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Abstract The unsymmetric finite element method

employs compatible test functions but incompatible

trial functions. The pertinent 8-node quadrilateral and

20-node hexahedron unsymmetric elements possess

exceptional immunity to mesh distortion. It was noted

later that they are not invariant and the proposed

remedy is to formulate the element stiffness matrix in

a local frame and then transform the matrix back to the

global frame. In this paper, a more efficient approach

will be proposed to secure the invariance. To our best

knowledge, unsymmetric 4-node quadrilateral and

8-node hexahedron do not exist. They will be devised

by using the Trefftz functions as the trial function.

Numerical examples show that the two elements also

possess exceptional immunity to mesh distortion with

respect to other advanced elements of the same nodal

configurations.

Keywords Unsymmetric � Finite element method �
Petrov–Galerkin � Trefftz � 4-node � 8-node

1 Introduction

Tremendous efforts have been put on developing finite

element (FE) models with excellent accuracy and low

susceptibility to mesh distortion. In this regard,

advanced FE techniques such as hybrid/mixed method

(Pian and Sumihara 1984; Pian and Tong 1986; Yuan

et al. 1993; Sze 2000; Qin 2003; Sze et al. 2004, 2010;

Cen et al. 2011; Freitas and Moldovan 2011; Cao et al.

2012), incompatible displacement/enhanced assumed

strain modes (Taylor et al. 1976; Simo and Rifai 1990;

Liu and Sze 2010), reduced integration and stabilization

(Hughes 1980; Bachrach 1987; Sze et al. 2004),

assumed strain formulation (Macneal 1982; Kim et al.

2003; El-Abbasi andMeguid 2000; Cardoso et al. 2008)

and discrete shear gap method (Bletzinger et al. 2000)

have been developed. Many of them have yielded FE

models with excellent accuracy when the mesh is

regular. However, their accuracy often drops consider-

ably when the mesh is distorted.

Rajendran et al. (Rajendran and Liew2003;Ooi et al.

2004; Liew et al. 2006; Ooi et al. 2008) proposed the

unsymmetric FE method (US-FEM), which belongs to

the Petrov–Galerkin formulation. The incompatible

metric interpolants expressed in the metric or Cartesian

coordinates are employed as the trial functions to satisfy

the quadratic completeness for the unsymmetric 8-node

quadrilateral plane element (UQ8) and 20-node hexa-

hedral element (UH20). On the other hand, the test

functions are the conventional compatible parametric

interpolants. UQ8 and UH20 possess exceptional
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immunity to mesh distortion. It was noted later that they

are not invariant, i.e., the element predictions change

when the inclination of the element with respect to the

global coordinate frame changes (Sze et al. 1992; Ooi

et al. 2008). The proposed remedy is to formulate the

element stiffness matrix in a corotational Cartesian

frame,which translates and rotateswith the element, and

then transform the matrix back to the global frame (Ooi

et al. 2008). In this paper, a more efficient approach will

be proposed to secure their invariance.

Researchers are more inclined to put efforts on

improving the accuracy of lower order elements due to

their low construction cost. For the conventional

parametric 4-node quadrilateral plane element (Q4)

and 8-node hexahedral element (H8), poor bending

response caused by the excessive shear strain is amajor

shortcoming. To our best knowledge, unsymmetric

4-node quadrilateral and 8-node hexahedral elements

do not exist. In this paper, they will be formulated. The

test functions remain to be the compatible parametric

interpolants. Among the trial functions, the constant

and linear metric modes are retained. The higher order

trial functions aremainly the bendingmodes expressed

with respect to some chosen corotational metric

frames. As the constant, linear and bending modes

can be regarded as Trefftz functions (Herrera 2000),

the resulting elements can be termed as Trefftz

unsymmetric elements. From the benchmark tests,

the proposedTrefftz unsymmetric 4-node quadrilateral

element (TQ4) and 8-node hexahedral element (TH8)

not only are invariant but also possess remarkable

bending response and immunity to mesh distortion

with respect to other advanced elements of the same

nodal configurations. It is worth noting that an UQ8

element was also devised (Cen et al. 2012) by using

analytical displacement functions which can be

regarded as Trefftz functions (Herrera 2000).

In Sect. 2, US-FEM is reviewed. Existing UQ8 and

UH20 are briefly reviewed in Sect. 3. The modified

approaches to secure their invariance are presented in

Sects. 4 and 5. The proposed Trefftz unsymmetric

elements TQ4 and TH8 are presented in Sects. 6 and 7.

2 The unsymmetric finite element method

The 3D linear elasticity problem for domain X is

considered. The domain boundary qX can be parti-

tioned into Cu and Ct which are prescribed with

displacement u and traction �t, respectively. Without

loss of generality, we assume

Cu [ Ct ¼ oX and Cu \ Ct ¼ ; ð1Þ

When X is partitioned into elements Xe, the strong

form of the boundary value problem can be stated as:

(a) domain equilibrium: LTrþ b ¼ 0 in all Xe

(b) traction boundary condition: nr ¼ t on all

Ce
t � Ct

(c) traction reciprocity condition: nara ¼ nbrb on

all Cab

(d) compatibility: ua ¼ ub on all Cab

(e) displacement boundary condition: u ¼ u on all

Ce
u � Cu

(f) constitutive relation: r ¼ Ce in all Xe

(g) strain–displacement relation: e ¼ Lu in all Xe

where

r ¼ frxx; ryy; rzz; ryz; rzx; rxygT ;

e ¼ fexx; eyy; ezz; 2eyz; 2ezx; 2exygT ;

u is the displacement vector, b is the prescribed

body force vector,

L ¼
o=ox 0 0 0 o=oz o=oy
0 o=oy 0 o=oz 0 o=ox
0 0 o=oz o=oy o=ox 0

2
4

3
5
T

and

n ¼
nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0

2
4

3
5

In the expressions, eij, rij and ni denote the

components of strain, stress and unit outward normal

vector of the element boundary, respectively. Cab

denotes the common boundary between the adjacent

elements ‘‘a’’ and ‘‘b’’. Thus, na = �nb. The element

designation appearing as a superscript would be

dropped unless ambiguity may arise. Following (1),

the properties below on element boundary can be

assumed:

[
e
Xe ¼ X; [

e
Ce
u ¼ Cu; [

e
Ce
t ¼ Ct;

Ce
u [ Ce

t [ Ce
m ¼ oXe

Ce
u \ Ce

t ¼ Ce
t \ Ce

m ¼ Ce
m \ Ce

u ¼ ;
ð2Þ
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where Ce
m denotes the portion of qXewhich is common

to the adjacent element(s) of element ‘‘e’’. The virtual

work statement can be stated as:

X
e

Z

Xe

ðrTde�b
T
duÞdX�

Z

Ce
t

t
T
dudC

0
B@

1
CA¼ 0 ð3Þ

inwhichd is the virtual symbol. For the statement, (d)–(g)

are auxiliary conditions. In the context of the weighted

residual method, the displacement u leading to stress/

strain and the virtual displacement du leading to virtual

strain are the trial and the test functions, respectively. By

substituting the following version of divergence theorem

Z

Xe

ð rTdðLuÞ þ ðLTrÞTdu ÞdX ¼
Z

Ce
t[Ce

m

ðnrÞTdudX

ð4Þ

into (3), the latter becomes

X
e

�
Z

Xe

ðLTrþ bÞTdudX þ
Z

Ce
t

ðnr� tÞTdudC

0
B@

þ
Z

Ce
m

ðnrÞTdudC

1
CA ¼ 0 ð5Þ

The last integral after pairing up with those arising

from the adjacent elements can be expressed as:

X
e

Z

Ce
m

ðnrÞTdudC

¼
X
a;b

Z

Cab

½ðnrÞa�Tdua þ ½ðnrÞb�Tdub
� �

dC
ð6Þ

Provided that the virtual displacement is compat-

ible, i.e.

dua ¼ dub on all Cab ð7Þ

dua and dub on Cab can simply be denoted as du. In
this light, (5) becomes

X
e

�
Z

Xe

ðLTrþ bÞTdudXþ
Z

Ce
t

ðnr� tÞTdudC

0
B@

1
CA

þ
X
a;b

Z

Cab

½ðnrÞa þ ðnrÞb�Tdu dC¼ 0 ð8Þ

which is the weak form of (a), (b) and (c).

2.1 Galerkin finite element method

In Galerkin FEM, the bases of the displacement and

virtual displacement are the same. For element ‘‘e’’,

they can be expressed as:

ue ¼ Nde and due ¼ Ndde ð9Þ

in which de is the element displacement vector

embracing all displacement vectors of the element

nodes and N is constructed using the parametric

coordinates of the element and can be termed as the

parametric interpolation matrix. The renowned prop-

erty of parametric interpolation is that (d), (e) and (7)

are strictly satisfied. By invoking (9), (3) becomes

X
e

ðddeÞTðkes � de � feÞ ¼ 0 ð10Þ

in which

kes ¼
Z

Xe

ðLNÞTCðLNÞdX

is the symmetric element stiffness matrix,

fe ¼
Z

Xe

NTbdXþ
Z

Ce
t

NT tdC

is the element force vector.

2.2 Unsymmetric finite element method

In US-FEM, which is based on the Petrov–Galerkin

formulation, the displacement and the virtual dis-

placement are different and they can be expressed as

(Rajendran and Liew 2003):

ue ¼ Mde and due ¼ Ndde ð11Þ

where M is constructed using metric or Cartesian

coordinates and it can be termed as the metric

interpolation matrix. As the chosen virtual displace-

ment remains to be parametric and compatible, the

virtual work statement remains to be the weak form of

(a) to (c). Substitution of (11) into (3) gives

X
e

ðddeÞTðkeu � de � feÞ ¼ 0 ð12Þ

in which
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keu ¼
Z

Xe

ðLNÞTCðLMÞdX

is the unsymmetric element stiffness matrix, and the

element force vector has been defined under (10).

2.3 Patch tests for unsymmetric finite element

models

Noteworthily, themetric interpolated displacement is not

compatible in general, i.e., it fails (d) and (e).While patch

test fulfillment have been numerically demonstrated for

US-FEmodels, it is not difficult to prove analytically that

the generalized patch test (Taylor et al. 1986) can be

fulfilled by US-FE models using the individual element

test abbreviated as IET (Felippa et al. 1995).

For an arbitrary linear displacement field uL
which leads to a constant stress state rc = CLuL,

the first requirement of IET is that when the

element displacement vector de is prescribed to deL
obtained from uL, rc can be reproduced in the element.

It can be noted in the next section that the metric

interpolation M is constructed such that the following

is valid:

M � deL ¼ uL ð13Þ

By invoking the auxiliary conditions (f) and (g), the

first requirement (rc = C(LM)deL) of IET can be met.

