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Abstract This paper proposes a methodology that

combines the Finite Element Method and multiple

response surface optimization to search for the optimal

operating conditions of a double-row Tapered Roller

Bearing (TRB) that has a Preload (P), radial load (Fr),

axial load (Fa) and torque (T). Initially, FE models

based on a double-row TRB are built and validated in

the basis of experimental data and theoretical models.

Three of the most important parameters used in the

design of TRB were obtained from a simulation of the

FE models with a combination of several operating

conditions that were previously selected in accordance

with a design of experiments. The design parameters

are: contact stress radio for both rows of rollers (S1 and

S2), maximum deformation of the outer raceway

(amax), and the difference between the gaps of the

inner raceways (Dd) or misalignment. Based on the

results of the FE simulations, quadratic regressions

models are generated that use the response surface

method to predict the design parameters when new

operating condition are applied. Then, a multi-respon-

se optimization study based on these models and using

desirability functions is conducted. It is concluded that

the accuracy of the results demonstrates that this

methodology may be used to search for the optimal

operating condition in a double-row TRB.

Keywords Double row tapered roller bearing �
Finite element method � Design of experiments �
Multiple response surface optimization

List of symbols

lt Rollers’ effective length (mm)

dm Mean diameter of tapered roller (mm)

Dmax Diameter of tapered roller at large end (mm)

Dmin Diameter of tapered roller at small end (mm)

Dm Bearing pitch diameter (mm)

Di Bore diameter (mm)

Do Outer diameter (mm)

L Longitude of the bearing (mm)

Z Number of rollers

bo Semi minor axis of the projected contact

ellipse (mm)

Kn Load deflection factor

r Contact normal stress (MPa)

a Contact angle (�)
ai Inner raceway-roller contact angle (�)
ao Free contact angle (�)
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aR Tapered roller included angle (�)
P

qo Curvature sum (mm-1)

MAPE Mean Absolute Percentage Error

RMSE Root Mean Square Error

1 Introduction

This paper attempts to demonstrate how the combi-

nation of the Finite Element Method (FEM) and the

Multiple Response Surface (MRS) optimization can

be used to obtain the optimal operating conditions in

the design phase of a double-row TRB. TRBs are

mechanical devices that are used in many industrial

applications. Basically, the TRB is formed by a pair of

inner raceways that are separated by a gap of constant

distance (d), an outer raceway, and a group of tapered

rollers that are located between the inner and outer

raceways. This type of mechanical device is designed

to support preload (P), axial (Fa), radial (Fr) and torque

(T) loads (operating conditions) that are applied under

both static and dynamic conditions. An incorrect

combination of these operating conditions can result in

high contact stresses (even higher than 1000 MPa) on

the TRB rolling elements. This can cause significant

local deformations (amax) and defects, such as pitting

and fatigue spalling (Harris and Kotzalas 2006). In

addition, if the operating conditions that are applied to

the TRB differ from the values that the manufacturer

provided, the distribution of contact stresses on the

outer raceway in some areas of contact can become nil,

cause the rollers to detach from the outer raceways

(Nagatomo et al. 2012). Also, a torque that greatly

exceeds that recommended by the manufacturer,

combined with a reduced preload, may cause the

rotation of one of the raceways and a variation of d that

causes the TRB works with difficulty. In this sense, the

design, optimization and determination of optimum

operating conditions of TRB are mainly based on

parameters such as contact stresses, local deformation

in the raceways, misalignments and distribution of

forces on the rolling elements (Harris and Kotzalas

2006). These parameters are generally studied indi-

vidually in the design phase of the bearings. However,

this form of study has the disadvantage of not

obtaining a complete and realistic design of the

mechanical device. The novel aspect of this work is

that the combination of FEM and the Multiple

Response Surface (MRS) optimization could be used

to obtain the optimal operating conditions in the

design phase of a double-row TRB, while considering

at the same time three of the most important design

parameters:

• The contact stress radio that is calculated using the

maximum contact normal stress [obtained in the

top side of the outer raceway (Stop)] and the

minimum contact normal stress [obtained in the

bottom side of the outer raceway (Sbottom)].

• The difference between the gaps obtained in the

top and bottom sides of the inner raceways (dtop

and dbottom) or misalignment.

• The local deformation of the contact surface of the

outer raceway (amax).

The optimal operating conditions in a double-row

TRB can be achieved by adjusting the values of P, Fa,

Fr and T loads when: (1) do not exceed a fixed

threshold of contact stress radio for both rows of

rollers, (2) that the difference between the gaps or

misalignment should be as reduced as much as

possible, and (3) that the local deformation on the

contact surface of the outer raceway (amax) not exceed

the maximum elastic deformation value. Due to the

complexity of finding the optimal operating condition

of double-row TRB when three of the most important

parameters used in the design phase of TRB are

fulfilled simultaneously, 3D FE models, including the

P, Fa, Fr and T loads, are developed. The results

obtained from these FE models are used (1) to generate

quadratic regression models, (2) to predict new

operating conditions covering the entire space of

possibilities, and (3) to obtain the optimal operating

condition of a double-row TRB using MRS with

desirability functions.

1.1 Use of the FEM for modeling and optimizing

bearings

The FEM is commonly used to design and optimize

mechanical devices since it reduces the number of

physical prototypes and experiments needed during

the design phase (Shigley et al. 2004). In this way,

FEM has been applied by many researchers to design

bearings. The object of its application is to reduce the

produce’s cost by experimental tests once the proto-

types have been manufactured.
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The FEM, combined with experimental data, has

been used to identify and characterize the static and

dynamic properties of the bearings. In this sense,

Arora et al. (2010) and Arora et al. (2011) used a

combination of FEM and experimental data to find the

structural characteristics of radial Air-foil bearings

and axial Air-foil bearings respectively. The proposed

method uses the natural frequencies and modal shapes

of the complete bearing to identify structural charac-

teristics of the mechanical device. Also, FEM has been

used to obtain the bearing stiffness of a wide range of

bearing types and parameters (Guo and Parker 2012).

This proposed method was validated by experiments

in the literature and is compared to analytical models.

Despite the obvious advantages of using the FEM,

there are some disadvantages when this method is

applied to design mechanical components, such as

convergence problems, due to the adjustment of the

mesh size, especially if the FE model includes

mechanical contacts. It is well known that if the

contact surface between the bodies is limited and the

mesh size is large, the number of nodes in that contact

surface will be reduced and the calculation of contact

stresses will not be accurate (Zhang et al. 2003;

Demirhan and Kanber 2008). Thus, it is concluded that

the FEM is not an appropriate method to use in design

and optimization processes if a considerable number

of FE simulations are required and the FE models

includes nonlinearities. One strategy to reduce the

number of simulations required for modeling and

optimizing the FE models is to build regression

models, such as those based on soft computing

techniques and Response Surface Methodology

(RSM), that learn from the most characteristic samples

obtained from FEM simulations and to use their

outputs as a substitute of new FE simulations. RSM is

a group of mathematical techniques that utilize a low-

degree polynomial function to model the relationships

between the independent variables (input variables)

and one or more response variables (output variables).

