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Abstract In this paper, the nonlinear size-dependent

static and dynamic behaviours of a microelectrome-

chanical system under an electric excitation are

investigated. A microcantilever is considered for the

modelling of the deformable electrode of the MEMS.

The governing equation of motion is derived based on

the modified couple stress theory (MCST), a non-

classical model capable of capturing small-size ef-

fects. With the aid of a high-dimensional Galerkin

scheme, the nonlinear partial differential equation

governing the motion of the deformable electrode is

converted into a reduced-order model of the system.

Then, the pseudo-arclength continuation technique is

used to solve the governing equations. In order to

investigate the static behaviour and static pull-in

instabilities, the system is excited only by the electro-

static actuation (i.e., a DC voltage). The results

obtained for the static pull-in instability predicted by

both the classical theory and MCST are compared. In

the second stage of analysis, the nonlinear dynamic

behaviour of the deformable electrode due to the AC

harmonic actuation is investigated around the deflect-

ed configuration, incorporating size dependence.

Keywords Microcantilever � Electrically actuated �
Pull-in instability � Modified couple stress theory �
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1 Introduction

The superior applications of microstructures in the

area of microelectromechanical systems (MEMS)

have inspired scientists to comprehend all mechanical

features associated with these mechanical systems

(Ghayesh et al. 2013c; Ghayesh and Farokhi 2013).

Among them, electrically actuated microstructures

have received a considerable attention in development

of MEMS. Electrically excited microstructures (e.g.,

the deformable electrode of a MEMS resonator)

undergo both DC and AC voltages in two steps; first,

under the electrostatic actuation (i.e., the DC voltage),

the microstructure (i.e., the deformable electrode in

this paper) is deflected to a new non-trivial equilibrium

configuration. Then, by applying the AC excitation, it

oscillates around the new non-trivial configuration.

One of the concerns associated with electrically

actuated microstructures is pull-in instability phe-

nomenon, i.e., a discontinuity related to the interaction

of the mechanical restoring force of the microstructure

and the electric forces; when the applied electric
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potential difference exceeds a critical value known as

the pull-in voltage, the microstructure fails to establish

a force balance between the elastic force and the

electric force. Hence, the microstructure is pulled into

the fixed electrode.

Another important mechanical aspect that might

considerably influence the mechanical response of a

microstructure is the small-size-dependent behaviour.

The small-size-dependent mechanical behaviour in

microstructures has been demonstrably approved by

experiments; the interested reader is referred to Lam

et al. (2003). Inasmuch as classical continuum

mechanics is not capable of capturing small-size

effects, developing size-dependent elasticity theories

is of great importance. In this regard, one can mention

the use of the following non-classical continuum

theories: couple stress elasticity; nonlocal elasticity;

the strain gradient elasticity (Gurtin and Murdoch

1978; Aifantis 1999). These non-classical theories

have been frequently employed in different studies to

investigate the mechanical characteristics of micro

and nanostructures (Ansari et al. 2011, 2012a, b, c;

Ghayesh et al. 2013c; Farokhi et al. 2013c). The

modified couple stress theory (MCST), proposed by

Yang et al. (2002), is a widely used non-classical

theory. They facilitated the application of the classical

couple stress theory by considering only one material

length-scale parameter together with two classical

material constants (Ghayesh et al. 2013d, 2014;

Ghayesh and Amabili 2014; Gholipour et al. 2014;

Farokhi and Ghayesh 2015; Ghayesh and Farokhi

2015).

There are several studies in the literature which

have investigated the pull-in instability of microbeams

(i.e., the simplified model of the deformable electrode

in a MEMS device). One can categorize these studies

into two groups; the first one investigated the mi-

crobeams actuated by a DC voltage, leading to static

pull-in behaviour; the second category considered both

the DC (static) and AC (dynamic) components of the

electric load, resulting in dynamic response of the

system around the deflected configuration.

Regarding the studies on the static pull-in be-

haviour of microbeams incorporating size-depen-

dence, one can mention, for example, Baghani

(2012), who studied the size-dependent response of

cantilever microbeams actuated electrostatically via

an analytical technique. Rokni et al. (2013) presented

an analytical closed-form solution for the size-

dependent static pull-in behaviour of cantilevered

and clamped–clamped microbeams, based on a non-

classical Euler–Bernoulli beam theory possessing one

material length-scale parameter.

