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Abstract This research deals with the dynamic

instability analysis of double-walled carbon nanotubes

(DWCNTs) conveying pulsating fluid under 2D mag-

netic fields based on the sinusoidal shear deformation

beam theory (SSDBT). In order to present a realistic

model, the material properties of DWCNTs are

assumed viscoelastic using Kelvin–Voigt model.

Considering the strain gradient theory for small scale

effects, a new formulation of the SSDBT is developed

through the Gurtin–Murdoch elasticity theory in

which the effects of surface stress are incorporated.

The surrounding elastic medium is described by a

visco-Pasternak foundation model, which accounts for

normal, transverse shear and damping loads. The van

der Waals interactions between the adjacent walls of

the nanotubes are taken into account. The size

dependent motion equations and corresponding

boundary conditions are derived based on the Ham-

ilton’s principle. The differential quadrature method in

conjunction with Bolotin method is applied for

obtaining the dynamic instability region. The detailed

parametric study is conducted, focusing on the com-

bined effects of the nonlocal parameter, magnetic field,

visco-Pasternak foundation, Knudsen number, surface

stress and fluid velocity on the dynamic instability of

DWCNTs. The results depict that the surface stress

effects on the dynamic instability of visco-DWCNTs

are very significant. Numerical results of the present

study are compared with available exact solutions in

the literature. The results presented in this paper would

be helpful in design and manufacturing of nano/micro

mechanical systems in advanced biomechanics appli-

cations with magnetic field as a parametric controller.

Keywords Dynamic instability � Pulsating fluid �
SSDBT � Bolotin method � Strain gradient theory

1 Introduction

Nanotechnology is one of the most important and

development frontiers in the modern science. It was

originally used to define any work done on the

molecular scale, or one billionth of a meter (nm or

10-9 m). Carbon nanotubes (CNTs) with nano scale

dimension have been well-known over the past

15 years. It was first discovered by Iijima (1991),

when he was studying the synthesis of fullerenes using

electric arc discharge technique. Some unrivaled

properties of CNTs are, chemical and thermal stabil-

ity, extremely high tensile strength and elasticity, and
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high conductivity. And some amazingly characteris-

tics of CNTs are, a SWCNT can be up to 100 times

stronger than steel with the same weight, the Young’s

Modulus of SWCNT is up to 1TPa, which is 5 times

greater than steel (230 GPa) while the density is only

1.3 g/cm3 and the thermal conductivity (2,000 W/

m K) is five times greater than that of copper (400 W/

m K) (Terrones 2003). These over mentioned proper-

ties has made CNTs one of the best candidate materials

for uses in various industrial applications, in stance,

sensors, actuators, fluid storage, composite materials,

coatings and films, microelectronics, biotechnology,

battery, solar cell and water filter (Lim et al. 2010).

At nanometer length scale, the properties of a

material such as its melting point, its electronic and

optical properties will change. Sometimes, the classi-

cal theory cannot describe some phenomena of the

material at atomic level. However, the change of these

properties offers new opportunities for technological

and commercial development and applications. There

are two types of theories applied to calculate the stress

in materials, one of them supposes that the stress at a

defined point depends on the strain at the same point so

it is named local elasticity theory but another one is

assumes that the stress at a point is a function of strains

at all points in the continuum therefore it is called

nonlocal elasticity theory. Hitherto some different

nonlocal elasticity theories are defined such as,

Eringen, couple stress, modified couple stress and

strain gradient. The Eringen’s nonlocal elasticity

theory which was initiated by Eringen (1983), has

been widely utilized to study the mechanical manners

in the micron and nano scale structures. Strain gradient

theory was proposed by Mindlin (1965) and improved

by Lam et al. (2003). This theory includes three

additional material length scale parameters for linear

elastic isotropic materials. The MSGT has been used

by many researchers in order to analyze size-depen-

dent structures. For instance, Akgöz and Civalek

(2013a, b) studied free vibration analysis of axially

functionally graded tapered Bernoulli–Euler micro-

beams based on the modified couple stress theory.

Ghorbanpour Arani et al. (2012) investigated nonlocal

wave propagation in an embedded double-walled boron

nitride nanotubes (DWBNNT) conveying fluid via

strain gradient theory. Akgöz and Civalek (2013a, b)

presented a size-dependent shear deformation beam

model based on the strain gradient elasticity theory.

Bending and vibration of functionally graded sinusoidal

micro beams based on the strain gradient elasticity

theorywere carried out byLei et al. (2013a). Analysis of

micro-sized beams for various boundary conditions

based on the strain gradient elasticity theory was

investigated by Akgöz and Civalek (2012). They

demonstrated that the bending values obtained by these

higher-order elasticity theories have a significant

difference with those calculated by the classical elas-

ticity theory.

For the time being, the mechanical behaviors of

beams are being studied by applying various beam

theories. Euler–Bernoulli theory (EBT) which applied

for slender beams is one of these theories but this is

utilized in situation that the shear deformation effect is

negligible. However, effects of shear deformation and

rotary inertia become more prominent and cannot be

ignored for moderately thick beams and vibration

responses on higher modes. For achieving the higher

accuracy in dynamic behaviors of beam structures,

several higher-order shear deformation theories are

such as parabolic (third-order) beam theory of Levin-

son (1981) and Reddy (1984), trigonometric beam

theory of Touratier (1991), hyperbolic beam theory of

Soldatos (1992), exponential beam theory of Karama

et al. (2003), and a general exponential beam theory of

Aydogdu (2009). Li et al. (2014) performed the

comparison of various shear deformation theories for

free vibration of laminated composite beams with

general lay-ups. Thai and Vo (2012) carried out the a

nonlocal SSDBT with application to bending, buck-

ling, and vibration of nano beams.

Dynamic behavior of nano-tubes conveying fluid is

one of the great important problem with the most

applications in targeted drug delivery systems. Hence,

there are many remarkable investigations on the

vibration and dynamic behaviors of nano-tubes con-

veying fluid. Khodami Maraghi et al. (2013) presented

the nonlocal vibration and instability of embedded

DWBNNT conveying viscose fluid. They indicated

that increasing flow velocity decreases system stabil-

ity.Wang (2011) carried out a modified nonlocal beam

model for vibration and stability of nanotubes con-

veying fluid. Kiani (2013) studied the effects of small-

scale parameter, inclination angle, speed and density

of the fluid flow on the maximum dynamic amplitude

factors of longitudinal and transverse displacements.