Sometimes, these polynomial functions do not provide

good results in complex problems that have many

nonlinearities and a high number of inputs as the

polynomials should be continuous functions. In con-

trast, soft computing techniques is the set of tech-

niques that are used to explore databases automatically

or semi-automatically in order to find patterns, trends

or rules that explain the behavior of the data in a given

context (Borgelt et al. 2013). Models based on soft

computing techniques normally require a larger

amount of data to obtain a good model than that

required for RSM (Escribano et al. 2014; Lostado et al.

2014). Using soft computing techniques, Lostado et al.

(2009) studied the contact pressure on a hub where it

was mounted a double-row TRB. In this case, different

types of regression techniques were used to predict the

distribution of the contact pressures on the hub as

function of a preload, a load and a friction coefficient.

Applying these regression techniques usually requires

a large number of data to generate models with an

appropriate generalization capability.

1.2 Response surface method for modeling

and optimizing problems

In many cases, the RSM is used to model experimental

responses. However, it recently is being used in

combination with other techniques (i.e., FEM) to

optimize products and industrial processes. RSM is an

approximate optimization method that looks at various

controllable and independent variables (inputs) and

their responses (outputs), in order to identify the

combination of inputs that provide the best response

[Eq. (1)] (Box and Wilson 1951).

Y ¼ f x1; x2; x3; . . .; xkð Þ ð1Þ

where Y is the response for the experiments and

(x1; x2; x3; . . .; xk) are the vectors of input. To optimize

the response Y, it is necessary to find an approximation

functional relationship between the inputs and the

response surface. A second-order polynomial is the

functional relationship used by RSM [(Eq. (2)] in this

kind of work.

Y ¼ b0 þ
Xn

i¼1

bi � Xi þ
Xn

i¼1

bii � X2
i

þ
Xn�1

i¼1

Xn

j¼iþ1

bij � Xi � Xj þ e ð2Þ

where the first summation is the linear part, the second

is the quadratic part, the third is the product of pairs of

all inputs of the polynomial, and e is the approximation

error. The values of the coefficients b0, bi, bii and bij

are calculated using regression analysis to determine

the relationship between inputs and outputs. Also, the

terms that are selected to form the equation are chosen
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according to their levels of significance (Gelman

2005). One computes this level by using the analysis of

variance (ANOVA) and selecting terms according to

the p value obtained. When a problem has more than

one output, as in this work, the optimization problem

can be solved using MRS (Derringer and Suich 1980).

In this sense, Harrington developed the desirability

functions to obtain a compromise between the differ-

ent outputs [Eqs. (3) and (4)], and the overall desir-

ability, which is defined as the geometric mean of the

desirability of each output [Eq. (5)] (Harrington

1965).

dmax
r ¼

0 if fr Xð Þ\A

fr Xð Þ � A

B � A

� �S

if A� fr Xð Þ�B

1 if fr Xð Þ[B

8
>><

>>:
ð3Þ

dmin
r ¼

1 if fr Xð Þ\A

fr Xð Þ � A

A � B

� �S

if A� fr Xð Þ�B

0 if fr Xð Þ[B

8
>><

>>:
ð4Þ

D ¼
YR

r¼1

dr

 !1=R

ð5Þ

In these equations, parameters A and B correspond

to the limits of the inputs range, S is an exponent that

determines how important it is to reach the target

value, X corresponds to the input vector, and fr is the

polynomial function that is used to predict the

response.

1.3 Combining FEM and MRS to optimize

mechanical problems

For decades, many researchers have used the FEM as

an alternative in attempting to reduce the costs during

the design and optimization phases of mechanical

problems. In this work, we show that FEM has a

disadvantage of requiring a large amount of compu-

tational time when the studied problem has a non-

linear behavior. In contrast, RSM method tends to be

immune to computational cost, as it provides a crude

approximation for the same problem modeled with

FEM (Marwala 2010). In this sense, the combination

of RSM when the optimization involves several

features and FEM has been used extensively to

optimize industrial processes. Thus, for example,

Bahloul et al. (2006) develops a 3D FE model for

the prediction of the punch load and the stress

distribution during the wiping-die bending process.

In this work, the FE simulation is carried out through

ABAQUS/Standard code, and the prediction of the

punch load is performed using RSM to optimize the

values of the main parameters involved in the bending

process. Moreover, Zeng et al. (2009) combines RSM

with FEM for optimizing the design of roll profiles for

cold roll forming. In this case, the spring-back angle is

considered to be an objective function and the edge

membrane longitudinal strains is considered as con-

strain condition to ensure high forming accuracy with

the minimum roll diameter of the forming process.

Yanhui et al. (2010) improved the deformation

homogeneity in aerospace forgings and Di Lorenzo

et al. (2010) developed an optimization strategy for

hydro-forming process design. In these research

studies, a combination of FEM and RSM were used

to model and optimize both processes. More recently,

Azaouzi et al. (2012) studied an optimization approach

to design a multi-step stamping tool while using a

combination of RSM and FEM. Other authors also

have used these methods to optimize the design of

buildings. In this regard, del Coz Diaz et al. (2014)

used RSM and FEM to develop predictive models to

simulate and optimize the heat transfer process in

buildings.

In the current paper, regression techniques using the

results of FE analysis are applied to model S1, S2, Dd,

and amax when P, Fa, Fr and T are acting under static

conditions on a double-row TRB. These models are

based on polynomial regression techniques, and were

built using RSM. Since TRB has more than one output

to be optimized (S1, S2, Dd and amax), the optimization

problem is solved by using MRS by means of

desirability functions. Two criteria, Mean Absolute

Percentage Error (MAPE) and Root Mean Square

Error (RMSE), are used to determine the accuracy of

the regression models and in the adjustment process of

the FE models.

2 Modeling the double-row TRB using FEM

During the process, all FE models of the double-row

TRB are considered to be symmetrical three-dimen-

sional models to reduce the computational cost. The FE

models proposed includes the outer raceway, the inner
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raceways, the tapered rollers and the hub on which the

TRB is mounted (Fig. 1a). The FE models are assem-

bled from a combination of elements with 8 and 6 nodes

formulated in linear shape functions. The coefficient of

friction between the hub and the inner raceway is

considered to be 0.2, whereas the coefficient between

the rollers and the inner raceway and between the rollers

and the outer raceway is considered to be 0.001

(Demirhan and Kanber 2008). Raceways and rollers

are modeled using linear elastic and isotropic steel with

a Young’s modulus (E) equal to 208 GPa and a

Poisson’s ratio (m) of 0.29. The hub is modeled on the

basis of E = 200 GPa and m = 0.29 (Demirhan and

Kanber 2008). For all simulated FE models, the contact

detection method used was the segment-to-segment

method (MSC Marc User’s Guide 2010). In contrast to

the classical method of contact detection node-to-

segment method, the segment-to-segment method is a

consistent and stable method, and is able to easily pass

the patch test (El-Abbasi and Bathe 2001). Also, the

segment-to-segment method is able to reduce the error

in calculating contact stresses with a mesh refinement

(Meguid and Czekanski 2008; Zavarise and De Loren-

zis 2009). The numerical technique used to solve the

mechanical problem was the solver constraints tech-

nique. This technique does not require any special

element to be placed at the points of contact, and the

algorithm automatically detects nodes making contact

and generates the appropriate constrains to ensure that

no penetration occurs. Also, the friction model used in

this case was the bilinear coulomb friction stick slip

model. It was a quasi-static problem in which the

movements between the different contact surfaces were

practically negligible.