Regarding the studies which considered both the

DC and AC components of the electric load, some

valuable papers can be found in the literature

(Ghayesh et al. 2013e), for instance, Younis and

Nayfeh (2003), who examined the response of a

resonant microbeam due to an electric actuation. In

another effort, Nayfeh and Younis (2005) analyzed the

dynamics of microbeams actuated electrically; as they

found, the dynamic pull-in occurs when the slope of

the frequency–response curve reaches infinity and the

Floquet multipliers approach unity; however, the

response of the system after infinite slope was not

the subject of their study. A nonlinear model was

developed by Mestrom et al. (2008) in order to

examine the dynamics of MEMS resonators and

capture the experimentally observed behavior. Ab-

del-Rahman and Nayfeh (2003) contributed to the

field by investigating the behaviour of a resonant

sensor under superharmonic and subharmonic ac-

tuations by incorporating the nonlinearities related to

fairly large displacements and electric forces. Younis

et al. (2003) presented an analytical approach and a

reduced-order model to examine the static and

dynamic behaviours of electrically actuated MEMS

devices. Jia et al. (2012) employed an analytical

technique to study the nonlinear dynamics of electri-

cally actuated micro-switches in the vicinity of a

resonance region. In another analytical study, Kim

et al. (2012) investigated the resonant behaviour of a

nonlinear cantilevered microbeam containing a tip

mass and undergoing an axial force and an electro-

static excitation. Meguid et al. (2013b) contributed to

the field by examining the nonlinear quasistatic and

dynamic behavior of a MEMS switch employing the

Euler–Bernoulli beam theory along with the modified

couple stress-based strain gradient theory; they dis-

cretized the equations employing the Galerkin scheme

and solved the resultant equations using Newmark’s

integration scheme. In another effort (Li et al. 2013a),

they performed a nonlinear analysis on thermally and

electrically actuated functionally graded material

microbeams; they examined the effect of the size of

the beam, the electrostatic gap, the temperature field

and material property on the pull-in voltage of the

microbeam. The studies were continued by Ouakad
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and Younis (2014), who examined the possibility of

using the dynamic snap-through motion of initially

curved MEMS resonators for filtering applications via

numerical and experimental investigations.

Both the mid-plane stretching and the electric load

cause nonlinear terms that can profoundly affect the

response of electrically actuated microbeams. As

shown by Younis (2011), in order to perform a static

analysis on a clamped-free system actuated electro-

statically, at least seven modes are required to

guarantee the convergence of the results. Accordingly,

for dynamic analysis, higher numbers of modes are

required, especially in the presence of modal interac-

tions; nevertheless, most of the above-mentioned

valuable studies are limited to analytical analysis with

a single-mode approximation.

As concluded from the previous paragraphs, in the

study of dynamic behaviour of MEMS resonators, the

effect of size seems to havebeenneglected. In this study,

a cantilevered deformable electrode (i.e., a microcan-

tilever) subjected to electrical loads is considered; the

MCST and the Euler–Bernoulli beam theory are

employed to derive the size-dependent nonlinear equa-

tion ofmotion.A 16-modeGalerkin scheme is then used

to discretize the equation of motion, leading to a high-

dimensional reduced-order model of the system. After-

wards, the pseudo-arclength continuation technique is

utilized to solve the discretized equations numerically.

In order to investigate the static pull-in instability, the

microcantilever subject to only the electrostatic ac-

tuation (DC voltage) is considered. The nonlinear

dynamic behaviour of the microcantilever due to both

the DC and AC actuations is then investigated for both

primary and superharmonic excitations.

2 Modified couple stress theory

Based on the MCST (Yang et al. 2002), the stored

strain energy in a continuum made of a linear elastic

material occupying region X can be written as a

function of the strain tensor and gradient of the

rotation vector as

U ¼ 1

2

Z
X

r:eþm:vð Þdv; ð1Þ

where r and e represent the stress and strain tensors,

respectively; v is the symmetric curvature tensor and

m stands for the deviatoric part of the couple stress

tensor defined for a linear isotropic elastic material

(Timoshenko and Goodier 1970).m and v are defined

as follows:

m ¼ 2ll2v ; ð2aÞ

v ¼ 1

2
rhþ rhð ÞT
� �

; with h ¼ 1

2
r� u; ð2bÞ

where h denotes the rotation vector and l is a material

length scale parameter whose value can be specified

through micro-torsion tests of slim cylinders or micro-

bending tests of thin beams. Also, k and l are Lame’s

constants defined as k ¼ Em
ð1þmÞð1�2mÞ and l ¼ E

2ð1þmÞ
(Reddy and Kim 2012), where m and E stand for

Poisson’s ratio and Young’s modulus, respectively;

u is the displacement vector.