The second requirement of the test is the pairwise

cancellation of tractions among adjacent elements

subjected to the same uniform stress. By invoking (13)

and the divergence theorem,

keu � deL ¼
Z

Xe

ðLNÞTCðLuLÞdX

¼
Z

Xe

ðLNÞTrcdX ¼
Z

oXe

NTnrcdX
ð14Þ

Since N is compatible, Na and Nb in the following

expression are identical over the common boundary

Cab of elements ‘‘a’’ and ‘‘b’’. Thus,Z

Cab

½ðNTnrcÞa þ ðNTnrcÞb� dC

¼
Z

Cab

NT ½na þ nb�rcdC ¼ 0

and the pairwise cancellation is also met. The

generalized patch test also tests the element stability

which can be addressed by examining whether the

element exhibits spurious zero energy mode(s). To

conclude, US-FE models can pass the generalized

patch test provided that (13) is met by the metric

interpolation and the element model does not exhibit

any spurious zero energy mode.

3 Existing US-FE models

UQ8 and UH20 are US-FE models devised in

References (Rajendran and Liew 2003; Ooi et al.

2004). In this section, the trial or metric interpolated

displacements of the two models and the existing

measure to secure invariance are briefly reviewed.

3.1 UQ8—the unsymmetric 8-node quadrilateral

plane element

In analogous to the parametric interpolation basis of

the Q8 element, the metric interpolation can be

constructed by first considering the basis below for

the x-displacement component of the element:

uðx; yÞ ¼ 1; x̂; ŷ; x̂2; x̂ŷ; ŷ2; x̂2ŷ; x̂ŷ2
� �

a1

..

.

a8

8><
>:

9>=
>;

¼ pQðx̂; ŷÞ
a1

..

.

a8

8><
>:

9>=
>;

ð15Þ

in which x̂ ¼ x� xo, ŷ ¼ y� yo, (xo, yo) is commonly

taken as the parametric origin of the element, a’s are
the coefficients to be determined and the trial function

matrix pQ is self-defined. US-FEM imposes the nodal

interpolation property for the trial displacement and

leads to

u1

..

.

u8

8><
>:

9>=
>;

¼
pQðx̂1; ŷ1Þ

..

.

pQðx̂8; ŷ8Þ

2
64

3
75

a1
..
.

a8

8><
>:

9>=
>;

ð16Þ

where ui and (x̂i, ŷi) are the x-displacement and the (x̂,

ŷ)-coordinates of the i-th node, respectively. Provided

that the matrix in (16) is invertible, the requirement in
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(13) can be satisfied. Back-substituting (16) into (15)

gives

uðx; yÞ ¼ pQðx̂; ŷÞ

pQðx̂1; ŷ1Þ

..

.

pQðx̂8; ŷ8Þ

2
664

3
775

�1
u1

..

.

u8

8><
>:

9>=
>;

¼ ½MQ1; . . .;MQ8�
u1

..

.

u8

8><
>:

9>=
>;

ð17Þ

in which the metric nodal interpolation functions M’s

can be obtained. M’s are also applicable to other

displacement components. Thus, the metric interpo-

lated displacement can be expressed as:

u ¼ u

v

� �
¼ ½MQ1I2; . . .;MQ8I2�

u1
..
.

u8

8><
>:

9>=
>;

¼ MQ � de

ð18Þ

where Im is the m-th order identity matrix.

3.2 UH20—the unsymmetric 20-node hexahedral

element

In analogous to the parametric interpolation basis of

the H20 element, the metric interpolation can be

constructed by first considering the basis below for the

x-displacement component of the element:

uðx; y; zÞ ¼ pHðx̂; ŷ; ẑÞ
a1
..
.

a20

8><
>:

9>=
>;

ð19Þ

where pHðx̂; ŷ; ẑÞ ¼ ½1; x̂; ŷ; ẑ; x̂2; ŷ2; ẑ2; ŷẑ; ẑx̂; x̂ŷ; x̂2ŷ;
x̂ŷ2; ŷ2ẑ; ŷẑ2; ẑ2x̂; ẑx̂2; x̂ŷẑ; x̂2ŷẑ; ŷ2ẑx̂; ẑ2x̂ŷ�: By repeat-

ing what has been done for UQ8, the metric interpo-

lated displacement for the present UH20 can be

expressed as:

u ¼
u

v

w

8<
:

9=
; ¼ ½MH1I3; . . .;MH20I3�

u1
..
.

u20

8><
>:

9>=
>;

¼ MH � de ð20Þ

where

½MH1; . . .;MH20� ¼ pHðx; y; zÞ
pHðx̂1; ŷ1; ẑ1Þ

..

.

pHðx̂20; ŷ20; ẑ20Þ

2
64

3
75
�1

:

3.3 Existing measure to secure the invariance of UQ8

model

The numerical tests in (Rajendran and Liew 2003; Ooi

et al. 2004) show that UQ8 and UH20 possess good

immunity to various mesh distortions and can exactly

reproduce the quadratic, in x and y, displacement field.