Recently, it is shown by Kaviani and Mirdamadi

(2013) that considering the small-size effects of the

flow field on the dynamic characteristics of CNTs
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conveying fluid is essential. They investigated wave

propagation analysis of CNTs conveying fluid includ-

ing slip boundary condition and strain/inertial gradient

theory.Mirramezani et al. (2013) showed that based on

their result, they could have developed an innovative

model for one dimensional coupled vibrations of CNTs

conveying fluid using slip velocity of the fluid flow on

the CNT walls as well as utilizing size-dependent

continuum theories to consider the size effects of nano-

flow and nano-structure. However, it should be noted

that all of the research mentioned above, have consid-

ered constant flow velocity. Actually, in many NEMS/

MEMS, the flow inside the pipes and tubes becomes

pulsative type due to power systems and alternative

pressurized devices. Hence, dynamic analysis of CNTs

conveying pulsating fluid is very significant and

essential. The stability analysis of a SWCNT convey-

ing pulsating and viscous fluidwith nonlocal effect was

investigated by Liang and Su (2013). They showed that

decrease of nonlocal parameter and increase of viscous

parameter both increases the fundamental frequency

and critical flow velocity. Ghorbanpour Arani et al.

(2014b) carried out the nonlocal surface piezoelasticity

theory for dynamic stability of DWBNNTs conveying

viscose fluid based on different theories. In this study

DIR of EBT, Timoshenko beam theory (TBT) and

cylindrical shell theory are compared to each other.

Nonlinear dynamic instability of DWCNT under

periodic excitation is reported by Fu et al. (2009)

based on EBB theory. Results show that DWCNT can

be considered as single column when the vdW forces

are sufficiently strong, also the area of DIR could be

reduced by stiffness medium and increment of the

aspect ratio of nanotubes. Ghorbanpour Arani et al.

(2013) presented the nonlocal TBT for dynamic

stability of DWBNNTs conveying nano-flow.

In macro structures, the surface free energy can be

neglected in comparison with the bulk energy while in

nano scale structures, the surface stress should be

taken into account due to the high surface to volume

ratio. Malekzadeh and Shojaee (2013) presented the

surface and nonlocal effects on the nonlinear free

vibration of non-uniform nano beams. They found that

increase of the amplitude ratio causes reduction of the

surface effects. Gheshlaghi and Hasheminejad (2011)

investigated the surface effects on nonlinear free

vibration of nano beams.

In some applications of nano-engineering, the

investigation on dynamic characteristic of CNTs under

magnetic field as a parametric controller is useful.

Ghorbanpour Arani et al. (2014a) presented that the

magnetic field is fundamentally an effective factor on

increasing resonance frequency leading to stability of

system.Wang et al. (2010) carried out the influences of

longitudinal magnetic field on wave propagation in

CNTs embedded in elastic matrix. The results obtained

show that wave propagation in CNTs embedded in

elastic matrix under longitudinal magnetic field

appears in critical frequencies at which the velocity

of wave propagation drops dramatically. Kiani (2014)

investigated the vibration and instability of a SWCNT

in a three-dimensional magnetic field. The obtained

results reveal that the critical transverse magnetic field

increases with the longitudinally induced magnetic

field. Further, its value decreases as the effect of the

small-scale parameter increases. He studied the effects

of the longitudinal and transvers magnetic fields on the

longitudinal and flexural frequencies.

Viscoelasticity is the property of materials that

exhibit both viscous and elastic characteristics when

undergoing deformation. Viscous materials resist

shear flow and strain linearly with time when a stress

is applied. Elastic materials strain when stretched and

quickly return to their original state once the stress is

removed. Lei et al. (2013c) presented the Dynamic

characteristics of damped viscoelastic nonlocal EBT.

Ghorbanpour Arani and Amir (2013) studied the

electro-thermal vibration of visco-elastically coupled

BNNT systems conveying fluid embedded on elastic

foundation via strain gradient theory. Vibration of

nonlocal Kelvin–Voigt viscoelastic damped Timo-

shenko beams is carried out by Lei et al. (2013b).

However, to date, no report has been found in the

literature on dynamic stability of viscoelastic

DWCNTs conveying pulsating fluid based on surface

sinusoidal strain gradient theory. Motivated by these

considerations, in order to improve optimum design of

nanostructures, we aim to present a realistic model for

dynamic instability of DWCNTs resting on visco-

Pasternak medium by considering the viscoelastic

property of the nanotubes. DWCNTs are placed in 2D

magnetic field and modeled by SSDBT as well as

strain gradient theory. Visco- DWCNTs are conveying

pulsating fluid in which the effect of slip boundary

condition is considered using Knudsen number correct

factor. The Gurtin–Murdoch elasticity theory is

applied for incorporation the surface stress effects.

DQM is used in order to calculate the DIR of visco-
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DWCNTs induced by pulsating fluid. To confirm the

validity of the present research, the results are

compared with those reported in the literature. The

effects of the nonlocal parameter, magnetic field,

visco-Pasternak foundation, Knudsen number, surface

stress and fluid velocity on the dynamic instability of

visco-DWCNTs are elucidated.

2 Strain gradient elasticity theory

Unlike the modified couple stress theory of Yang et al.

(2002) the strain gradient elasticity theory proposed by

Lam et al. (2003) introduces additional dilatation

gradient tensor and the deviatoric stretch gradient

tensor in addition to the symmetric rotation gradient

tensor. The strain energy U in a deformed isotropic

linear elastic material occupying region X is given by

Lei et al. (2013a), Ghorbanpour Arani et al. (2012):

U ¼ 1

2

Z
X

rijeij þ pici þ sð1Þijk g
ð1Þ
ijk þ mijvij

� �
dV ; ð1Þ

where eij, ci, g
ð1Þ
ijk , vij represent the strain, the dilatation

gradient, the deviatoric stretch gradient and the

symmetric rotation gradient tensors, respectively,

which are defined by:

eij ¼
1

2

ouj

oxi
þ oui

oxj

� �
; ð2Þ

ci ¼
oemm
oxi

; ð3Þ

gð1Þijk ¼ 1

3

oejk
oxi

þ oeki
oxj

þ oeij
oxk

� �

� 1

15
dij

oemm
oxk

þ 2
oemk
oxm

� ��

þ djk
oemm
oxi

þ 2
oemi
oxm

� �

þ dki
oemm
oxj

þ 2
oemj
oxm

� ��
;

ð4Þ

vij ¼
1

2
eipq

oeqj
oxp

þ ejpq
oeqi
oxp

� �
; ð5Þ

where ui, dij and eijk are the displacement vector, the

knocker delta and the alternate tensor, respectively.