3 Governing equation of motion

As shown in Fig. 1, a micro resonator is considered

consisting of a cantilevered deformable electrode (i.e.,

modelled here as an Euler–Bernoulli microbeam) with

length L, width b, and thickness h, separated by a

dielectric space with an initial gap d from the fixed

electrode. The microcantilever undergoes an electric

load VDC þ VAC cosðxtÞ, where VDC is the polariza-

tion voltage or static loading and VAC represents the

amplitude of the AC voltage—x shows the frequency

of the AC voltage. EI denotes the flexural stiffness and

EA represents the axial stiffness of the microcantilever.

Fig. 1 Schematic

representation of a

simplified microcantilever

under an electric actuation
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The equation governing the motion of the deformable

electrode is derived in the following.

Based on the Euler–Bernoulli beam theory, the

components of the displacement vector (u) are given

by (Ghayesh et al. 2011, 2012b)

ux ¼ �z
owðx; tÞ

ox
; uy ¼ 0; uz ¼ wðx; tÞ: ð3Þ

where w(x, t) represent the transverse displacement of

the centerline of the deformable electrode.

Inserting Eq. (3) into Eqs. (2a, 2b), one can obtain

the non-zero components of the symmetric curvature

tensor and hence the couple stress tensor as

vxy ¼ vyx ¼ � 1

2

o2w

ox2
; ð4aÞ

mxy ¼ myx ¼ �ll2
o2w

ox2
: ð4bÞ

The nonlinear strain–displacement relation for an

Euler–Bernoulli microbeam can be expressed as

(Asghari et al. 2012; Farokhi et al. 2013a; Kazemirad

et al. 2013; Ghayesh and Amabili 2012a, 2013c;

Ghayesh 2012d)

exx ¼
1

2

ow

ox

� �2

�z
o2w

ox2
: ð5Þ

Accordingly, from Eqs. (1–5), one can formulate

the total strain energy of the system as

U ¼ 1

2

Z L

0

EI þ lAl2
� � o2w

ox2

� �2

dx

þ 1

2
EA

Z L

0

1

2

ow

ox

� �2
 !2

dx: ð6Þ

The kinetic energy of the system can be expressed

as (Ghayesh and Amabili 2013d; Ghayesh 2010)

T ¼ 1

2
qA
Z L

0

ow

ot

� �2

dx: ð7Þ

The variation of the work done by the electric force

and damping are given, respectively, by

dWD ¼ �cd

Z L

0

ow

ot
dw

� �
dx; ð8aÞ

dWF ¼
Z L

0

q x; tð Þ dw dx; ð8bÞ

where cd denotes the coefficient of the viscous

damping; the electrical force exerted on the de-

formable electrode is given by

q x; tð Þ ¼ eb VDC þ VAC cos xtð Þ½ �2

2 d � wð Þ2
; ð9Þ

in which e is the dielectric constant of the gap medium.

Inserting Eqs. (6–9) into Hamilton’s principle, the

equation of motion can be obtained as

qA
o2w

ot2
þ cd

ow

ot
þ EI þ lAl2
� � o4w

ox4

¼ 3

2
EA

o2w

ox2
ow

ox

� �2

þ eb VDC þ VAC cos xtð Þ½ �2

2 d � wð Þ2
;

ð10Þ

where the corresponding boundary conditions for the

clamped-free supports are

wjx¼0¼
ow

ox

����
x¼0

¼ 0;
o2w

ox2

����
x¼L

¼ o3w

ox3

����
x¼L

¼ 0: ð11Þ

Introducing the following non-dimensional

parameters:

x� ¼ x

L
; w� ¼ w

d
; a1 ¼ 6

d

h

� �2

;

t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
; a2 ¼

6eL4

Eh3d3
;

g ¼ 12
l
E

l

h

� �2

; X ¼ x

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r
;

c�d ¼
cdL

4

EI

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
;

