pieces for the experimental validation.

The validation results for peel strength are shown in

Fig. 11. Since the perfect anchorage of the adhesive to

TR in peel strength test the observed failure was

cohesive. This failure occurs between the two vertical

dashed lines as shown in Fig. 11. Over a load equal to

258 N corresponding to first vertical dashed line, the

experiment is driven to trial the TR material instead

the adhesive. This change of test conditions increases

the load because the strength of TR is higher than the

strength oh adhesive joint. The final failure occurred

after the second vertical line in the TR material. From

the previous considerations a mean failure load of

adhesive joint is taken for peel strength calculation.

The peel strength per unit of width was determined

by the ratio between the force and the width of the

overlap joint that is equal to 30 mm as referred in

Sect. 3.2. So, the experimental peel strength value of

9.4 N/mm is considered, which is slightly upper the

numerical result.

The same best trade-off solution with composition

corresponding to CR = 0.011198 (mm/min),

PS = 7.985 (N/mm) in Fig. 10 is considered for creep

rate experimental test. The complete creep rate

experimental test curve is shown in Fig. 12.

Since the primary and the tertiary phase are ignored

on the calculation of the mean of the separation

lengths of the bond only the secondary phase in curve

plotted in Fig. 12 is considered to evaluate the creep

rate as referred in Sect. 3.2. The creep rate experi-

mental test curve for the second phase is shown in

Fig. 13. The slope of the line obtained by linear

regression of the experimental results corresponds to

the creep rate. This experimental value is equal to

0.0134 mm/min, which is close to the numerical one,

CR = 0.011198 mm/min.

6.5 Results and discussion of global sensitivity

analysis (GSA)

The GSA indices are obtained through ANN-Monte

Carlo approach based on the algorithm described in

Table 6 Feasibility of composition group values for the two best trade-off solutions

Composition of

adhesive joint

Constraints

% weight

CR = 0.011198 (mm/min),

PS = 7.985 (N/mm) % weight

CR = 0.011567 (mm/min),

PS = 8.052 (N/mm) % weight,

Total % PU 10–20 19.355 17.903

Total % Resins 0–1 0.952 0.935

Total % Additives 0–7 4.729 3.419
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off solutions collected from the optimal Pareto front

20 R. M. M. Paiva et al.

123



Sect. 5 (António and Hoffbauer 2013, 2008). Using

the optimal configuration Popt
ANN a Monte Carlo simu-

lation procedure is implemented aiming to study the

sensitivity of the structural response of adhesive joint

relatively to design variables that are the weight

composition of raw materials. The referred algorithm

is designed to obtain the first-order global sensitivity

index of Sobol as defined in Eq. (23). Two normalized

Sobol indices are calculated as follows,

SiðCRÞ ¼
var EhCRjxiið Þ

varðCRÞ ð24Þ

SiðPSÞ ¼
var EhPSjxiið Þ

varðPSÞ ð25Þ

The above sensitivity indices are used to establish

the relative importance of the design variables

(António and Hoffbauer 2013, 2008). According the

theory presented in Sect. 5, the samples size values

Nf = 50 and Nr ¼ 100 are used to obtain the condi-

tional probability for Sobol index. Two sampling

procedures are simulated using the optimal Popt
ANN and

the following aspects are determined:

• the contribution of the variance of the conditional

expectation, var EhCRjxiið Þ for total variance of

creep rate, var(CR);

• the contribution of the variance of the conditional

expectation, var EhPSjxiið Þ for total variance of

peel strength, var(PS).
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obtained for the best trade-off Pareto solution with composition

corresponding to CR = 0.011198 (mm/min), PS = 7.985
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Fig. 11 Peel experimental test curve obtained for the best

trade-off Pareto solution with composition corresponding to

CR = 0.011198 (mm/min), PS = 7.985 (N/mm) in Fig. 10
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After, one first-order Sobol index per design

variable xi is obtained using the Eq. (24). The

histograms in Fig. 14 show the importance of the

design variables measured by first-order Sobol index

Si. Figure 14 shows the contribution (%) of the

variance of the conditional expectation,

var Ehbjjxii

 �

, for the total variance of bj, var(bj),
where bj can be creep rate or peel strength.