In this case, the FE models were adjusted and validated

using radial loads Fr and preloads P well-known by this

way: First, the mesh size in the contact area between the

outer raceway and the tapered roller was adjusted

comparing the normal contact stress obtained by the FE

model and by a theoretical model based on the Hertz’s

theory. Then and once the mesh size was adjusted, the

relative displacements between inner and outer raceway

obtained by the FE model were compared to the results

obtained in a test bench. These test results were used to

ensure that the mesh size of the FE model and the

coefficients of friction and elastic properties (E and m),

were perfectly defined. The following subsection shows

the procedure to adjust and validate the FE models.

2.1 Adjustment of TRB based on the mesh size

of raceways and rollers

One of the main difficulties in solving mechanical

contact by the use of FEM is to obtain realistic contact

stresses. It is well known that if the contact surface

between the FE models is low and the mesh size is very

Fig. 1 FEM of the TRB:

a Different component parts

of the TRB, b Initial mesh of

size 5.1 mm. c Final mesh of

size 0.2 mm
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large, the number of nodes in the contact surface is

smaller and therefore the contact stresses obtained by

this method does not are accurate (Feng and Prinja

2001). In this respect, researchers have studied how

mesh size affects the contact stresses in the contact zone.

For example, (Satyanarayana and Melkote 2004) stud-

ied the influence of the element size on the contact stress

between ball bodies and flat surfaces. Similarly,

Demirhan and Kanber (2008) developed two dimen-

sional FE models based on cylindrical roller bearings

and studied the influence of element size on the contact

stress. The FE models are validated experimentally by

two methods. One was by using theoretical models

based on Lundberg’s and Hertz’s theory to calculate the

contact stresses in the outer raceways (Lundberg and

Sjövall 1958; Hertz 1896). The other method was by

determining experimentally the relative displacement

between the inner and outer raceways of the cylindrical

roller bearings. The contact stresses obtained from the

theoretical model based on Hertz’s theories are calcu-

lated from the force applied to the cylindrical rollers,

which is obtained after FE models are simulated. The

convergence of the FE models based on the cylindrical

roller bearings are achieved and considered to be valid

when the results of the contact stresses and displace-

ments obtained by the FE models proposed did not differ

significantly from those results obtained, theoretically

and experimentally respectively. In the current paper,

and in a way that is similar to Demirhańs work, the mesh

size of raceways and rollers were adjusted by comparing

the contact stress obtained from the FE models and those

obtained from the theoretical model based on Hertz’s

theories. Because the contact detection method that was

proposed in this case for all FE models was the ‘‘segment

to segment’’ method, it was possible to reduce the error

in calculating the contact stresses with a mesh refine-

ment (Zavarise and De Lorenzis 2009). In this case, FE

models with localized fine mesh sizes in the contact area

were created successively with increasingly smaller

mesh size (mesh refinement) until the contact stresses on

these FE models on the outer raceway did not differ

significantly from the results obtained by theoretical

models based on the Hertz’s theory (Demirhan and

Kanber 2008). This study concentrated on the contact

zone (upper and bottom zones of the outer raceway) for

both rows of rollers (Fig. 1b). The loads used for

adjusting the mesh size of the FE model by comparison

to theoretical models were P with 300, 400, 500, and

600 N and an Fr equal to 2000 N. The theoretical

models, in which the FE models were compared, were

based on the Hertz’s theory for cylindrical bodies (Hertz

1896). Equation (6) shows how to calculate the contact

normal stress r on the outer raceway based on Hertz’s

theory (Fig. 2a).

r ¼ 2 � Q
p � lt � bo

ð6Þ

In this equation, bo is the width of the contact area,

lt is the rollers’ effective length, and Q is the normal

force on each tapered roller that is obtained directly

from the FE model when the preload P (300, 400, 500,

and 600 N) and Fr (2000 N) are simulated. Similarly,

bo is calculated by using Eqs. (9), (10) and (11),

where
P

qo is the radii of curvature, Dm is the bearing

pitch diameter, dm is mean diameter of tapered roller,

and ao is the free contact angle.

bo ¼ 3:35 � 10�3 Q

lt �
P

qo

� �1=2

ð7Þ

X
qo ¼

1

Dm

2

1 þ co

� �

ð8Þ

co ¼
Dm � cos ao

dm
ð9Þ

The particular geometrical dimensions of the stud-

ied TRB are: Di (Bore diameter) = 78 mm, Do (Outer

diameter) = 130 mm, L (Longitude) = 90 mm, and

Z (Number of rollers) = 25, a (Contact an-

gle) = 14.07�, ao (Free contact angle) = 15.7�, aR
(Tapered roller included angle) = 3.25�, ai (Inner

raceway-roller contact angle) = 12.45�, lt (Rollers’

effective length) = 20.9 mm, Dm (Mean diameter of

tapered roller) = 11.925 mm, Dmax (Diameter of

tapered roller at large end) = 12.5 mm, Dmin (Di-

ameter of tapered roller at small end) = 11.35 mm,

and dm (Bearing pitch diameter) = 102.4 mm. Fig-

ure 2(b) shows the main geometrical dimensions of a

double-row TRB (Harris and Kotzalas 2006).

Then, like the work performed by Illera et al. (2014)

to set FE models in contact problems, the FE models

based on the TRB are considered to be valid when the

computational costs of each simulation are not exces-

sive, and when:

8yi =MAPEyi \uyi ð10Þ

where yi is the adjustment parameter and corresponds

to the mesh size of the elements of the contact area.
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Also, uyi is a previously established threshold and

MAPEyi is the error that is defined as Eq. (11).

MAPEyi ¼
1

m

Xm

k¼1

Yyi FEM � Yyi TH

Yyi TH

�
�
�
�

�
�
�
� ð11Þ

where, Yyi FEM and Yyi TH are the contact stresses

obtained from the FE model and the theoretical model,

respectively, on the contact zone (upper and bottom

zones of the outer raceway) of both rows of rollers and

for each different combination of P and Fr. k is one of

each result obtained for the nodes that belong to the

localized contact zone and m is the total number of

nodes considered at each mesh size. Figure 3 shows

the contact stresses localized in the upper zone of the

outer raceway when the mesh sizes are 5.1 and

0.2 mm. In this case, eight computers with Intel Xeon

Processor, CPU 3.4 GHz (2 processors) and 10.00 GB

(RAM), were used to simulate the FE models.