The classical stress tensor, rij, the higher-order

stresses, pi, s
ð1Þ
ijk and mij are given by:

rij ¼ Edijemm þ 2G eij �
1

3
emmdij

� �
; ð6Þ

pi ¼ 2l20Gci; ð7Þ

sð1Þijk ¼ 2l21Gg
ð1Þ
ijk ; ð8Þ

mij ¼ 2l22Gvij; ð9Þ

where E and G are the bulk modulus and the shear

modulus, respectively, (l0, l1, l2) are independent

material length scale parameters.

2.1 Surface effect theory

In nano structure such as nanotubes and nano plates,

the ratio of surface to volume is high, therefore the

surface effect should be considered. The classical

constitutive relation of the surface can be calculated as

given by Gurtin and Murdoch (1975, 1978). Hence the

classical stress tensor related to the surface, rs, the

higher-order stresses of surface, psi , s
sð1Þ
ijk andms

ij can be

expressed as Malekzadeh and Shojaee (2013):

rs ¼ ss þ Ese
s
x; ð10Þ

psi ¼ 2l20Gsc
s
i ; ð11Þ

ssð1Þijk ¼ 2l21Gsg
sð1Þ
ijk ; ð12Þ

ms
ij ¼ 2l22Gsv

s
ij; ð13Þ

where ss, Es and Gs, the residual surface tension in the

axial direction, the surface elastic modulus and surface

shear modulus.

2.2 Viscoelastic SSDBT

A schematic of visco-DWCNT conveying pulsating

fluid embedded in visco Pasternak foundation under

2D magnetic field is shown in Fig. 1. The displace-

ment fields of DWCNTs based on SSDBT can be

described as Simsek and Reddy (2013):

uxðx; z; tÞ ¼ uðx; tÞ � z
owðx; tÞ

ox
þ UðzÞuðx; tÞ; ð14aÞ

uyðx; z; tÞ ¼ 0; ð14bÞ
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uzðx; z; tÞ ¼ wðx; tÞ; ð14cÞ

uðx; tÞ ¼ owðx; tÞ
ox

� /ðx; tÞ; ð14dÞ

UðzÞ ¼ h

p
sin

pz
h

� �
; ð14eÞ

where u and w are the axial and the transverse

displacement of any point on the neutral axis, t denotes

time u and / are the transverse shear strain of any

point on the neutral axis and the total bending rotation

of the cross-sections at any point on the neutral axis.

UðzÞ is a function of z, that characterizes the transverse
shear and stress distribution along the thickness of the

beam.

All materials exhibit some viscoelastic response.

According to Kelvin–Voigt (Lei et al. 2013b) at real

life, nano structure mechanical properties depend on

the time variation. This model represents, as the stress

is released, the material gradually relaxes to its

undeformed state. By considering this model, Young’s

modulus, E, shear modulus, G, Young’s modulus of

surface, Es and shear modulus of surface, Gs, are as

follows:

E� ¼ E 1þ g
o

ot

� �
; ð15aÞ

E�
s ¼ Es 1þ g

o

ot

� �
; ð15bÞ

G� ¼ G 1þ g
o

ot

� �
; ð15cÞ

G�
s ¼ Gs 1þ g

o

ot

� �
: ð15dÞ

Fig. 1 a Schematic of DWCNT conveying pulsating fluid embedded in visco Pasternak foundation under 2D magnetic field. b Cross

section of the nanotube
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3 Formulation

The energy method is applied to derive equations of

motion, in this study. Total potential energy P, is

given by:

P ¼ Us � ðK þWÞ; ð16Þ

Us, K and W indicate total strain energy, total kinetic

energy and the total external work in DWCNTs

system.

Hamilton’s principle is used to derive the motion

equations of embedded DWCNTs conveying pulsat-

ing viscose fluid as follows:

Zt1

t0

dUs � dKnanotube þ dWfluid þ dWlorentz

�	

þ dWvisco�pasternak þ dWvdw


�
¼ 0:

ð17Þ

3.1 Strain gradient theory and surface effect

The total strain energy is come to result by combining

the strain gradient theory and the surface effect theory

as follows:

Us ¼ Ub
s þ Us

s ¼
1

2

Z
X

rijeij þ pici þ sð1Þijk g
ð1Þ
ijk þ mijvij

� �
dAdx

þ 1

2

Z
X

rsije
s
ij þ psic

s
is

sð1Þ
ijk gsð1Þijk þ ms

ijv
s
ij

� �
dSdx;

ð18Þ

Here Ub
s is the strain energy of bulk and U

s
s is the strain

energy of surface. Total strain energy is came into

result step by step as follows.

By substituting Eq. (14) into Eq. (2), the strain is

ex
esx

� �
¼

1 �1 1 �1

1 �1 1 �1

� �

ou

ox

z
o2w

ox2

h

p
o2w

ox2
f ðsinÞ

h

p
o/
ox

f ðsinÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ð19aÞ

exz
esxz

� �
¼

1

2
� 1

2
0 0

 !
ow

ox
f ðcosÞ

/f ðcosÞ

0
@

1
A; ð19bÞ

where

f ðsinÞ ¼ sin
pz
h

� �
; f ðcosÞ ¼ cos

pz
h

� �
: ð19cÞ

And from Eqs. (19) and (3), it results that

cx
csx

� �
¼ 1 �1 1 �1

1 �1 1 �1

� �

o2u

ox2

z
o3w

ox3

h

p
o3w

ox3
f ðsinÞ

h

p
o2/
ox2

f ðsinÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

ð20aÞ

cz
csz

� �
¼

�1 1 �1

�1 1 �1

� �
o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
; ð20bÞ

cy ¼ csy ¼ 0: ð20cÞ

By applying Eqs. (19) and (4) gives

gð1Þ111

gsð1Þ111

 !
¼

2

5
� 2

5

2

5
� 2

5

1

5
� 1

5
2

5
� 2

5

2

5
� 2

5
0 0

0
B@

1
CA

o2u

ox2

z
o3w

ox3

h

p
o3w

ox3
f ðsinÞ

h

p
o2/
ox2

f ðsinÞ

p
h

ow

ox
f ðsinÞ

p
h
/ f ðsinÞ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;

ð21aÞ

gð1Þ113

gsð1Þ113

 !
¼

gð1Þ131

gsð1Þ131

 !
¼

gð1Þ311

gsð1Þ311

 !