The performance of the adhesive joint is very

sensitive to the influence of some weight compositions

of raw-materials. The sensitivities depend on the

considered performance measures. When the perfor-

mance is measured by creep rate, the design variables

such as weight percentages on PU (material 1 and 2),

coumarone-indene resin (material 8) and the additive

fumaric acid (material 10) are the most sensitive. If the

performance is measured through the peel strength, the

design variables such as weight percentages on PU

(material 1, 2 and 3), colophony and coumarone-

indene resins (material 4 and 8) and chlorinated rubber

as additive (material 13) are the most sensitive.

However, in relation to weight percentage of

colophony (material 4), the sensitivity is in the

negative direction for the creep rate objective mini-

mization. This means that it is a resin when considered

on the adhesive composition of the formulation there

is an increase of the creep rate. So, this explains why

the results obtained in second stage of the optimal

design procedure did not consider the colophony in the

optimal solution as shown in Fig. 10.

Although the contribution of the additives is related

with the improvement of mechanical behavior of PUs

and resins, their influence on peel strength is shown

through the sensitivities. However this is not observed

for the weight percentage of Coumarone-Indene

(material 8).

The GSA histograms in Fig. 14 can help the

designer to decide on the most important design

variables to be considered for the optimization in

second stage of the procedure. However, this must be

implemented with care due to the synergetic effects

between different groups of raw materials used in the

composition of the adhesive joints.

7 Conclusions and remarks

A mixed numerical-experimental approach capable to

predict and optimize the performance of the footwear

adhesive joints, based on the weight composition of

used raw materials was presented. The proposed

approach is supported by MDO concepts applied to

the creep rate minimization and the peel strength

maximization under technological constraints. The

proposed approach is implemented considering two

stages: (1) definition of the physical model based on

planned experimental measurements and development

of the ANN approximation model; (2) the develop-

ment of theMDO algorithm that is the engine search of

the bi-objective optimization based on the weight

composition of adhesive joints.

First of all, the set of experiments are planned using

the Taguchi method aiming to obtain a good relation-

ship between performance measures and design vari-

ables—weight composition of raw materials used in

adhesive joint. After, considering the experimental

results obtained for Taguchi design points as input/

output patterns, an ANN is developed based on

supervised evolutionary learning using a genetic

algorithm.

Secondly, a MDO algorithm based on dominance

concepts and evolutionary search is proposed aiming

to build the optimal Pareto front. The optimal design

of adhesive composition to achieve the targets of

minimum creep rate and minimum inverse peel

strength (maximum peel strength) under manufactur-

ing constraints is performed. The model uses the
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optimal ANN previously developed to evaluate the

fitness functions and the constraints of the optimiza-

tion problem.

Finally, a ANN-based Monte Carlo simulation

procedure is implemented aiming to study the sensi-

tivity of the creep rate and peel strength of the

adhesive joint relatively to design variables—weight

compositions of raw materials. In particular the Sobol

indices for global sensitivity analysis are used to

establish the relative importance of the design

variables.

The results show the robustness of the proposed

approach to build the optimal Pareto front enabling to

establish the trade-off between minimum creep rate

properties and minimum inverse peel strength (maxi-

mum peel strength) of the footwear adhesive joint using

the weight composition of raw material constituents as

design variables. The optimal results for both perfor-

mance functions based on proposed approach are

reached when large quantities for PUs and for some

additives are considered. The performances of adhesive

joints measured by creep rate and peel strength are very

sensitive to the influence of some PUs and in some way

are moderately sensitive to additives.

The proposed MDO approach supported by exper-

imental tests shows improved explorative properties of

raw materials and can be a powerfully tool for the

designers of adhesive joints in footwear industry. In

particular, since the optimal Pareto front is obtained it

is possible to consider alternative designs for adhesive

joints.
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