ð12Þ

one can express the size-dependent equation govern-

ing the transverse motion of the electrically actuated

microbeam in the non-dimensional form as

o2w

ot2
þ cd

ow

ot
þ 1þ gð Þ o

4w

ox4
� 3a1

o2w

ox2
ow

ox

� �2

� a2 VDC þ VAC cosðXtÞ½ �2

ð1� wÞ2
¼ 0:

ð13Þ

For the sake of accuracy the term 1=ð1� wÞ2 in

Eq. (13) is not approximated by the Taylor expansion;

instead, we consider this term as it is in the numerical

simulations to ensure accurate results.
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4 Solution procedure

Equation (13) describes a continuous system with

infinite degrees of freedom. In order to discretize the

system, a high-dimensional Galerkin scheme is used to

achieve the reduced-order model of the system with

finite degrees of freedom. Based on this scheme, the

solution of Eq. (13) can be approximated by the

following series expansion (Ghayesh 2012a, b, c;

Ghayesh et al. 2012a, 2013b)

wðx; tÞ ¼
XN
r¼1

/rðxÞqrðtÞ; ð14Þ

in which qrðtÞ denotes the rth generalized coordinate

for the transverse displacement and /rðxÞ shows the
rth mode shape for the transverse motion of a linear

cantilever which satisfies the boundary conditions

(Rao 2007). Inserting the expression given in Eq. (14)

into Eq. (13) and applying the Galerkin method, one

can obtain the discretized model of the system as

XN
j¼1

Z 1

0

/i/jdx

� �
€qjþ 1þgð Þ

XN
j¼1

Z 1

0

/i/
0000
j dx

� �
qj

�3a1
XN
j¼1

XN
k¼1

XN
l¼1

Z 1

0

/i/
00
j /

0
k/

0
ldx


 �
qjqkql

þ cd
XN
j¼1

Z 1

0

/i/jdx

� �
_qj�a2 VDCþVACcos Xtð Þ½ �2

�
Z 1

0

1�
XN
j¼1

/jqj

 !�2

/i

2
4

3
5

dx¼0; i¼1;2;...;N: ð15Þ

The overdot and prime notations denote the differen-

tiations with respect to the dimensionless time and

axial coordinate, respectively. Equation (15) repre-

sents a set of N second-order nonlinear ordinary

differential equations (ODEs); this set is transformed

into a new set of 2N first-order nonlinear ODEs via a

change of variables (Farokhi et al. 2013b; Ghayesh

et al. 2013a; Ghayesh and Amabili 2012b, 2013a, b). It

should be noted that in case of a microcantilever

resonator, at least seven modes are required to be able

to obtain reliable results. In this study, N = 16 is

selected; this high number of modes in the Galerkin

scheme ensures convergence and accuracy—the

analysis is numerically expensive and the computer

codes should be well-optimized for accuracy and run-

time. The pseudo-arclength method (Doedel et al.

2007) is employed to obtain the solution of the system.

5 Results and discussion

5.1 Linear analysis

In this section, the first linear natural frequency of

the deformable electrode, i.e., x1, is obtained as a

function of the DC voltage for different values of

the dimensionless length-scale parameter g. In

particular, as shown in Fig. 2, x1 is obtained for

g = 0, 0.5, and 0.75. It is seen that, as the DC

voltage is increased, the natural frequency of the

system decreases for different values of g until

reaching the zero value at a critical DC voltage,

known as the pull-in voltage. The figure shows that

the qualitative response trend is similar for different

values of g; nevertheless, for higher values of g, the
natural frequency of the system reaches the zero

value at higher DC voltages. It is worthwhile noting

that for VDC far below the critical value, the natural

frequency decreases gradually with increasing VDC;

however, as VDC approaches the pull-in voltage,

there is a sudden decrease in the natural frequency

of the system.

VDC

N
at
ur
al
F
re
qu
en
cy

(ω
1)

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

η=0.00

η=0.50

η=0.75

Fig. 2 The variation of the first linear natural frequency of the

system, i.e., x1, as a function of VDC, for different values of g
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5.2 Nonlinear static analysis