However, it was noted later that they are not invariant

and the proposed remedy in Reference (Ooi et al. 2008)

is to employ a corotational Cartesian frame (x0, y0) as
shown in Fig. 1a in which the x0-axis is parallel to the

line connecting nodes 4 and 8. The interim element

stiffness matrix keul defined with respect to x0- and y0-

displacements is firstly computed using pQ(x
0, y0). The

one defined with respect to x- and y- displacements is

then obtained from keul by transformation as:

keua ¼ RkeulR
T ð21Þ

Fig. 1 a The 8-node quadrilateral element. b The 20-node

hexahedral element
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where R is the 16 9 16 block diagonal transformation

matrix given as

R ¼ diag:fRh;Rh;Rh;Rh;Rh;Rh;Rh;Rhg

in which

Rh ¼
cos h � sin h
sin h cos h

� 	

and h is the inclination of the x0-axis to the x-axis, see

Fig. 1a. The resulting unsymmetric Q8 would be

abbreviated as UQ8m.

Although the invariance of UQ8 and UH20 can be

secured by using a corotational Cartesian frame, the

transformation induces quite a number of operations.

Moreover, the resultant element models are not isotro-

pic, i.e., the element predictions are sensitive to the

chosen connectivity which defines the parametric

coordinate axes. In the next two sections, more efficient

measures are introduced to secure the invariance aswell

as the isotropy of UQ8 and UH20, respectively.

4 Securing the invariance and isotropy of UQ8

To secure the invariance and isotropy of an element,

the bases of its variables should be invariant and

isotropic, respectively (Sze et al. 1992). Using coro-

tational coordinates (such as (x0, y0) and (n, g)) as the
arguments of pQ can automatically secure the invari-

ance. To secure both for UQ8, the non-dimensional

skew coordinates (n, g) of Yuan, Huang & Pian (Yuan

et al. 1993) can be used as the arguments of pQ.

Starting from the parametric interpolation of the

global coordinates, namely,

x

y

� �
¼
X8
n¼1

Niðn; gÞ
xi
yi

� �
ð22Þ

in which Ni is the parametric interpolation function of

the i-th node, one can derive

an bn
ag bg

� 	
¼ ox=on oy=on

ox=og oy=og

� 	




n¼g¼0

ð23Þ

and the non-dimensional skew coordinates (Yuan et al.

1993) are:

n
g

� �
¼ an bn

ag bg

� 	�T
x

y

� �
� x

y

� �

n¼g¼0

 !
ð24Þ

in which ‘‘-T’’ is the compounded inverse and transpose

matrix operator. It is trivial that (n, g) are corotational

and, thus, pQ(n, g) is invariant. To show that pQ n; g
� �

is isotropic, one can first check that the new n- and g-

axes would assume the existing positive/negative n-
and g-axes when the element connectivity is changed.

As pQ is balanced in its two arguments, the basis of

pQ n; g
� �

would not change with the connectivity.

Hence, pQ n; g
� �

is also isotropic. The good immunity

to mesh distortion is retained as pQ(n,g) is second

order complete in (x, y). The resulting element would

be abbreviated as UQ8*. Of course, other corotational

skew coordinates can also secure the invariance,

isotropy and good immunity to mesh distortion.

The numerical tests including those with unevenly

placed nodes and curved edges used by (Rajendran

and Liew 2003) have been repeated for the three US

Q8 elements, viz., UQ8, UQ8m and UQ8* described

in Sects. 3.1, 3.3 and the present section, respectively.

As their predictions are largely the same, only two sets

of tests are further described here.

Patch Tests, Invariance tests and Isotropy Tests

UQ8, UQ8m and UQ8* pass the patch test prescribed

by Macneal and Harder (1985) for plane elements. To

test whether they are invariant and isotropic, the

element geometry used by (Sze et al. 1992) and shown

in Fig. 2 is considered. The coordinates of A to D are

given with respect to the global coordinates (x, y). The

local Cartesian coordinate frame �x-�y attached to nodes

A and B is rotated about A. The angle between the x-

and �x- axes is denoted as /. All dofs of nodes A and D

are restrained and 100 units of force is applied to node

Fig. 2 Two-dimensional single-element structure for testing

invariance and isotropy
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C along the �x-direction and the displacement of node C

along the same direction are computed. To test

whether the element models are invariant, / equal to

0�, 30�, 60� and 90� are considered. To test whether

the element models are isotropic, the first parametric

coordinate n is taken to be n1 and then n2 as shown in

the figure. It can be seen from Table 1 that UQ8 is

isotropic but not invariant whilst UQ8m is invariant

but not isotropic. Both Q8 and UQ8* are invariant and

isotropic. Under the 2 9 2 integration rule, all

elements possess the well-known incompatible spuri-

ous zero energy mode (Cook et al. 2002) which

disappears when the 3 9 3 integration is employed.

Cantilevers subject to Pure Bending Moment Tests

using cantilevers of different aspect ratios modelled by

regular and distorted meshes are considered by UQ8

(Rajendran and Liew 2003). The displacement solu-

tions are quadratic in x and y. All the US Q8 models

can reproduce the exact solution in these tests

regardless whether the 2 9 2 or 3 9 3 integration

rule is employed.