¼
� 4

15

8

15
� 8

15

� 4

15

4

15
� 4

15

0
B@

1
CA

o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
;

ð21bÞ
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gð1Þ122

gsð1Þ122

0
@

1
A ¼

gð1Þ221

gsð1Þ221

0
@

1
A ¼

gð1Þ212

gsð1Þ212

0
@

1
A

¼
� 1

5

1

5
� 1

5

1

5

1

15
� 1

15

� 1

5

1

5
� 1

5

1

5
0 0

0
BB@

1
CCA

o2u

ox2

z
o3w

ox3

h

p
o3w

ox3
f ðsinÞ

h

p
o2/
ox2

f ðsinÞ

p
h

ow

ox
f ðsinÞ

p
h
/ f ðsinÞ

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

;

ð21cÞ

gð1Þ133

gsð1Þ133

0
@

1
A ¼

gð1Þ331

gsð1Þ331

0
@

1
A ¼

gð1Þ313

gsð1Þ313

0
@

1
A

¼
� 1

5

1

5
� 1

5

1

5
� 4

15

4

15

� 1

5

1

5
� 1

5

1

5
0 0

0
BB@

1
CCA

o2u

ox2

z
o3w

ox3

h

p
o3w

ox3
f ðsinÞ

h

p
o2/
ox2

f ðsinÞ

p
h

ow

ox
f ðsinÞ

p
h
/ f ðsinÞ

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

;

ð21dÞ

gð1Þ223

gsð1Þ223

 !
¼

gð1Þ232

gsð1Þ232

 !
¼

gð1Þ322

gsð1Þ322

 !

¼

1

15
� 2

15

2

15
1

15
� 1

15

1

15

0
B@

1
CA

o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
;

ð21eÞ

gð1Þ333

gsð1Þ333

 !
¼

gð1Þ333

gsð1Þ333

 !
¼

gð1Þ333

gsð1Þ333

 !

¼

1

5
� 2

5

2

5
1

5
� 1

5

1

5

0
B@

1
CA

o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
:

ð21fÞ

And by substituting Eq. (19) into Eq. (5) gives the

non-zero symmetric rotation gradient tensor as

vxy
vsxy

 !
¼

vyx
vsyx

 !

¼
� 1

2

1

4
� 1

4

� 1

2

1

2
� 1

2

0
B@

1
CA

o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
;

ð22aÞ

vyz
vsyz

 !
¼

vzy
vszy

 !
¼ � 1

4
þ 1

4
0 0

0
@

1
A

p
h

ow

ox
f ðsinÞ

p
h
/f ðsinÞ

0
B@

1
CA:

ð22bÞ

By using Eqs. (19), (10), (6) and (15) the stresses are

rx
rsx

� �
¼ E� E�

sð Þ
1 �1 1 �1

1 �1 1 �1

� �

ou

ox

z
o2w

ox2

h

p
o2w

ox2
f ðsinÞ

h

p
o/
ox

f ðsinÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ
0

ss

� �
; ð23aÞ

rxz
rsxz

� �
¼ G� G�

sð Þ 1 �1

0 0

� � ow

ox
f ðcosÞ

/ f ðcosÞ

0
@

1
A:

ð23bÞ

By considering Eq. (15) and substituting Eq. (20) into

Eq. (11) and (7)
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px

Ps
x

� �
¼ 2l20 G� G�

sð Þ
1 �1 1 �1

1 �1 1 �1

� �

o2u

ox2

z
o3w

ox3

h

p
o3w

ox3
f ðsinÞ

h

p
o2/
ox2

f ðsinÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

; ð24aÞ

pz
Ps
z

� �
¼ 2l20 G� G�

sð Þ �1 1 �1

�1 1 �1

� �
o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBB@

1
CCCCCA
:

ð24bÞ

From Eqs. (21), (12), (8) and (15), the non-zero

higher-order sð1Þijk , s
sð1Þ
ijk are

sð1Þ111

ssð1Þ111

 !
¼ 2l21 G� G�

sð Þ

2

5
�2

5
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5
�2
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0 0
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h
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; ð25aÞ

sð1Þ113

ssð1Þ113

 !
¼ sð1Þ131
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 !
¼ sð1Þ311
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8
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� 4
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1
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o2w
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0
BBBBBB@

1
CCCCCCA
;

ð25bÞ

sð1Þ122

ssð1Þ122

 !
¼

sð1Þ221

ssð1Þ221

 !
¼
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p
o2/
ox2
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p
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p
h
/ f ðsinÞ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

; ð25cÞ

sð1Þ133

ssð1Þ133

 !
¼

sð1Þ331

ssð1Þ331

 !
¼

sð1Þ313
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 !

¼ 2l21 G� G�
sð Þ

� 1

5

1
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5

1
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1

5
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5

1
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o2u
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h

p
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ox3
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h

p
o2/
ox2
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p
h

ow
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p
h
/ f ðsinÞ

0
BBBBBBBBBBBBBBBBBBB@

1
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; ð25dÞ

sð1Þ223

ssð1Þ223

 !
¼

sð1Þ232

ssð1Þ232

 !
¼

sð1Þ322

ssð1Þ322

 !
¼ 2l21 G� G�

sð Þ

1

15
� 2
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2
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sð1Þ333

ssð1Þ333

 !
¼

sð1Þ333

ssð1Þ333

 !
¼

sð1Þ333

ssð1Þ333

 !

¼ 2l21 G� G�
sð Þ

1

5
� 2

5

2

5
1

5
� 1

5

1

5

0
B@

1
CA

o2w

ox2

o2w

ox2
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o/
ox
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0
BBBBBB@

1
CCCCCCA
:

ð25fÞ

By utilizing Eq. (15) and inserting Eq. (22) into (13)

and (9) the higher-order stresses mij, m
s
ij are

mxy

ms
xy

 !
¼

myx

ms
yx

 !

¼ 2l22 G� G�
sð Þ

� 1

2

1

4
� 1

4

� 1

2

1

2
� 1

2

0
B@

1
CA

o2w

ox2

o2w

ox2
f ðcosÞ

o/
ox

f ðcosÞ

0
BBBBBB@

1
CCCCCCA
;

ð26aÞ

myz

ms
yz

 !
¼

mzy

ms
zy

 !