In the absence of the AC voltage, i.e., VAC ¼ 0, the

deflected configuration of the deformable electrode

due to the electrostatic actuation is shown in Fig. 3;

the DC voltage is varied in this figure and the

corresponding amplitude of the deformable electrode

is plotted. The figure is depicted for a system with the

following parameters: cd = 0.0239, a1 = 3.7,

a2 = 3.9, and g = 0.75. The solution curves include

a stable branch indicated with solid lines and an

unstable branch shown by dashed lines. With an

increase in the DC voltage, the amplitude of the

transverse deformation grows until the point where a

pull-in instability occurs and the slope of the solution

curve tends to infinity; the DC voltage corresponding

to this point is known as the static pull-in voltage; i.e.,

the maximum DC voltage that a system can withstand

to avoid collapse, which for the current system is

VDC = 0.8303. The amplitude of the transverse

deformation at the static pull-in voltage is roughly

wmax = 0.4 for the free end (tip) of the microcan-

tilever. The amplitude of the unstable solution branch

corresponding to VDC ¼ 0 is equal to 1.0 for the tip;

this value is more than two times the amplitude at the

static pull-in voltage. Accordingly, the unstable and

stable branches are not symmetric.

Figure 4 shows the nonlinear static deflection of

the deformable electrode undergoing electrostatic

actuation predicted by both the modified couple

stress and classical theories. The following pa-

rameters are selected for this figure: cd = 0.0239,

a1 = 3.7, and a2 = 3.9; g = 0.75 for the MCST and

g = 0.0 for the classical continuum mechanics

theory. The figure clearly highlights that for a

certain DC voltage, the classical theory overesti-

mates the stable amplitude of the transverse dis-

placement, especially at higher DC voltages until

the static pull-in voltage is hit. In other words, the

size-dependent behaviour gets more prominent at

higher voltages. Also, the static pull-in voltage is

significantly underestimated by the classical con-

tinuum mechanics theory.

Figure 5 shows how the variation of a1 affects the
amplitude of the transverse deflection (Fig. 5a) and the

first generalized coordinate (Fig. 5b) when the DC

voltage is varied. As seen in the figure, the system with

a lower a1 resists a higher DC voltage and gets pulled-

in at higher voltages. Additionally, the amplitude

corresponding to the static pull-in voltage decreases

with increasing a1.
The effect of a2 on the static deflection of the

deformable electrode is shown in Fig. 6. As seen in

this figure, for a lower value of a2, the system displays

a lower stable amplitude and the pull-in instability is

delayed to higher voltages. Unlike the effect of a1,
variations in a2 do not affect the amplitude corre-

sponding to the static pull-in voltage.

Fig. 3 The static deflection of the deformable electrode

actuated by an electrostatic excitation: a amplitude of the

transverse displacement at the tip (x = 1.0); b amplitude of the

first generalized coordinate. Solid and dashed lines represent the

stable and unstable solutions; cd = 0.0239, a1 = 3.7, a2 = 3.9,

and g = 0.75
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5.3 Nonlinear size-dependent resonant behaviour

In order to investigate the nonlinear size-dependent

dynamical behaviour of the deformable electrode (i.e.,

the microcantilever), first, it is actuated by a certain DC

voltage and the corresponding non-trivial deflected

configuration is obtained numerically. Then, the oscil-

lations over the deflected state, due to the AC voltage,

are obtained numerically. The size-dependent resonant

behaviour of the system is studied under primary and

superharmonic excitations and results are presented in

the form of AC frequency-amplitudes and AC voltage-

amplitudes. The numerical calculations are performed

for a system with the following parameters: cd =

0.0239, a1 = 3.7, a2 = 3.9, and g = 0.75. Moreover,

the first linear natural frequency of the microbeam is

obtained, by means of an eigenvalue analysis, as

x1 = 4.4884.

5.3.1 Primary excitation

The size-dependent resonant behaviour of the system

under the primary actuation is discussed in this

subsection. According to the definition of the primary

Fig. 5 The effect of a1 (denoted on the curves) on the static

deflection of the deformable electrode actuated by an electro-

static excitation: a amplitude of the transverse displacement at

the tip (x = 1.0); b amplitude of the first generalized coordinate.

cd = 0.0239, a2 = 3.9, and g = 0.75

Fig. 4 The static deflection of the deformable electrode

actuated by an electrostatic excitation predicted by both the

MCST and classical theories: a amplitude of the transverse

displacement at the tip (x = 1.0); b amplitude of the first

generalized coordinate. cd = 0.0239, a1 = 3.7, and a2 = 3.9;

g = 0.75 for the MCST and g = 0.0 for the classical theory
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resonance, the frequency of the AC voltage, X, is
varied around the first linear natural frequency of the

deformable electrode, x1.