5 Securing the invariance and isotropy of UH20

An invariant and isotropic US H20 element can be

formulated in way analogous to that of UQ8*. For the

20-node element as shown in Fig. 1b,

x

y

z

8<
:

9=
; ¼

X20
n¼1

Niðn; g; fÞ
xi
yi
zi

8<
:

9=
; ð25Þ

from which one can derive

a1 b1 c1
a2 b2 c2
a3 b3 c3

2
4

3
5¼

ox=on oy=on oz=on
ox=og oy=og oz=og
ox=of oy=of oz=of

2
4

3
5







n¼g¼f¼0

ð26Þ

The 3D non-dimensional skew coordinates analogous

to the 2D ones expressed in (24) are:

�n
�g
�f

8<
:

9=
;¼

a1 b1 c1
a2 b2 c2
a3 b3 c3

2
4

3
5
�T

x

y

z

8<
:

9=
;�

x

y

z

8<
:

9=
;








n¼g¼f¼0

0
B@

1
CA

ð27Þ

The new element employs the trial function matrix

pH(n, g, f) for u, v and w, see (19) for the definition of

pH. It should be remarked that pH(n, g, f) is second

Table 1 The computed displacement of node C along the �x-direction, see Fig. 2

Element model Integration / = 0� / = 30� / = 60� / = 90�

Q8 (same for n = n1 and n = n2) 2 9 2 1.690 1.690 1.690 1.690

3 9 3 1.004 1.004 1.004 1.004

UQ8 (same for n = n1 and n = n2) 2 9 2 2.803 2.555 2.191 2.803

3 9 3 1.161 1.151 1.166 1.161

UQ8m (n = n1) 2 9 2 2.803 2.803 2.803 2.803

3 9 3 1.161 1.161 1.161 1.161

UQ8m (n = n2) 2 9 2 3.336 3.336 3.336 3.336

3 9 3 1.159 1.159 1.159 1.159

UQ8* (same for = n1 and n = n2) 2 9 2 2.315 2.315 2.315 2.315

3 9 3 1.133 1.133 1.133 1.133

Fig. 3 Three-dimensional single-element structure for testing

invariance and isotropy
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order complete in x, y and z. This element will be

abbreviated as UH20*. Though it should be trivial,

(Ooi et al. 2008) did not discuss a US H20 counterpart

of UQ8m, see Sect. 3.3.

The numerical tests in Reference (Ooi et al. 2004)

for the 20-node elements have been repeated. Again,

the predictions of UH20 and UH20* are largely the

same. Only two tests are further described.

Patch tests, invariance tests and isotropy tests

Both UH20 and UH20* pass the patch test in

(Macneal and Harder 1985) for 3D elements. To test

the invariance and isotropy, the problem in Fig. 3 is

employed (Sze et al. 1992). The coordinates of A to

D are given with respect to global coordinates (x, y,

z). The local Cartesian frame x–y–z is attached to the

base of the element and four corner nodes are fully

restrained. Two forces of magnitudes 100 and 200

units are applied respectively to E and F along the

x-direction. The x–z plane is rotated about y anti-

clockwisely by angle/. With the f-axis kept normal to

the x–z-plane, the two connectivity settings leading to

n1 and n2 being the n-axis of the element are

considered. The predicted displacements along the

x-direction at E are computed and reported in Table 2

for different / and n-axes. All elements are evaluated

by the 3rd order quadrature as the supports are not

adequate to suppress the zero energy modes induced

by the 2nd order quadrature. It can be seen from

Table 2 that H20 and UH20* are invariant and

isotropic. Though UH20 is isotropic, it is not invariant.

Isotropy for UH20* is further verified by other

Fig. 4 The 4-node quadrilateral element, rn and rg are the

neutral axes for the bending modes

Table 2 The computed displacement of node E along the �x-direction, see Fig. 3

Element model / = 0� / = 30� / = 60� / = 90�

H20 (same for n = n1 and n = n2) 2.132 2.132 2.132 2.132

UH20 (same for n = n1 and n = n2) 2.428 2.173 2.519 2.428

UH20* (same for n = n1 and n = n2) 2.417 2.417 2.417 2.417

Fig. 5 Two-element cantilever

Fig. 6 Normalized a deflection VA and b stress rXB for the

problem in Fig. 5 when (1) end moment is applied
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combinations of the parametric axes among which f-
axis is not normal to the x–z-plane.

Cantilevers subject to pure bending moment Tests

using 3D cantilevers of different aspect ratios mod-

elled by regular and distorted meshes are considered

by UH20 in (Ooi et al. 2004). The displacement

solutions are quadratic in x, y and z. Both UH20 and

UH20* can reproduce the exact solution in these tests

regardless the 2 9 2 or 3 9 3 integration rule is

employed.

6 Unsymmetric Q4 based on Trefftz functions

In this section, the element formulation for an

unsymmetric Q4 element will be described followed

by a number of numerical examples on the proposed

and other elements.

6.1 Unsymmetric Trefftz formulation for 4-node

quadrilateral plane element

For the Q4 element shown in Fig. 4, the parametric

interpolant for its i-th node at (ni, gi) is Ni = (1 ? nin)
(1 ? gig)/4 which leads to the following interpolated

coordinates (x, y) and test displacement, i.e.,

x

y

� �
¼
X4
i¼1

Ni

xi

yi

� �
¼

x0 þ annþ angngþ agg

y0 þ bnnþ bngngþ bgg

� �
;

du ¼
du

dv

� �
¼
X4
i¼1

Ni

dui
dvi

� �

ð28Þ

Fig. 7 Normalized a deflection VA and b stress rXB for the

problem in Fig. 5 when (2) end shear load is applied

Fig. 8 The 5-element mesh for the cantilever problem shown in

Fig. 5

Fig. 9 The normalized stress along a the upper edge and

b lower edge of the cantilever in Fig. 8 when (1) end moment is

applied
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where

x0 y0
an bn
ang bng
ag bg

2
664

3
775 ¼ 1

4

þ1 þ1 þ1 þ1

�1 þ1 þ1 �1

þ1 �1 þ1 �1

�1 �1 þ1 þ1

2
664

3
775

x1 y1
x2 y2
x3 y3
x4 y4

2
664

3
775

ð29Þ

Asmentioned in Introduction, Trefftz solutions will

be employed as the trial displacement functions. In

this light, two local metric coordinate systems (rn, sn)

and (rg, sg) both with origin at (x0, y0) are introduced.