¼ 2l22 G� G�
sð Þ � 1

4
þ 1

4
0 0

0
@

1
A

p
h

ow

ox
f ðsinÞ

p
h
/ f ðsinÞ

0
B@

1
CA:

ð26bÞ

Substituting Eqs. (19)–(26) into Eq. (18) for each

layer, leads to

Us¼
1

2

Z L

0

B1
o2wi

ox2
þ B2

owi

ox

� �2

þB3i
o2wi

ox2

� �2
(

þB4
o3wi

ox3

� �2

þB5
o3wi

ox3
owi

ox
þ B6

o2ui

ox2
owi

ox

þB7
oui

ox

o2wi

ox2
þ B8

o3wi

ox3
o2ui

ox2
þ B9/i

owi

ox

þB10
o2wi

ox2
o/i

ox
þ B11/i

o3wi

ox3
þ B12

o3wi

ox3
o2/i

ox2

þB13i
oui

ox
þ B14i

oui

ox

� �2

þB15i
o2ui

ox2

� �2

þB16
o/i

ox

oui

ox
þ B17/i

o2ui

ox2
þ B18

o2ui

ox2
o2/i

ox2

þB19 /ið Þ2þb20
o/i

ox
þ B21

o/i

ox

� �2

þB22
o2/i

ox2

� �2

þB23/i

o2/i

ox2
þ B24

owi

ox

o2/i

ox2

�
dx;

ð27Þ

Subscript i denotes the number of nanotube where

i = 1, 2 demonstrate inner and outer nanotubes, and

Bij are defined in Appendix 1.

The total kinetic energy of nanotubes can be

expressed as:

ktube ¼
1

2
qt

ZL

0

Z

Ai

ouxi

ot

� �2

þ ouzi

ot

� �2
" #

dAi

8<
:

9=
;dx:

ð28Þ

3.2 Virtual work of pulsating nano-flow

The well-knownNavier–Stokes equations are stated as

follows Mirramezani et al. (2013):

q
DV
!

Dt
¼ �rP

!þ lr2 V
!þ F

!
body; ð29Þ

where D
Dt
is the material or total derivative and V

!
is the

flow velocity, P
!

and l are, respectively, the pressure

and the viscosity of the flowing fluid, q is the mass

density of the internal fluid, and F
!

body represents body

forces.

According to the reference (Mirramezani et al.

2013), the viscosity parameter could not appear in the

fluid–structure interaction (FSI) equation. So the force

exerted due to the fluid flow on the nanotube can be

obtained as follows:

Ff ¼ Af

opr

or
� l0Af

o3W

ox2ot
þ Vf

o3W

ox3

� �

¼ �qAf

o2W

ot2
þ 2Vf

o2W

oxot
þ V2

f

o2W

ox2

� �
;

ð30Þ

where Ff is the exerted force by fluid to the nanotube.

Af, q, Vf and l denote the cross sectional area of the

internal fluid, the fluid density, the velocity of the fluid

flow in the longitudinal direction on the CNT wall and

the viscosity of the flowing fluid, respectively.
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For CNTs conveying fluid, the Kn may be larger

than 10-2; consequently, the assumption of no-slip

boundary condition is not true and the fluid slip

velocity should be modified. The slip velocity is

presented as follows Mirramezani et al. (2013):

Vavg;slip ¼
c

1þ c
Vavg;ðno�slipÞ; ð31aÞ

where

c ¼ 4
2� rv
rv

� �
Kn

1þ Kn

� �
; ð31bÞ

Here rv is tangential moment accommodation

coefficient and is considered to be 0.7 for most

practical purpose.

The case of pulsating internal flow is assumed

harmonically fluctuating, as follows Liang and Su

(2013):

Vf ¼ Vavg;ðno�slipÞ ¼ V0ð1þ a cosðxtÞÞ; ð32Þ

where V0 is the mean flow velocity, a is the amplitude

of the harmonic fluctuation (assumed small) and x its

frequency.

The total virtual work of pulsating nano-flow is

Wf ¼
Z l

0

Ffw1dx

¼
Z l

0

�qAf

o2w1

ot2
þ 2Uf

o2w1

oxot
þ U2

f

o2w1

ox2

� � �
w1 dx:

ð33Þ

It is noticed that Uf ¼ c
1þc � Vf in the governing

equations.

3.3 Maxwell’s equation

Maxwell’s equation are given by Wang et al. (2010):

J
!¼ r� h

!
; ð34aÞ

r � e ¼ �g
oh

ot

� �
; ð34bÞ

r � h!¼ 0; ð34cÞ

e ¼ �g
oD

ot
� H
!

� �
; ð34dÞ

h
!¼ r� ðD!� H

!Þ; ð34eÞ

where, J
!
, e, g and h represent the current density,

strength vectors of electric field, the magnetic field

permeability and disturbing vectors of magnetic field

respectively. D
!¼ ðux; uy; uzÞ is the displacement

vector and magnetic field vector is:

H
!¼

Hx

0

Hz

0
@

1
A ¼

H cosðhÞ
0

H sinðhÞ

0
@

1
A: ð35Þ

By using Eq. (34) h
!

and J
!

are describe:

J
!¼r� h

!¼ �Hz

p
h
sin

pz
h

� �owi

ox
þ Hz

p
h
sin

pz
h

� �
/i

�

� Hx

o2wi

ox2
þ Hz

o2ui

ox2
� Hzz

o3wi

ox3
þHz

h

p
sin

pz
h

� �o3wi

ox3

� Hz

h

p
sin

pz
h

� �o2/i

ox2

Þj:

ð37Þ

The Lorentz force in three directions is:

f ¼ fx; fy; fz
� 


¼ g J
!� H

!� �
: ð38Þ

Introducing Eq. (37) to Eq. (38) and utilizing

Eq. (35), the Lorentzian forces are obtained as:

h
!¼ r� D� H

!� �

¼
�Hz

owi

ox
þ Hz cos

pz
h

� � owi

ox
� Hz cos

pz
h

� �
/i

0

Hx

owi

ox
� Hz

oui

ox
þ Hzz

o2wi

ox2
� Hz

h

p
sin

pz
h

� � o2wi

ox2
þ Hz

h

p
sin

pz
h

� � o/i

ox

0
BBBB@

1
CCCCA;

ð36Þ
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fx ¼ �gH2
z

p
h
sin

pz
h

� � owi

ox
þ gH2

z

p
h
sin

pz
h

� �
/i

� gHzHx
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z z
o3wi

ox3
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z

h

p
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pz
h

� � o3wi

ox3
� gH2
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h

p
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pz
h

� � o2/i

ox2
;

ð39aÞ

fy ¼ 0; ð39bÞ

fz ¼gHxHz

p
h
sin

pz
h

� �owi

ox
�gHxHz

p
h
sin

pz
h

� �
/i

þgH2
x

o2wi

ox2
�gHxHz

o2ui

ox2
þgHxHzz

o3wi

ox3
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h
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pz
h

� �o3wi

ox3
þgHxHz

h

p
sin

pz
h

� �o2/i

ox2
:

ð39cÞ

The resultant Lorentz’s forces, R ¼ ðRx;Ry;RzÞ,
and the corresponding bending moments, M ¼
ðMx;My;MzÞ, as follows Kiani (2014):

Rx ¼
Z
Ai

fx dAi ¼ �gH2
z

p
h
p0

owi

ox
þ gH2

z

p
h
p0/i

� gHzHxAi

o2wi

ox2
þ gH2

z Ai

o2ui

ox2

þ gH2
z

h

p
p0

o3wi

ox3
� gH2

z

h

p
p0

o2/i

ox2
; ð40aÞ

Ry ¼
Z
Ai

fy dAi ¼ 0; ð40bÞ

Rz ¼
Z
Ai

fz dAi ¼ gHxHz

p
h
p0

owi

ox

� gHxHz

p
h
p0/i þ gH2

xAi

o2wi

ox2

� gHxHzAi

o2ui

ox2
� gHxHz

h

p
p0

o3wi

ox3

þ gHxHz

h

p
p0

o2/i

ox2
; ð40cÞ

Mx ¼ Mz ¼ 0; ð40dÞ

My ¼
Z
Ai

z fx dAi ¼ �gH2
z p1

p
h

o

ox
wi þ gH2

z p1
p
h
/i

� IgH2
z

o3wi

ox3
þ gH2

z

h

p
p1

o3wi

ox3
� gH2

z

h

p
p1

o2/i

ox2

ð40eÞ

Eventually, Lorentz work is written as Kiani

(2014):

Wlorentz ¼
ZL

0

ðRxui þ Rzwi þMy;xwiÞdx: ð41Þ

3.4 Visco-Pasternak foundation and vdW

interaction

The external work due to visco-Pasternak foundation

and vdW forces are written as:

Wvisco�pasternak;vdw ¼
ZL

0

Cv

R1

R2

ðw2 � w1Þw1dx

þ
ZL

0

Cvðw1 � w2Þw2dx

þ
ZL

0

ð�Kww2 þ GPr2w2Þw2dx

þ
ZL

0

Cd

ow2

ot
dx; ð42Þ

where Kw, Cd, Cv and GP Winkler’s spring

modulus, damper, vdW interaction coefficient and

Pasternak’s shear modulus of elastic medium,

respectively.

According to Hamilton’s principle (i.e.

Eq. (17)), the motion equations are obtained as

follows:

du1 : B6

o3w1

ox3
� B7

o3w1

ox3
þ B17

o2/1

ox2
þ B8

o5w1

ox5

� B16

o2/1

ox2
þ B18

o4/1

ox4
� 2B141

o2u1

ox2

þ 2B151

o4u1

ox4
þ qtA1

o2u1

ot2

þ qthP0

p
o3w1

oxot2
� qthP0

p
o2/1

ot2
� Rx; ð43Þ
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dw1: � B9

o/1

ox
� 2B4

o6w1

ox6
� B11

o3/1

ox3
� B8

o5u1

ox5

þ B10

o3/1

ox3
� 2B2

o2w1

ox2
� B12

o5/1

ox5

� B24

o3/1

ox3
� B6

o3u1

ox3
þ B7

o3u1

ox3
� 2B5

o4w1

ox4

þ 2B31

o4w1

ox4
� qthP1

p
o3/1

oxot2
� qth

2L

p2
o4w1

ox2ot2

þ qth
2L

p2
o3/1

oxot2
� Iqt

o4w1

ox2ot2
þ qtA1

o2w1

ot2

� qthP0

p
o3u1

oxot2
þ 2

qthP1

p
o4w1

ox2ot2

� 2ss hþ bð Þ o
2w1

ox2
� Rz �My;x

� cvR1

R2

w2 � w1ð Þ þ qAf

o2w1

ot2

þ 2qAfUf

o2w1

oxot
þ qAfU

2
f

o2w1

ox2
; ð44Þ

d/1:� B10

o3w1

ox3
þ B12

o5w1

ox5
þ B18

o4u1

ox4

þ 2B22

o4/1

ox4
þ B9

ow1

ox
þ B24

o3w1

ox3
þ B17

o2u1

ox2

þ B11

o3w1

ox3
þ 2B19/1 þ 2B23

o2/1

ox2

� 2B21

o2/1

ox2
� B16

o2u1

ox2
� qthP0

p
o2u1

ot2

þ qthP1

p
o3w1

oxot2
� qth

2L

p2
o3w1

oxot2
þ qth

2L

p2
o2/1

ot2
;

ð45Þ

du2: B6

o3w2

ox3
� B7

o3w2

ox3
þ B17

o2/2

ox2
þ B8

o5w2

ox5

� B16

o2/2

ox2
þ B18

o4/2

ox4
� 2B142

o2u2

ox2

þ 2B152

o4u2

ox4
þ qtA2

o2u2

ot2
þ qthP0

p
o3w2

oxot2

� qthP0

p
o2/2

ot2
� Rx; ð46Þ

dw2:�B9

o/2

ox
� 2B4

o6w2

ox6
�B11

o3/2

ox3
�B8

o5u2

ox5

þB10

o3/2

ox3
� 2B2

o2w2

ox2
�B12

o5/2

ox5
�B24

o3/2

ox3

�B6

o3u2

ox3
þB7

o3u2

ox3
� 2B5

o4w2

ox4
þ 2B32

o4w2

ox4

� qthP1

p
o3/2

oxot2
� qth

2L

p2
o4w2

ox2ot2
þ qth

2L

p2
o3/2

oxot2

� Iqt
o4w2

ox2ot2
þ qtA2

o2w2

ot2
� qthP0

p
o3u2

oxot2

þ 2
qthP1

p
o4w2

ox2ot2
� 2ss hþ bð Þo

2w2

ox2
�Rz �My;x

� cv w1 �w2ð Þ �Gpr2w2 þKww2 þ cd
ow2

ot
;

ð47Þ

d/2: � B10

o3w2

ox3
þ B12

o5w2

ox5
þ B18

o4u2

ox4

þ 2B22

o4/2

ox4
þ B9

ow2

ox
þ B24

o3w2

ox3
þ B17

o2u2

ox2

þ B11

o3w2

ox3
þ 2B19/2 þ 2B23

o2/2

ox2

� 2B21

o2/2

ox2
� B16

o2u2

ox2
� qthP0

p
o2u2

ot2

þ qthP1

p
o3w2

oxot2
� qth

2L

p2
o3w2

oxot2
þ qth

2L

p2
o2/2

ot2
:

ð48Þ

Boundary conditions at x = 0and x ¼ L read (Lei et al.