Shown in Fig. 7 are the AC actuation frequency-

amplitude curves of the deformable electrode under an

electric actuation with VDC = 0.4006 and VDC =

0.0080. The figure shows the maximum amplitude of

the transverse displacement at the tip (x = 1.0),

maximum amplitude of the q1 motion, and the minimum

amplitude of the q1 motion, in sub-figures (a), (b) and (c),

respectively. At first glance, it is seen that the system

displays a softening-type nonlinear behaviour as opposed

to the case of a clamped–clamped microbeam where the

response is a hardening type (Nayfeh and Younis 2005);

as a result, the response of the system depends on both

current and history of the input (hysteresis). In particular,

by increasing the excitation frequency fromX = 0.9 x1,

Fig. 6 The effect of a2 (denoted on the curves) on the static

deflection of the deformable electrode actuated by an electro-

static excitation: a amplitude of the transverse displacement at

the tip (x = 1.0); b amplitude of the first generalized coordinate.

cd = 0.0239, a1 = 3.7, and g = 0.75
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the maximum amplitude of the oscillations grows until

reaching point A. At this point, corresponding to

X = 0.9882 x1, an instability occurs at via a limit

point bifurcation, causing the system to jump to a new

state, i.e., the upper stable solution branch. It is seen

that the response amplitude decreases thereafter by

increasing the excitation frequency. Another scenario

is observed for the case when the excitation frequency

is decreased from X = 1.05 x1. In this case, decreas-

ing the frequency ratio causes the maximum amplitude

of the transverse deflection to increase. This growth

continues until point B (X = 0.9400 x1) is hit, where

the system loses stability once again via the second

bFig. 7 AC frequency–response curves of the deformable

electrode near the primary resonance over the deflected

configuration: a maximum amplitude of the transverse dis-

placement at the tip (x = 1.0); b, c maximum and minimum

amplitudes of the first generalized coordinate, respectively.

Solid and dashed lines represent the stable and unstable

solutions, respectively; cd = 0.0239, a1 = 3.7, a2 = 3.9,

g = 0.75, VDC = 0.4006, and VAC = 0.0080
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Fig. 8 Periodic motion for

the microcantilever of Fig. 7

at X = 0.9601 x1: a, b time

history and phase-plane

portrait of the tip of the

microcantilever (x = 1.0),

respectively; c, d time

history and phase-plane

portrait of the q1 motion,

respectively; e, f time

history and phase-plane

portrait of the q2 motion,

respectively
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limit point bifurcation, and jumps to the lower-

amplitude stable branch. The details of the dynamic

response of the system at X = 0.9610 x1 are repre-

sented in Fig. 8, through time histories and phase-

plane portraits of the tip of the microbeam as well as

the q1 and q3 generalized coordinates.

The AC voltage-response curves of the system,

when the frequency of the AC voltage is set near the

primary resonance, are depicted in Fig. 9. The

numerical calculations are performed for a system

with VDC = 0.4006 and X = 0.95 x1. As seen in

Fig. 9a, with increasing AC voltage, the maximum

amplitude of system increases from 0.05 at VAC = 0.0

to around 0.3 at point A corresponding to

VAC = 0.0571. At this point, the response becomes

unstable, due to occurrence of a limit point bifurcation,

causing the system to jump to the larger-amplitude

stable branch, where the amplitude is increased with

increasing AC voltage. A decrease in the AC voltage

from 0.3 leads to a gradual decrease in the maximum

amplitude of the system. This trend continues until

point B (VAC = 0.0076), where through a limit point

bifurcation, the system jumps down to the lower-

amplitude stable solution branch; the maximum am-

plitude declines thereafter with decreasing VAC.

5.3.2 Superharmonic excitation

The numerical results obtained for a superharmonical-

ly excited deformable electrode (i.e., microcantilever)

are discussed in this subsection, while the frequency of

the excitation varies in the neighbourhood of the half

of the first linear natural frequency of the transverse

motion (0.5 x1).