Table 1 shows the MAPE calculated with Eq. (11)

to adjust the mesh of the FE models when P is 300,

400, 500, and 600 N; Fr is 2000 N; and the mesh sizes

are 5.1, 1.0 and 0.2 mm. Table 1 shows the results

obtained for the upper zone of the outer raceway in the

first row of rollers. It also shows the average compu-

tational time to simulate each FE model with its

corresponding mesh density.

In this study, the thresholds that are considered to

be valid are u ¼ 6% for MAPE and 14,400 min

(10 days) for maximum computational cost. Accord-

ing to Table 1, MAPE is lower than the threshold

considered for all (u ¼ 6%) P: 4.58, 4.68, 4.78, and

4.88 %). The average computational time is

11,952 min (8.3 days). Similarly, the MAPE was

Fig. 2 a Theoretical

distribution of contact

stresses between the roller

and the flat surface, b Main

geometrical dimensions of a

double-row TRB (Harris

and Kotzalas 2006)

Fig. 3 Contact stresses on the upper zone of the outer raceway that correspond to the first row of rollers when the mesh size is:

a 5.1 mm b 0.2 mm
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calculated for the upper zone of the outer raceway that

corresponds to the second row of rollers and for the

bottom zone of the outer raceway to both rows of

rollers and to each different combination of P and Fr

when the mesh sizes were 5.1, 1.0 and 0.2 mm. For all

these latter cases studied, when the mesh size was

0.2 mm, the computational time and the MAPE

obtained were, respectively, \6 % and 14,400 min.

In addition, all of the most important parameters used

to determine the quality of the mesh were fulfilled

strictly for all mesh sizes proposed and for all loads

applied (Kelly et al. 1983). So, for example, the aspect

ratio (defined as the ratio of the longest edge of an

element to its shortest edge) never exceeded a value of

5:1 for any of the elements of the meshes studied. The

Jacobian factor was always greater than 0.6 so that

elements’ zero volume did not exist, and the skew

angles were less than 45� for all meshes and loads

studied.

According to these criteria, the FE models selected

had a mesh size equal to 0.2 mm in the contact zone

(upper and bottom zones of the outer raceway) of both

rows of rollers. Also, the coefficients of friction

(l = 0.2 and l = 0.001) and elastic properties

(ERollers = 208 GPa, mRollers = 0.29; EHub = 200 GPa

and m Hub = 0.29) proposed for the adjustment of TRB

that were based on the mesh size of raceways and

rollers were considered to be valid.

2.2 Adjustment of TRB based on relative

displacements of the raceways

Once the mesh size, the coefficients of friction and the

elastic properties where fixed and considered to be

valid, the relative displacements between the inner and

outer raceways that were obtained by the FE model

were compared to the results obtained on the test

bench. This study was conducted primarily to

determine if the stiffness of the proposed FE models

were very similar to that obtained experimentally for

the TRB studied. The relative displacements between

inner and outer raceway for each of the combinations

of P and Fr were obtained experimentally from a test

bench and also from the FE models based on the TRB

proposed once the mesh size had been adjusted. This

relative displacement is measured experimentally by

two comparator pencils (Red Crown developed by

Testar Marposs) (Fig. 4a). The adjustments of the

relative displacements between the raceways are used

mainly to verify that the mesh size of the FE model,

their different coefficients of friction, and their elastic

properties (E and m) are defined perfectly. The

experimental application of P on the TRB was

conducted with a screw that, in turn, pushed a steel

sleeve on the inner raceway, while the Fr was applied

using a load cell (HBM U3 with 5 KN of capacity)

(Fig. 4a). P loads were calibrated previously using a

strain gauge with the same value of the preload that

was acting on the TRB when it was mounted on a steel

sleeve. Figure 4b shows the points where the relative

displacement between the inner and outer raceway in

the FE model was measured. Figure 4c also shows the

differences between the relative displacements ob-

tained from the FE models and from the test bench for

the variation of P and Fr. The solid line and the dashed

line show, respectively, the relative displacement

obtained from the FE models and that obtained

experimentally. From these pairs of curves, it can be

seen that the difference between the relative displace-

ments obtained (one from the FE models and one from

the test bench) are similar. Also, Fig. 4b shows that the

greater relative displacement occurred when the lower

P was applied, and the minimum relative displacement

was obtained when the higher P was applied. More-

over, it is seen in this figure that the greater the preload

applied is, the greater is the stiffness of the mechanical

contacts and the lower is the deformation of the

mechanical device. This stiffness variation is in good

Table 1 MAPE and computational cost of the FE models during the mesh density adjustment of the upper zone of the outer raceway

that corresponds to the first row of rollers

Mesh size (mm) MAPE (%) Computational

time (min)
P = 300 N (%) P = 400 N (%) P = 500 N (%) P = 600 N (%)

5.1 53.6 53.37 52.86 52.34 6,912

1.0 22.34 22.56 22.64 22.68 8,496

0.2 4.58 4.68 4.78 4.88 11,952
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agreement with the load–deflection relationship that

was previously reported in the literature by Kania

(2006) and Harris and Kotzalas (2006).

The relative displacements obtained from the FE

models were consistent with the experiments and the

preset parameters in the FE model (Ebearing = 200

GPa, Ehub = 208 GPa, m = 0.29, coefficient of fric-

tion = 0.001 and 0.2) when the mesh size is consid-

ered to be valid as explained previously.

2.3 Operating conditions for double-row TRB

Double-row TRBs are mechanical devices that are

designed to support the combination of the P, Fa, Fr

and T loads (Fig. 5). Due to this combination of loads,

the TRB is subjected to contact normal stresses and

local deformations on the different parts of the

mechanical device (tapered rollers and outer and inner

raceway). Also, the inner raceway is able to move a

gap d along the axis where the bearing is mounted.

This gap is the distance that allows the TRB to

maintain a preset value of P.

Depending on how the loads that are acting on the

TRB are combined, the distribution of contact normal

stresses, localized normal deformations, and the gap d
can produce values that are undesirable for the

functioning of the mechanical device (Harris and

Kotzalas 2006). Thus, for example, if the value of the

external loads applied to the TRB corresponds to the

standard values provided by the manufacturer, the

distribution of normal contact stresses on the outer

raceway will usually be similar to that shown in

Fig. 6a. In this case, since both the top and bottom

zones of the outer raceway show a non-zero value for

normal contact stresses, all rollers maintain me-

chanical contact with the raceways at all times. If the

mechanical contact of the rotating parts (tapered

rollers and outer and inner raceway) is always

maintained, the operating conditions of the TRB are

correct and follow the manufacturer specifications.