The rn- and rg-axes are parallel to n- and g-axes at (x0,
y0), respectively, see Fig. 4. Thus,

rn

sn

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2n þ b2n

q anx̂þ bnŷ

�bnx̂þ anŷ

� �
;

rg

sg

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2g þ b2g

q agx̂þ bgŷ

�bgx̂þ agŷ

� � ð30Þ

in which x̂(n,g) = x - x0 = ann ? angng ? agg and

ŷ(n,g) = y - y0 = bnn ? bngng ? bgg.
In hybrid stress elements, the optimal or close to

optimal non-constant stress modes for Q4 are the two

bending modes (Pian and Sumihara 1984) rn; rg; rng
� �

¼ g; 0; 0f g and 0; n; 0f g defined with respect to the

parametric coordinates. They are close to

rrn
rsn
rrnsn

8<
:

9=
; ¼

sn
0

0

8<
:

9=
; and

rrg
rsg
rrgsg

8<
:

9=
; ¼

sg
0

0

8<
:

9=
;

ð31Þ

which arise from the following displacement modes

defined with respect to (rn, sn) and (rg, sg)

urn
usn

� �
¼ 1

�E

2rnsn
�ð�ts2n þ r2nÞ

� �
and

urg
usg

� �
¼ 1

�E

2rgsg
�ð�ts2g þ r2gÞ

� � ð32Þ

in which E and t appear in the material stiffness matrix

for isotropic materials, i.e.

C ¼
�E=ð1� �t2Þ �t�E=ð1� �t2Þ 0

�t�E=ð1� �t2Þ �E=ð1� �t2Þ 0

0 0 G

2
4

3
5

where E = E = elastic modulus, t = t = Poisson’s

ratio for plane stress problems; E = E/(1 - t2),
t = t=ð1� tÞ for plane strain problems; G = E/2/

(1 ? t) is the shear modulus. Now, the trial displace-

ment is taken to be

Table 3 Normalized end deflections for the 5-element canti-

lever problem, see Fig. 8

Element model (1) End moment (2) End shear

vA vB vA vB

Q4/H8 0.457 0.454 0.496 0.494

PS/PT 0.962 0.940 0.960 0.954

TQ4/TH8 1.000 1.000 0.992 0.992

Fig. 10 The normalized stress along a the upper edge and

b lower edge of the cantilever in Fig. 8 when (2) end shear is

applied

Fig. 11 The slender cantilever modelled by trapezoidal ele-

ments, l/h = 5
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ð33Þ

where x̂ ¼ x� xo, ŷ ¼ y� yo, pQ4 is self-defined and,

from (30), the transformation matrices are

Tn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2n þ b2n

q an �bn

bn an

� 	
;

Tg ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2g þ b2g

q ag �bg

bg ag

� 	 ð34Þ

The first six terms represent the rigid body and constant

strain modes. A distinct difference between the trial

displacement modes in the present and those of the

previous US elements is that some of the former modes

are coupled. It would be more involved to derive the

relation between the coefficientsa and the nodal dofs. By
enforcing the interpolation requirement at the four nodes,

pQ4ðn1; g1Þ

..

.

pQ4ðn4; g4Þ

2
664

3
775

a1

..

.

a8

8><
>:

9>=
>;

¼
u1

..

.

u4

8><
>:

9>=
>;

and

u ¼ pQ4ðn; gÞ

pQ4ðn1; g1Þ

..

.

pQ4ðn4; g4Þ

2
664

3
775

�1
u1

..

.

u4

8><
>:

9>=
>;

ð35Þ

in which ui is the nodal displacement vector. As all the

displacementmodes in (33) leads to equilibrating stress,

they can be regarded as Trefftz functions for isotropic

elasticity. Accordingly, the present element can be

termed as a Trefftz unsymmetric element and will be

abbreviated as TQ4. It is worth mentioning that the

present element is based on the single-field virtual work

principle whereas hybrid and most Trefftz elements

employ multiple-fields variational statement (Pian and

Sumihara 1984; Pian and Tong 1986; Yuan et al. 1993;

Sze 2000; Qin 2003; Sze et al. 2004, 2010; Cen et al.

2011; Freitas and Moldovan 2011; Cao et al. 2012).

6.2 Numerical examples

The following four-node quadrilateral element models

will be compared in the benchmark problems.

Q4 the standard isoparametric four-node

quadrilateral plane element.

PS the hybrid-stress element of Pian and Sumihara

(1984).

TQ4 the present Trefftz unsymmetric element.