2013a):

o2dwi

ox2
¼ 0;

odwi

ox
¼ 0; dwi ¼ 0;

od/i

ox
¼ 0; d/i ¼ 0;

odui
ox

¼ 0; dui ¼ 0:

ð49Þ

3.5 Solution procedure

3.5.1 DQM

DQM is employed in this section which in essence

approximates the partial derivative of a function, with

respect to a spatial variable at a given discrete point, as

a weighted linear sum of the function values at all

discrete points chosen in the solution domain of the

spatial variable (Khodami Maraghi et al. 2013). Let

F be a function representing u1; u2, w1;w2 and u1;u2

with respect to variable x in the domain of (0\x\L)

having Nx grid points along these variable. The nth-

order partial derivative of F(x) with respect to x may

be expressed discretely as
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dnFðxiÞ
dxn

¼
XNx

k¼1

A
ðnÞ
ik FðxkÞ n ¼ 1; . . .;Nx � 1; ð50Þ

where A
ðnÞ
ik is the weighting coefficient, whose recur-

sive formula are described in Khodami Maraghi et al.

(2013). The Chebyshev–Gauss–Lobatto polynomials

(Civalek 2004, 2006) was used to determine the

unequally spaced position of the grid points as follows

xi ¼
L

2
1� cos

2i� 1

Nx � 1

� �
p

� �
; ð51Þ

Combining all the motion equations along with the

corresponding boundary conditions using DQM and

rewritten them in matrix form yields

where [M], [C] and [K] are the mass, damping and

stiffness matrixes, respectively; [Cf] and [Kf] are the

respectively, damping and stiffness matrixes related to

pulsating fluid; Yf g is the displacement vector (i.e.

Yf g ¼ ui; vi;wif g i ¼ 1; 2); subscript b and d repre-

sent boundary and domain points.

3.6 Bolotin method

In order to determinate the DIR of visco-DWCNTs,

the method suggested by Bolotin (1964) is applied.

Hence, the components of df g can be written in the

Fourier series with period 2T as

df g ¼
X1

k¼1;3;...

af gksin
kxt
2

þ bf gkcos
kxt
2

� �
; ð53Þ

According to this method, the first instability

region is usually the most important in studies of

structures. It is due to the fact that the first DIR is

wider that other DIRs and structural damping in

higher regions becomes neutralize (Lanhe et al.

2007). Substituting Eq. (53) into Eq. (52) and

setting the coefficients of each sine and cosine as

well as the sum of the constant terms to zero,

yields

K½ � þ 1� aþ a2

2

� �
K½ �f

� �����

þ � C½ �x
2
þ ax

4
� x

2

� �
C½ �f

� �

� M½ �x
2

4

���� ¼ 0;

ð54Þ

Solving the above equation based on eigenvalue

problem, the variation of x with respect to a can be

plotted as DIR.
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4 Results and discussion

Based on DQM and Bolotin method, the effects of

nonlocal parameter, magnetic field, visco-Pasternak

foundation, Knudsen number, surface stress and fluid

velocity on the DIR of visco-DWCNTs are investi-

gated. The material properties of the DWCNTs related

to bulk are: Young’s modulus of E ¼ 1 Tpa, Pois-

son’s ratio of t ¼ 0:27, density of q = 2,300 kg/m3

and thickness of h = 0.34 mm (Lei et al. 2012).

Generally, the surface material properties can be

calculated by atomic simulations. However, the

material properties of the DWCNTs related to surface

are: surface Young’s modulus of, Es = 35.3 N/m and

residual surface stress of, ss = 0.31 N/m (Lei et al.

2012).

4.1 Convergence of DQM

The convergence and accuracy of the DQM in

evaluating the DIR of the visco-DWCNTs are shown

in Table 1 for two cases of with and without consid-

ering surface effects. The results are prepared for

different values of the DQM grid points. Fast rate of

convergence of the DQM is quite evident. As can be

seen, eleven grid points can yield accurate results.

4.2 Validation

To the best of the authors’ knowledge no published

literature is available for visco-DWCNTs pulsating

fluid embedded in a visco-Pasternak foundation

based on surface sinusoidal strain gradient theory.

Table 1 Convergence

behavior and accuracy of

the DQM for DIR of

DWCNTs

Grid

points

Without surface effects With surface effects

Longitudinal

magnetic field

Lateral magnetic

field

Longitudinal

magnetic field

Lateral magnetic

field

5 9 5 7.9043 4.1204 8.8819 5.3167

7 9 7 8.1952 5.5809 9.3902 6.5979

9 9 9 8.2288 5.6501 9.4324 6.6025

11 9 11 8.2592 5.6519 9.4338 6.6034

14 9 14 8.2592 5.6519 9.4338 6.6034

16 9 16 8.2592 5.6519 9.4338 6.6034

Table 2 Validation of present work with Ref. [16] for non-dimensional fundamental frequency of firs mode

h/l Theory L = 10h, (Present work) L = 30h Gurtin and Ian Murdoch (1975)

Local

theory

Modified couple

stress theory

Strain gradient

theory

Local

theory

Modified couple

stress theory

Strain gradient

theory

1 EBT 13.4981 24.6135 40.9691 13.4975 24.6031 40.9674

TBT 13.4981 24.5171 39.9337 13.4595 24.5061 39.9336

SSDBT 13.4981 24.5957 40.8981 13.4595 24.5801 40.8962

5 EBT 13.4981 14.1114 15.5579 13.4975 14.1105 15.5572

TBT 13.4981 14.0715 15.4996 13.4595 14.0707 15.4989

SSDBT 13.4981 14.0799 15.5190 13.4595 14.0794 15.5184

10 EBT 13.4981 13.6535 14.0409 13.4595 13.6533 14.0408

TBT 13.4981 13.6150 13.9980 13.4595 13.6149 13.9979

SSDBT 13.4981 13.6161 14.0028 13.4595 13.6160 14.0027
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Since, no reference to such a work is found to-date

in the literature, its validation is not possible.

However, in an attempt to validate this work as

far as possible, a simplified analysis of this paper is

carried out without considering the surface effect,

pulsating fluid, visco-Pasternak foundation and vis-

coelastic property of DWCNTs. Present results are

compared with the work of Akgöz and Civalek

(2013a, b) who studied nonlocal vibration analysis

of microbeams based on SSDBT and strain gradient

theory. Considering the material properties the same

as Ref. (Akgöz and Civalek 2013a, b) and dimen-

sionless frequency as �x ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=EI

p
, the results

are shown in Table 2. It is evident that the present

results are in a good agreement with those obtained

results by Ref. (Akgöz and Civalek 2013a, b). It should

be noted that setting UðzÞ ¼ 0 and UðzÞ ¼ z yields the

EBT and TBT, respectively. It is also concluded that
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the frequency of SSDBT is higher than EBT and TBT.