Fig. 4 a Test bench for the

TRB: assembly of the

comparators pencils, strain

gauge and load cell. b FE

model to measure the

relative displacement

between raceways.

c Relative displacement of

the FE model and

experimental data for

different values of P
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In contrast, if the values of the external loads that

was applied to the TRB were incorrect (i.e., a highly

reduced P combined with a very high Fr and T), the

distributions of contact normal stresses on the outer

raceway usually would be similar to that shown in

Fig. 6b. According to Fig. 6b, the top zone of the outer

raceway had a non-zero value for normal contact

stresses, whereas the bottom zone of the outer raceway

had a zero value for normal contact stresses. In this

condition, only a reduced number of rollers in the top

zone maintained mechanical contact with the race-

ways, which can cause the rollers to detach from the

outer raceway (Harris and Kotzalas 2006). Also, when

the values of the external loads that are applied to the

TRB correspond to the standard values that the

manufacturer provided, the gap d on the top (dtop)

and the bottom (dbottom) should have been the same

(Fig. 6c). In contrast, if the values of the applied

external loads on the TRB were incorrect (i.e., a highly

reduced P combined with a very high T), the gap on the

top (dtop) and the bottom (dbottom) would have been

different, which would have caused faulty operation of

the TRB (Fig. 6d). In addition, an excessive local

deformation on the outer raceway can cause undesir-

able effects, such as pitting and fatigue spalling of the

TRB (Harris and Kotzalas 2006; Eschmann et al.

1985). According to these three requirements, we

considered in this paper the following conditions for

optimal operation of the TRB:

(i) The contact ratio obtained between the normal top

contact stress (Stop) and normal bottom contact

stress(Sbottom) on the outer raceway and for each of

the two columns of rollers should be higher than

20 % to prevent detachment of the rollers in the

TRB [Eq. (12)] (Harris and Kotzalas 2006).

Contact ratio ðSÞ ¼ Stop

Sbottom

� 100 ð12Þ

(ii) The difference between the gaps dtop and

dbottom should be reduced as much as possible

to prevent a forced TRB operation [Eq. (13)]

or misalignment (Harris and Kotzalas 2006).

Gap difference ðDdÞ ¼ dtop � dbottom ð13Þ

(iii) The localized normal deformation of the outer

raceway must not exceed the maximum elastic

deformation (amax) of the contact zone with

regard to the diameter of the tapered rolling (d)

according to Eq. (14) to avoid pitting and

fatigue spalling (Eschmann et al. 1985).

amax ¼ 0:0001 � d ð14Þ

In this case, the minimum diameter of the tapered roller

is 11.3 mm. Therefore, the value of amax must not exceed

any point on the outer raceway by more than 0.0013.

In this work, the optimal operating condition in a

double-row TRB is considered to have been reached

when:

• The contact stress radio obtained for both rows of

rollers (S1 and S2) should be between 25 and 50 %.

• The difference between the gaps obtained in the

top and bottom sides of the inner raceways (dtop

Fig. 5 Main components of

a typical TRB and the

corresponding loads acting

on it: a Lateral view

b Frontal view
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and dbottom) or misalignment have been reduced as

much as possible.

• The local deformation on the contact surface of

outer raceway (amax) does not exceed the max-

imum elastic deformation value of 0.00113.

2.4 Design of experiments and design matrix

All statistical methods need a previously decided set of

Design of Experiments (DoE) to determine the

minimum number of experiments needed to fully

consider the space of possibilities and ensure that the

data obtained from the experiments is representative to

support the hypotheses proposed (Fisher 1935). In

general, the initial hypotheses are defined when a

number of controllable variables (inputs or design

factors) and uncontrollable variables (noise factors)

determine the number of responses (outputs) by a

continuous and differentiable function (Box and

Behnken 1960; Taguchi 1986). There are many

methods available to develop a DoE, but all this

methods involve the construction of a design matrix,

in which inputs and outputs are considered. One of the

most widely used methods to develop a DoE is the full

factorial design method (Montgomery 2008). Using

this method, the experiments can adopt all possible

combinations for each of the values (or levels) and

each of the factors. Specially, a 2k factorial design is a

particular, full factorial design that has two levels and

generates 2k experiments, where k is the number of

Fig. 6 Distribution of

contact stresses on the outer

raceway when: a the takeoff

of the rollers does not occur

b the takeoff of the rollers

does occurs. dtop and dbottom

when the external loads

applied to the TRB are for:

c standard values and

d incorrect values (Harris

and Kotzalas 2006)
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factors. Using this method in the optimization of the

proposed TRB, the number of factors is k = 4 (P, Fr,

Fa, and T) and the number of experiments or FE

simulations needed is 16. This limited number of

experiments or FE simulations is not enough to cover

the entire space of possibilities and, subsequently, to

obtain accurate regression models with which to

search for the optimal operating condition for a

double-row TRB. However, a factorial design 3K

generates 3k experiments or 81 FE simulations. This

amount of data may be sufficient to cover completely

the entire space of possibilities, but has the disadvan-

tage of generating a large number of experiments or

FE simulations. In this work, the DoE was performed

using Central Composite Design (CCD). This method

is considered to be a fractional three-level design that

is useful in obtaining quadratic regression models,

thereby reducing the number of experiments

in comparison to a factorial design 3k. Table 2

shows the values of the variables, their code, and the

levels needed to implement the DoE based on CCD

method.

Once the factors and levels have been set as in

Table 2, the design matrix and their corresponding

combination of operating conditions are generated using

the ‘‘R’’ statistical software and subsequently simulated

in the FE models (R 2014). In this case, 25 experiments

or FE simulations are needed to cover the entire space of

possibilities and to subsequently search for the optimal

operating condition for a double-row TRB. The design

matrix (See Table 3) shows the number of experiments

or FE simulations and the corresponding values for the

operating conditions (P, Fr, Fa, and T).

3 Results

3.1 Results obtained from the FE models

Once the FE models had been validated, an automatic

procedure was performed on parameterized FE models

in order to run the 25 simulations according to the

design matrix. The results of these FE simulations are

shown in Table 4 [contact ratio for the first row of

Table 2 Independent

variables and experimental

design levels used with the

CCD method

Factors Notation Magnitude Levels

-1 0 ?1

Preload P N 8,000 9,000 10,000

Radial load Fr N 60,000 80,000 100,000

Axial load Fa N -200 200 600

Torque T N mm -100,000 0 100,000

Table 3 Design matrix

with the combination of

operating conditions

(inputs) to be simulated

Run P [N] Fr [N] Fa [N] T [N mm] Run P [N] Fr [N] Fa [N] T [N mm]

1 8,000 60,000 -200 -100,000 14 9,000 80,000 200 100,000

2 8,000 60,000 -200 100,000 15 9,000 80,000 600 0

3 8,000 60,000 600 -100,000 16 9,000 100,000 200 0

4 8,000 60,000 600 100,000 17 10,000 60,000 -200 -100,000

5 8,000 80,000 200 0 18 10,000 60,000 -200 100,000

6 8,000 100,000 -200 -100,000 19 10,000 60,000 600 -100,000

7 8,000 100,000 -200 100,000 20 10,000 60,000 600 100,000

8 8,000 100,000 600 -100,000 21 10,000 80,000 200 0

9 8,000 100,000 600 100,000 22 10,000 100,000 -200 -100,000

10 9,000 60,000 200 0 23 10,000 100,000 -200 100,000

11 9,000 80,000 -200 0 24 10,000 100,000 600 -100,000

12 9,000 80,000 200 -100,000 25 10,000 100,000 600 100,000

13 9,000 80,000 200 0 - – – – –
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rollers (S1), contact ratio for the second row of rollers

(S2), maximum normal deformation (amax), and gap

difference (Dd)].