General speaking, PS is less susceptible to mesh

distortion than the popular QM6-2D incompatible

displacement element (Sze 1992) and therefore other

Table 4 Normalized end deflections for the thin cantilever problem, see Fig. 11

Element model Plane stress, t = 0.25 Plane strain, t = 0.4999

(1) End moment (2) End shear (1) End moment (2) End shear

Q4/H8 0.023 0.027 0.011 0.011

PS/PT 0.164 0.220 0.171 0.228

TQ4/TH8 1.000 0.995 1.000 0.994

Fig. 12 The shear panel loaded by a unit vertical traction at the

free end
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enhanced assumed strain elements. It is also popularly

used for benchmarking new elements. To simplify the

presentation, only Q4, and PS are included in the

comparison with TQ4. The readers would hit ‘‘H8’’

and ‘‘TH8’’ in the comparison. They are the 8-node

hexahedral elements to be discussed in Sect. 7.

6.2.1 Patch tests, invariance tests and isotropy tests

The tests described in Sect. 4 are repeated for TQ4.

TQ4 passes the patch test, and it is invariant and

isotropic.

6.2.2 Two-element cantilever

The 10 9 2 cantilever commonly adopted to examine

the susceptibility to mesh distortion of the four-node

element is shown in Fig. 5. The beam is modelled by

two identical trapezoidal elements. The load cases of

(1) end bending and (2) end shear are considered. The

elastic modulus E and Poisson’s ratio m are taken to be
1500 and 0.25, respectively. Plane stress condition is

assumed. The element distortion is characterized by

the length parameter ‘e’ which is varied between 0 and

4. The normalized deflection at tip A, VA, and the

normalized bending stress at the midpoint of the

horizontal element edge B, rXB, closest to the sliding

support are computed. Under (1) the pure bending, the

TQ4 is able to reproduce the exact displacement and

stress predictions as seen in Fig. 6. Under (2) the end

shear, the exact solutions cannot be reproduced by

TQ4. However, the predictions of TQ4 are still

considerably better than those of PS as seen in Fig. 7.

6.2.3 Five-element cantilever

The cantilever problem in Fig. 5 is now modelled by

five elements as shown in Fig. 8. The longitudinal

stresses under the end bending are plotted along the

upper and lower edge of the cantilever in Fig. 9. The

same stresses under the end shear are plotted in

Fig. 10. On the other hand, the normalized deflections

at the end nodes are tabulated in Table 3. Same as the

previous examples, TQ4 can reproduce the exact

solutions when the cantilever is loaded with end

Table 5 Normalized

predictions for the shear

panel problem, see Fig. 12

Mesh TQ4 Q4 PS

rA(max) rB(min) vC rA(max) rB(min) vC rA(max) rB(min) vC

1 9 1 0.823 0.594 0.936 0.245 0.285 0.249 0.820 0.595 0.698

2 9 2 0.828 0.767 0.949 0.456 0.384 0.494 0.785 0.766 0.882

4 9 4 0.954 0.924 0.978 0.768 0.706 0.764 0.949 0.918 0.961

8 9 8 0.992 0.983 0.993 0.943 0.909 0.922 0.993 0.982 0.989

Fig. 13 The 8-node hexahedral element

Fig. 14 A 10 9 2 9 2 two-element cantilever beam subjected

to (1) end bending and (2) end shear with amesh distortion 1 and

b mesh distortion 2
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bending. Under the end shear, the end deflection of

TQ4 remains highly accurate whilst its stress predic-

tion is still marginally better than that of PS.

6.2.4 Slender cantilever modelled by trapezoidal

elements

The mesh modelling this slender cantilever was

proposed by Macneal and Harder (1985). All

elements are trapezoids as depicted in Fig. 11 and

this problem has coined a locking phenomenon

known as trapezoidal locking. The same supporting

and loading conditions in Fig. 5 are applied here

and normalized end deflections are computed and

listed in Table 4. The predictions of TQ4 are either

exact or very accurate. It is clear that other elements

suffer from the trapezoidal locking. This problem is

also employed to test the dilatational locking by

assuming the plane strain condition and setting the

Poisson’s ratio to 0.4999. The accuracy of PS and

TQ4 are basically unaffected by the nearly material

incompressibility whilst the accuracy of Q4 drops

by more than half.

6.2.5 Shear panel

This is another popular benchmark problem in

which a plane stress trapezoidal panel of unit

thickness is clamped along the left edge and loaded

by a unit vertical traction along the free edge as

shown in Fig. 12. Using different mesh densities,

the predicted maximum principal stress at A

‘‘rA(max)’’, the minimum principal stress at B

‘‘rB(min)’’ and vertical deflection at point C ‘‘vC’’

are computed and normalized by the highly

converged solutions 0.2362, -0.2023 and 23.96,

respectively, reported by (Cen et al. 2011). The

normalized predictions are listed in Table 5. One

Fig. 15 Normalized a deflection VA and b stress rXB for the

cantilever in Fig. 14 b under (1) end pure bending

Fig. 16 Normalized a deflection VA and b stress rXB for the

cantilever in Fig. 14 b under (2) end shear
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can see that TQ4 delivers the highest coarse mesh

accuracy and this point is most obvious in the

displacement prediction.

7 Unsymmetric H8 based on Trefftz functions

In this section, the element formulation for an

unsymmetric H8 element will be described followed

by a number of numerical examples on the proposed

and other elements.

7.1 Unsymmetric Trefftz formulation for 8-node

hexahedral element

Figure 13 portrays the 8-node hexahedral element.