The AC frequency–response curves of the system

excited superharmonically are depicted in Fig. 10.
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bFig. 9 VAC-response curves of the deformable electrode when

the frequency of the AC voltage is set near the primary

resonance (X = 0.95 x1): a maximum amplitude of the

transverse displacement at the tip (x = 1.0); b, c maximum

and minimum amplitudes of the first generalized coordinate,

respectively. Solid and dashed lines represent the stable and

unstable solutions, respectively; cd = 0.0239, a1 = 3.7,

a2 = 3.9, g = 0.75, and VDC = 0.4006
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The numerical results are performed for the system

under VDC = 0.4006 and VAC = 0.0768. A similar

qualitative trend as for the primary excitation can be

observed in this figure. The system displays softening

behaviour with two stable solution branches and an

unstable one. As the frequency increases, the max-

imum amplitude of the tip increases accordingly until

point A (X = 0.9894(0.5 x1)) is reached where the

slope of the response curve approaches infinity. In

other words, a limit point bifurcation occurs at this

point which renders the system unstable and causes it

to jump to the upper stable solution branch; the

maximum amplitude then decreases with further

increase in the excitation frequency. When the

frequency is decreased from X = 1.0200(0.5 x1),

the maximum amplitude of the tip ascends reaching

the top at point B X = 0.9737(0.5 x1), where a limit

point bifurcation occurs and the system jumps to the

lower-amplitude stable solution branch; the amplitude

declines steadily thereafter with decreasing frequency.

Figure 11 depicts the VAC-response curves of the

deformable electrode under the superharmonic excitation

with X = 0.95 9 0.5 x1. According to subfigure (a),

with an increase in VAC, the transverse amplitude of the

tip of the deformable electrode grows until reaching point

A (VAC = 0.1941), where the slope of the response tends

to infinity and a limit point bifurcation occurs. At this

point, the maximum amplitude jumps to an upper stable

solutionbranch; beyond that, the amplitudegrowsmildly.

Withadecrease inVAC from0.3, themaximumamplitude

declines and follows the upper stable solution branch

until point B VAC = 0.0838 is hit. At this point, the

system jumps to the lower stable solution branch; with

further reduction in VAC, the maximum amplitude

diminishes steadily.

The VAC-response curves of the deformable elec-

trode excited superharmonically with X = 1.05 9

0.5 x1 are plotted in Fig. 12; the X/0.5 x1 ratio for

this case is higher than unity, as opposed to the case of

Fig. 11. It is clearly seen that the maximum amplitude

of the deformable electrode increases with increasing

VAC. The response curves are seen to follow a stable

solution branch without any bifurcations for the ranges

studied here. Comparing Figs. 11 and 12 reveals that,
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bFig. 10 AC frequency–response curves of the deformable

electrode at the superharmonic resonance: a maximum ampli-

tude of the transverse displacement at the tip (x = 1.0); b,
c maximum and minimum amplitudes of the first generalized

coordinate, respectively. Solid and dashed lines represent the

stable and unstable solutions, respectively; cd = 0.0239,

a1 = 3.7, a2 = 3.9, g = 0.75, VDC = 0.4006, and VAC =

0.0768
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depending on the value of the excitation frequency of

superharmonically excited microcantilever, the VAC-

response curves show completely different qualitative

behaviour.

6 Conclusions

A comprehensive study has been performed on the

nonlinear size-dependent static and dynamic be-

haviours of an electrically actuated microcantilever

of a MEMS resonator. The nonlinear partial differen-

tial equation of motion was discretized into a set of

nonlinear ordinary differential equations by means of

a high-dimensional Galerkin scheme. The resultant set

of equations was solved numerically via the pseudo-

arclength continuation technique, for both static and

dynamic cases.

The most important outcomes are listed as follows:

(1) for the cantilevered deformable electrode under

consideration, the pull-in static voltage is obtained as

VDC = 0.8303 with the approximate corresponding

amplitude of 0.4. Moreover, it was seen that the stable

and unstable solutions of the nonlinear static response

of the system are not symmetric counterparts; (2) the

classical theory overestimates the amplitude of the

transverse displacement and predicts a lower static

pull-in voltage; (3) the static pull-in instability occurs

at higher DC voltages for a deformable electrode with

lower values of a1 and a2 parameters; (4) examining

the AC frequency–response curves of the deformable

electrode under primary excitation revealed that the

system exhibits a softening-type nonlinear behaviour;

(5) the AC frequency–response trend for the case of

superharmonic excitation was similar to that of the

case of primary resonance; (6) the VAC-response

curves for a superharmonically excited microcan-

tilever showed that the system displays two limit point
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bifurcations for the excitation frequencies lower than

unity, while showing no limit point bifurcations for

those higher than unity, for the ranges studied here.
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