3.2 Analysis of variance

Equation (2) was fitted using the data shown in

Tables 3 and 4 to obtain the regression equations for

all responses with the use of the RMS ‘‘R’’ package

(Lenth 2009). Second order polynomial models were

built for each response, and several criteria (R2,

p value, MAPE and RMSE) were used to select the

most accurate model.

Equations (17), (18), (19) and (20) show the second

degree polynomial function obtained to model S1, S2,

amax and Dd.

S1 ¼ � 0:3553 þ 0:00013 � P � 4:2 � 10�9 � P2

þ 4:14 � 10�7 � Fr � 3 � 10�10 � P � Fr

� 1:4174 � 10�5 � Fr þ 2:2 � 10�9 � P � Fa

� 3 � 10�10 � Fr � Fa þ 1:001 � 10�7 � F2
a

� 6:593 � 10�7 � T ð15Þ

S2 ¼ � 0:7544 þ 0:00015 � P � 4:2 � 10�9P2

þ 8:2536 � 10�6Fr � 4 � 10�10PFr

� 1 � 10�10F2
r � 0:000106 � Fa

� 2 � 10�10 � P � Fa þ 3 � 10�10 � Fr � Fa

þ 1:604 � 10�7 � F2
a þ 5:987 � 10�7 � T ð16Þ

amax ¼ 0:001693 � 7:29 � 10�7 �P þ 3:37 � 10�8 �Fr

� 1:3504 � 10�6 �Fa þ 2 � 10�10 �P �Fa

þ 1 � 10�10 �F2
a þ 2:9 � 10�9 �T ð17Þ

Dd ¼ 0:03729 � 9:0738 � 10�6 � P þ 5 � 10�10 � P2

þ 4:363 � 10�7 � Fr þ 1:5571 � 10�6 � Fa

þ 2 � 10�10 � P � Fa � 3:1 � 10�9 � F2
a

� 1:81 � 10�8 � T ð18Þ

These equations show how each output was

defined by first and second degree polynomials.

Then, ANOVA was used to reduce the size of these

regression models by removing the insignificant

terms of the polynomial (Sathiya et al. 2006). This

method, called step-wise regression, automatically

removes the features of no significance for each

model (Wilkinson and Dallal 1981). Equations (19),

(20), (21) and (22) show the reduced quadratic

models.

S1 ¼ � 0:004182 þ 5:66892 � 10�5 � P

� 3 � 10�10 � P � Fr � 3 � 10�10 � Fr � Fa

þ 1:078 � 10�7 � F2
a � 6:54 � 10�7 � T ð19Þ

S2 ¼ � 0:434307 þ 7:55976 � 10�5 � P

þ 8:7701 � 10�6 � Fr � 4 � 10�10 � P � Fr

� 1 � 10�10 � F2
r � 8:39731 � 10�5 � Fa

þ 1:532 � 10�7 � F2
a þ 8:1 � 10�7 � T ð20Þ

Table 4 Results obtained

from the FE models using

the inputs of Table 3

Run S1 [%] S2 [%] amax Dd [mm] Run S1 [%] S2 [%] amax Dd [mm]

1 24.74 24.66 -0.00091 0.0345 14 33.37 29.97 -0.00064 0.0216

2 19.23 30.69 -0.00131 0.0329 15 24.69 39.37 -0.00064 0.0197

3 26.65 23.16 -0.00094 0.0361 16 35.98 27.77 -0.00063 0.0233

4 20.86 29.84 -0.00097 0.0344 17 27.06 37.59 -0.00067 0.0209

5 40.09 39.72 -0.00067 0.0217 18 21.52 24.59 -0.00075 0.0276

6 32.08 49.86 -0.00070 0.0197 19 19.92 23.02 -0.00126 0.0327

7 42.40 38.06 -0.00070 0.0228 20 30.70 32.05 -0.00064 0.0204

8 34.34 48.15 -0.00073 0.0212 21 27.70 34.71 -0.00080 0.0254

9 28.53 33.81 -0.00081 0.0266 22 29.63 26.87 -0.00077 0.0291

10 20.54 17.68 -0.00089 0.0355 23 25.56 30.45 -0.00078 0.0266

11 15.77 23.15 -0.00089 0.0339 24 22.73 35.12 -0.00080 0.0272

12 21.60 17.36 -0.00125 0.0366 25 26.40 29.66 -0.00079 0.0268

13 16.43 21.85 -0.00128 0.0343 – – – – –
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amax ¼ 0:000546 � 1:685 � 10�7 � P � 1:5291

� 10�6 � Fa þ 2 � 10�10 � P � Fa ð21Þ

Dd ¼ 0:036197 � 8:4334 � 10�6 � P þ 5 � 10�10 � P2

þ 3:95 � 10�7 � Fr þ 3 � 10�10 � P � Fa

� 3:1 � 10�9 � F2
a � 9:5 � 10�9 � T ð22Þ

Tables 5, 6, 7 and 8 show the results of ANOVA for

each of the final quadratic models. Most of the variables

have a p value that is less than 0.01. This indicates that

the variables used on the reduced quadratic models are

statistically significant. The multiple correlation coeffi-

cient (R2) is calculated as the measure of the amount of

variation around the mean obtained by the regression

model. The results showed that all values of R2 are close

to 1, which indicates that these models possess a good

predictive capacity.