In addition, one can see that excellent agreement

exist between the results of the DQM in the present

paper with exact solution in Ref. (Akgöz and Civalek

2013a, b).

4.3 The effect of different parameters on DIR

Figure 2 represents the effect of different nonlocal

theories including classical, modified couple stress

and strain gradient on the dimensionless pulsation

frequency (i.e. X ¼ xL
ffiffiffiffiffiffiffiffiffiffi
qt=E

p
) versus the dimension-

less pulsation amplitude. Comparing classical theory

with two non-classical theories, it can be concluded

that the DIR predicted by the strain gradient theory is

higher than the classical and modified couple stress

theories. This is because the strain gradient theory

expresses the three additional dilatation gradient

tensor, the deviatoric stretch gradient tensor and the

rotation gradient tensor.
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Figure 3 illustrates the effect of Knudsen number

on the dimensionless pulsation frequency with respect

to the dimensionless pulsation amplitude. It is came to

know by enhancing Knudsen number, DIR and the

dimensionless pulsation frequency shift to left and

decrease. It is because that, when the Knudsen number

increases, the mean free path of liquid molecules

increases and results in lower stiffness.

Figure 4 depicts variations of the dimensionless

pulsation frequency as a function of the dimensionless

pulsation amplitude by varying the type of DWCNT

surrounding foundation. Four different elastic medium

are considered namely as visco-Pasternak, Pasternak,

visco-Winkler and Winkler mediums. As can be seen

considering elastic foundation increases the magni-

tude of dimensionless pulsation frequency and

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dimensionless pulsation frequency

D
im

en
si

on
le

ss
 p

ul
sa

tio
n 

am
pl

itu
de

θ=0

θ=π /6
θ=π /4

θ=π /3

θ=π /2

Fig. 7 Dimensionless

pulsation amplitude versus

dimensionless pulsation

frequency for different

values of magnetic field

angle

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dimensionless pulsation frequency

D
im

en
si

on
le

ss
 p

ul
sa

tio
n 

am
pl

itu
de

Hx=10 A/m

Hx=7 A/m

Hx=5 A/m

Hx=2 A/m

Hx=0 A/m

Fig. 6 Dimensionless

pulsation amplitude versus

dimensionless pulsation

frequency for different

values of magnetic field

Pulsating fluid induced dynamic instability 33

123



subsequently, DIR shifts to right. It is due to the fact

that putting DWCNT in an elastic medium makes the

systemmore stable and stiffer. It is also concluded that

the DIR of Pasternak or visco-Pasternak model is

higher than Winkler or visco-Winkler one. It is

because Pasternak model considers not only the

normal stresses but also the transverse shear deforma-

tion and continuity among the spring elements.

Furthermore, the DIR predicted by visco-Pasternak

and visco-Winkler mediums is lower than Pasternak

and Winkler models, respectively.

The effects of the vdW force on the dimensionless

pulsation frequency with respect to the dimensionless

pulsation amplitude are shown in Fig. 5. Stiffness of

tube increases by considering vdW force so the

dimensionless pulsation frequency increases.

Figure 6 demonstrates variations of the dimension-

less pulsation frequency versus the dimensionless
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pulsation amplitude for different magnitude of

longitudinal magnetic field intensity. It can be

observed that increment of magnetic field intensity

makes the system more stable, hence the DIR and

dimensionless pulsation frequency shift to right and

increases. In addition, the longitudinal magnetic

field has little influence on DIR when its magnitude

is very small.

In order to show the magnetic field angle effects,

Fig. 7 is plotted where the dimensionless pulsation

frequency is a function of the dimensionless

pulsation amplitude. It is shown that when the

magnetic field angle is zero (i.e. longitudinal

magnetic field) the dimensionless pulsation fre-

quency and DIR are maximum. With increasing

magnetic field angle, the dimensionless pulsation

frequency and DIR decrease and in magnetic field

angle of p=2 (i.e. lateral magnetic field), those

become minimum.

Figure 8 illustrates the surface stress effect on the

dimensionless pulsation frequency with respect to the

dimensionless pulsation amplitude. This figure shows

that the surface stress effect is remarkable so that with

ignoring this effect the DIR and the dimensionless

pulsation frequency are not inaccurate. This is due to

the fact that considering surface stress increases the

stability of the DWCNT.

Figure 9 shows the dimensionless pulsation fre-

quency with respect to the dimensionless pulsation

amplitude for different values of fluid velocities.

Increasing the fluid velocity through the inner nano-

tube frequency decreases the dimensionless pulsation

frequency. Furthermore, shifting the DIRs is obvious

in higher flow velocities. Flowing fluid through the

DWCNT exerts compressive axial load and for higher

velocities the magnitude of this load increases, so

increasing the flow velocity results in frequency and

DIR decreasing.

5 Conclusion

Dynamic response of DWCNTs have applications in

designingmanyNEMS/MEMSdevices such as sensors,

actuators, fluid storage, solar cell and biomechanic.

Pulsatingfluid induceddynamic instability ofDWCNTs

considering structural damping, surface stress effect and

viscoelastic foundation was the main contributions of

the present paper. The DWCNTs were subjected to 2D

magnetic field and simulated by sinusoidal strain

gradient theory. Bolotin method in conjunction with

DQM were used for calculating the DIR of the visco-

DWCNT The Chebyshev–Gauss–Lobatto polynomials

was used to determine the unequally spaced position of

the grid points. The effects of nonlocal parameter,

magnetic field, visco-Pasternak foundation, Knudsen

number, surface stress and fluid velocity on the DIR of

the visco-DWCNT were discussed. Results depict that

the imposed magnetic field was an effective controlling

parameter for dynamic instability of visco-DWCNTs.

The DIR predicted by the strain gradient theory was

higher than the classical and modified couple stress

theories. It was shown that when the magnetic field

angle is zero (i.e. longitudinal magnetic field) the

dimensionless pulsation frequency and DIR are maxi-

mum. Furthermore, considering surface stress increases

the stability of the DWCNT. The results of this study

were in good agreement with those reported by Ref.

(Akgöz and Civalek 2013a, b). The results presented in

this work can be useful for the study and design of the

next generation of nano/micro structures that make use

of the nonlocal dynamic instability of visco-CNTs

embedded in visco-Pasternak medium.
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where the following integrals are defined
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where
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; f ðcosÞ
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:

ð57Þ
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