MAPE and RMSE are calculated to determine the

generalization capacity of the reduced quadratic

Table 5 ANOVA results

for the variable S1 using the

final reduced quadratic

model

Significance codes: 0 ‘***’

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘’ 1

Var. Df Sum of Sq. Mean square F value p value Sig. code

P 1 0.014995 0.014995 268.215 2.940 E-12 ***

P�Fr 1 0.074119 0.074119 1325.801 \2.20 E-16 ***

Fr�Fa 1 0.000815 0.000815 14.575 0.0012606 **

(Fa)
2 1 0.001781 0.001781 31.861 2.350 E-05 ***

T 1 0.021224 0.021224 379.645 1.510 E-13 ***

Fr�T 1 0.000965 0.000965 17.257 0.0005959 ***

Residuals 18 0.001006 0.000056

R2 0.992

Table 6 ANOVA results

for the variable S2 using the

final reduced quadratic

model

Significance codes: 0 ‘***’

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘’ 1

Var. Df Sum of sq. Mean square F value p value Sig. code

P 1 0.034339 0.034339 192.6450 5.78 E-10 ***

Fr 1 0.095544 0.095544 536.0037 3.74 E-13 ***

P�Fr 1 0.001019 0.001019 5.7159 0.030366 *

(Fr)
2 1 4.45 E-7 4.45 E-7 0.0025 0.960409

Fa 1 0.001485 0.001485 8.3334 0.011294 *

(Fa)
2 1 0.002739 0.002739 15.3680 0.001364 **

T 1 0.027512 0.027512 154.3425 2.69 E-09 ***

Fr�T 1 0.001756 0.001756 9.8534 0.006757 **

(T)2 1 0.000434 0.000434 2.4349 0.139507

Residuals 15 0.002674 0.000178

R2 0.983

Table 7 ANOVA results

for the variable amax using

the final reduced quadratic

model

Significance codes: 0 ‘***’

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘’ 1

Var. Df Sum of sq. Mean square F value p value Sig. code

P 1 3.80 E-10 3.80 E-10 0.0357 8.52 E-01

P�Fr 1 7.22 E-07 7.22 E-07 68.1084 1.56 E-07 ***

(Fr)
2 1 6.87 E-08 6.87 E-08 6.4767 0.02031 *

Fa 1 1.47 E-08 1.47 E-08 1.3816 0.25515

P�Fa 1 6.72 E-08 6.72 E-08 6.3315 0.02157 *

P�T 1 2.14 E-08 2.14 E-08 2.0147 0.17287

Residuals 18 1.91 E-07 1.06 E-08

R2 0.815
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models using the samples shown in Table 4 according

to Eqs. (23) and (24).

MAPE ¼ 1

m
�
Xm

k¼1

Yk FEM � YkModel

Yk FEM

�
�
�
�

�
�
�
� ð23Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
�
Xm

k¼1

Yk FEM � YkModelð Þ2

s

ð24Þ

In this case, YkFEM are the normalized responses

obtained from the FE models and YkModel are those

obtained from the reduced quadratic models devel-

oped with RSM. The normalization of the data is

commonly used in statistical processes in order to

transform all variables to the same scale (from 0 to 1).

In this case, this transformation is carried out

subtracting the minimum value from each original

value and dividing by the range of each variable

according to Eq. (25).

Yk; norm ¼ Yk � min Yð Þ
rangeðYÞ ð25Þ

Table 9 shows the prediction errors, where the

maximum error corresponds to amax (MAPE equal to

8.06 % and RMSE equal to 13.29 %), and the

minimum error corresponds to Dd (MAPE equal to

0.71 % and RMSE equal to 1.46 %).

Additionally, 22 new FE models were implemented

to test the quadratic regression models with new

operating conditions that had not been used previously

to generate reduced quadratic models. The errors

obtained during the testing stage are shown in

Table 10, where the maximum error corresponds to

S2 (MAPE equal to 5.47 % and RMSE equal to

7.70 %), and the minimum error corresponds to Dd
(MAPE equal to 1.72 % and RMSE equal to 2.87 %).

Figure 7 shows the relationship between the actual

(FEM) and predicted (reduced quadratic models)

values of S1 (Fig. 7a), S2 (Fig. 7b), amax (Fig. 7c),

and Dd (Fig. 7d). The figures show that these models

are adequate to predict these values because the

residuals that were obtained are small and the

correlations between actual and predicted values are

high.

3.3 Multi-response optimization

Table 11 shows the combination of operating condi-

tions and outputs that were studied in searching for the

optimal operating condition in a double-row TRB

through desirability functions using the RMS ‘‘R’’

package (Kuhn 2014). The first column of this table

shows the inputs and outputs that were studied. The

second column of the table shows the goal set in the

optimization process for both inputs and outputs. In

this case, the process of searching for the best

combination was accomplished by prefixing a range

for the preload (between 8000 and 10,000 N), while

Fr, Fa and T were analyzed for a fixed number of

settings. In this case, the combination of the operating

conditions Fr, Fa and T were considered to be the load

capacity, while P is preset when the TRB is mounted

Table 8 ANOVA results

for the variable Dd using the

final reduced quadratic

model

Significance codes: 0 ‘***’

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘’ 1

Var. Df Sum of sq. Mean square F value p value Sig. code

P 1 6.90 E-07 6.90 E-07 7.6861 1.36 E-02 *

(P)2 1 5.78 E-06 5.78 E-06 64.7389 5.14 E-07 ***

Fa 1 0.00079 0.00079 8879.0365 \2.2 E-16 ***

P�Fr 1 3.10 E-07 3.10 E-07 3.5204 0.07898 �
P�Fa 1 7.38 E-06 7.38 E-06 82.588 1.02 E-07 ***

(Fa)
2 1 0.18 E-08 0.18 E-08 0.0263 0.87319

T 1 1.62 E-05 1.62 E-05 181.6036 3.77 E-10 ***

(T)2 1 5.96 E-06 5.96 E-06 66.6928 4.24 E-07 ***

Residuals 16 1.43 E-06 9.00 E-07

R2 0.998

Table 9 Results of the predicted error criteria for S1, S2, amax

and Dd using the reduced quadratic models

S1 S2 amax Dd

MAPE [%] 1.87 2.78 8.06 0.71

RMSE [%] 2.28 3.22 13.29 1.46
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on the hub. Thus, for example, Fr varies from 60,000 to

100,000 N (every 500 N), Fa varies from -200 to

600 N (every 10 N) and T varies from -100,000 to

100,000 N mm (every 2500 N mm). The require-

ments of searching for the optimal operating condition

are set between 20 and 50 % for S1 and S2 (goal in

range), between -0.0011 and -0.0006 mm for amax

(goal equal to maximum), and between 0.0197 and

0.0366 mm for Dd (goal equal to minimum). The

combination of inputs (Fr, Fa and T) for the optimal

operating condition required (S1, S2, amax and Dd)

involves a total of 5,31,441 different combinations

with their corresponding different desirabilities.

Some of the combinations obtained to reach the

optimal operating conditions according to the require-

ments of the TRB are shown in Table 12. Thus, for

example, the first row of the table (Combination N� 1)

shows the highest values of desirability (=1) when the

Fig. 7 Scatter diagram of:

a contact ratio for the first

row of rollers (S1), b contact

ratio for the second row of

rollers (S2), c the normal

maximum deformation

(amax) and d the gap

difference (Dd)

Table 11 Results of the

optimal operating condition

to obtain the requirements

of S1, S2, amax and Dd
(Total number of

combinations studied equal

to 5,31,441)

Inputs/outputs Goal Min. Max.

Preload (P) In range 8,000 N 10,000 N

Radial load (Fr) Equal 60,000 N 100,000 N

Axial load (Fa) Equal -200 N 600 N

Torque (T) Equal -100,000 N mm 100,000 N mm

S1 In range 20 % 50 %

S2 In range 20 % 50 %

amax Max. -0.0011 -0.0006

Dd Min. 0.0197 mm 0.0366 mm

Optimization of operating conditions for a double-row… 369
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load capacity of the TRB is the maximum (Fr, Fa and

T), while P can reach any value (P = 8666.75 N;

Fr = 62,500 N; Fa = -200 N, and T = 52,500

N mm). Also, if the value of Fr is the maximum when

the values of Fa and T are the maximum negatives

values (Combination N� 2), P = 8451.01 N and the

desirability is equal to 0.199. This combination of

operating conditions shows that for large values of Fr,

the desirability values obtained are lower. In contrast,

if the values of Fa are the maximum and minimum

possible for any of the values of Fr and T, the values

obtained for P and for the desirability are, respectively,

9905.42 and 0.936 (N� 3) and 8605.55 and 1 (N� 4).

Furthermore, the combinations N� 5, 6, 7 and 8 show

the operating condition when the values of S1, S2, amax

and Dd are the lowest. Also, these four combinations

of operating conditions show high values of desir-

ability. Finally, the combination N� 9 has a desirability

value equal to zero when the values of Fr, Fa and T are

the highest.

Figure 8 shows the desirability function versus the

normalized load capacity used to obtain the require-

ments with the optimal operating conditions based on

combinations from Table 11. In this case, the normal-

ized load capacity is defined as the sum of the

normalized values that correspond to Fa, Fr and T

[Eq. (26)].

LCnorm ¼ Fanorm þ Frnorm þ Tnorm ð26Þ

Each one of the normalized values of Fa, Fr and T are

calculated using Eq. (25). Figure 8 shows that the

optimal operating condition to obtain the requirements

of S1, S2,amax andDd (desirability equal to 1) is reached

for a reduced number of combinations (top line from

point A to point B). In this case, point A corresponds to

the minimum values of normalized load capacity

(P = 8694.88 N; Fr = 60,000 N; Fa = 0 N and T =

0 N mm), and point B corresponds to the maximum

values of normalized load capacity (P = 8666.75 N;

Fr = 62,500 N; Fa = -200 N and T = 52,500 N mm).

In contrast, the lower line (from point C to point D)

corresponds to the worst operating condition to obtain the

requirements (equal desirability to 0). Point C corre-

sponds to values of the minimum load capacity

(P = 8087.38 N; Fr = 96,000 N; Fa = -200 N and

T = 52,500 N mm), and point D corresponds to values

of the maximum load capacity (P = 8058.11 N; Fr =

100,000 N; Fa = -200 N and T = 100,000 N mm).

Table 12 Results of the operating condition necessary to reach the requirements of S1, S2, amax and Dd

N� P [N] Fr [N] Fa [N] T [N mm] S1 S2 amax Dd [mm] Des.

1 8666.75 6.25E ? 4 -200 52,500 28.52 38.92 -0.000628534 0.019687085 1

2 8451.01 100,000 -200 -32,500 20.00 20.79 -0.001013224 0.032969024 0.199

3 9905.42 60,000 600 -15,000 38.47 40.26 -0.000661533 0.020711334 0.936

4 8605.55 60,500 -200 10,0000 26.86 42.21 -0.000628141 0.019696796 1

5 8290.67 60,000 10 97,500 25.15 38.11 -0.000630001 0.020366156 0.980

6 8211.74 60,000 210 -7,500 29.40 30.30 -0.000629997 0.020371162 0.979

7 8058.65 60,000 -200 -22,500 30.19 32.20 -0.000529044 0.019684583 1

8 8780.61 60,000 -200 45,000 29.93 39.47 -0.000625727 0.018761519 1

9 8945.34 10,0000 500 10,0000 17.68 24.81 -0.001132020 0.034019252 0

Fig. 8 Desirability function versus the normalized load

capacity
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Fig. 9 Desirability

function versus a Fr, b Fa,

and c T

Fig. 10 Comparison of the

predictions of S1, S2, amax
and Dd using the RSM

method (cross) and FE

method (open circle)
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Finally, point E corresponds to the combination of the

maximum load capacity (P = 9999.87 N; Fr =

100,000 N; Fa = 600 N and T = 100,000 N mm),

which corresponds to a desirability value of 0.126.

Figure 9 shows the desirability function versus

several loads: Fr (Fig. 9a), Fa (Fig. 9b) and T (Fig. 9c).

The desirability function may achieve maximum

values equal to 1 in a reduced range of Fr (from point

F (60,000 N) to point G (62,500 N) in Fig. 9a), in a

wider range of Fa (from point H (-200 N) to point I

(70 N) in Fig. 9b), and in a wider range of T (from

point J (50,000 N) to point K (100,000 N) in Fig. 9c).

Finally, from these figures one can see that the

maximum values of the desirability function are

achieved only for values of Fr that are close to the

minimum of its range.

Finally, in this work, several more FE simulations

are conducted with some of the optimized operating

conditions in order to compare the FE results to the

predicted ones. Figure 10 provides, for some of the

optimal operating conditions shown in Table 12, a

comparison between the values of S1, S2, amax and Dd
obtained from the RSM method and the values

obtained from the FE model.

This figure clearly shows that the errors in the

prediction of S2 obtained with the RSM method

(MAPE equal to 5.45 %) with respect to the values

obtained from the FE model are higher than with the

other parameters (MAPE for S1 equal to 2.92 %, for

amax equal to 4.4 % and for Dd equal to 1.76 %).

4 Conclusion

It has been clearly demonstrated that a combination of

FEM and MRS optimization can be used to search for

the optimal operating condition in the design phase of

double-row TRB. The FEM has been used success-

fully to simulate the TRB and a good agreement

between simulations and experiments has been ob-

tained. Then, the validated FE models are used to

generate three of the most important parameters of the

TRB design, which was used subsequently to develop

quadratic regressions models. In order to check their

generalization ability, these quadratic regressions

models were tested with new operating condition.

Several error criteria were calculated. In addition, a

multi-response optimization study was conducted

using a desirability approach and based on the reduced

quadratic regressions models obtained. The optimiza-

tion results indicated that the optimal operating

conditions, which are P = 8666.75 N; Fr =

62,500 N; Fa = -200 N and T = 52,500 N mm,

correspond to the maximum load capacity for the

range of operating conditions preset. The study also

showed that, for the range of preset operating condi-

tions, the combination that makes the load capacity

maximum does not obtain the requirements for which

the TRB has been designed. Finally, from the results

obtained, it is concluded that combining FEM and

MRS optimization can be used successfully in the

design of any mechanical device.
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