The parametric interpolation function for i-th element

node at (ni, gi, fi) is Ni = (1 ? nin)(1 ? gig)(1 ? fi-
f)/8. Accordingly, the interpolated coordinates (x, y,

z) can be expressed as:

x¼
x

y

z

8><
>:

9>=
>;

¼
X8
i¼1

Ni

xi

yi

zi

8><
>:

9>=
>;

¼
x0þ a1nþ a2gþ a3f

y0þ b1nþ b2gþ b3f

z0þ c1nþ c2gþ c3f

8><
>:

9>=
>;

þ
a4gfþ a5fnþ a6ngþ a7ngf

b4gfþ b5fnþ b6ngþ b7ngf

c4gfþ c5fnþ c6ngþ c7ngf

8><
>:

9>=
>;

ð36Þ

in which (x0, y0, z0) and (ai, bi, ci)s are the average and

linear combinations of (xi, yi, zi)s, respectively. From

(36), the basis vectors at n = g = f = 0 are

½g1; g2; g3� ¼
ox

on
;
ox

og
;
ox

of

� 	




n¼g¼f¼0

¼
a1 a2 a3

b1 b2 b3

c1 c2 c3

2
64

3
75

ð37Þ

In analogous to TQ4, three local Cartesian coordi-

nate systems (ri, si, ti) will be set up to express the

Trefftz displacement functions. The unit vectors eri , esi
and eti along ri, si and ti are taken to be

Table 6 Normalized results for the thick plate problem in

Fig. 17 (regular mesh)

Element

model

Point loading Gravity loading

WO rXB rXO WO rXB rXO

H8 0.397 0.292 1,992/? 0.377 0.239 0.484

OHB 0.996 0.697 3,832/? 1.005 0.579 0.979

PT 1.038 0.708 3,967/? 1.038 0.589 0.999

TH8 1.055 0.665 3,594/? 1.049 0.567 0.969

Table 7 Normalized results for the thick plate problem in

Fig. 17 (irregular mesh)

Element

model

Point loading Gravity loading

WO rXB rXO WO rXB rXO

H8 0.367 0.266 1,888/? 0.345 0.211 0.460

OHB 0.799 0.599 2,612/? 0.818 0.478 0.683

PT 0.968 0.646 3,857/? 0.967 0.514 0.957

TH8 1.057 0.630 4,016/? 1.031 0.511 1.012

Fig. 17 Bachrach’s thick plate problem using a regular mesh.

b irregular mesh
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eri ¼
gi
jgij

; esi ¼
gj � gi
jgj � gij

; eti ¼ eri � esi ð38Þ

where j = mod(i ? 1,3) ? 1. The projected lengths

along the unit vectors are

ri

si

ti

8><
>:

9>=
>;

¼
rðn; g; fÞ
sðn; g; fÞ
tðn; g; fÞ

8><
>:

9>=
>;

¼
eTri
eTsi
eTti

2
64

3
75

x̂

ŷ

ẑ

8><
>:

9>=
>;

¼
eTri
eTsi
eTti

2
64

3
75

a1nþ a2gþ a3f

b1nþ b2gþ b3f

c1nþ c2gþ c3f

8><
>:

9>=
>;

0
B@

þ
a4gfþ a5fnþ a6ngþ a7ngf

b4gfþ b5fnþ b6ngþ b7ngf

c4gfþ c5fnþ c6ngþ c7ngf

8><
>:

9>=
>;

1
CA

ð39Þ

In hybrid stress elements, it has been known

that the twelve optimal or close to optimal non-

constant stress modes for H8 (Pian and Tong

1986) defined with respect to the parametric

coordinates are

0 0 0 0
0 0 0 0
0 0 0 0 0 0

, , , , ,
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

ξ

η

ζ

ηζ
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σ ζ ξ
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σ ξ
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σ
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ð40Þ

Among them, the displacement modes pertinent to

Groups 1, 2 and 3 will be mimicked by using (r1,

s1, t1), (r2, s2, t2) and (r3, s3, t3), respectively. It

can be shown that the following Trefftz displace-

ment modes:
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would lead to the following stress modes:

rn
rg
rf
rgf
rfn
rng

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

si ti 0

0 0 0

0 0 0

0 0 ri
0 0 0

0 0 0

2
6666664

3
7777775
pi

a3iþ4

a3iþ5

a3iþ6

8<
:

9=
; ð42Þ

for isotropic materials. The trial displacement for the

element is taken to be:

u¼
u

v

w

8><
>:

9>=
>;

¼ I3; I3x̂; I3ŷ; I3ẑ;

eTr1
eTs1
eTt1

2
64

3
75
�1

p1;

eTr2
eTs2
eTt2

2
64

3
75
�12

64

p2;

eTr3
eTs3
eTt3

2
64

3
75
�1

p3; I3ngf

3
775

a1

..

.

a24

8><
>:

9>=
>;

¼ pH8ðn;g;fÞ
a1

..

.

a24

8><
>:

9>=
>;

ð43Þ

where pH8 is self-defined. In terms of the nodal

displacement,

u ¼ pH8ðn; g; fÞ
pH8ðn1; g1; f1Þ

..

.

pH8ðn8; g8; f8Þ

2
64

3
75
�1

u1
..
.

u8

8><
>:

9>=
>;
: ð44Þ

It should be remarked that Trefftz displacement

functions mimicking the last three stress modes in

(40) can also be derived as {uri ,usi ,uti} = {risiti,

�s2i ti=ð6� 4tÞ,�sit
2
i =ð6� 4tÞ}. However, for highly

distorted element, the square matrix in (44) can be ill-
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conditioned. The uncoupled ngf-modes in (43) do not

lead to conditioning problem and are, thus, employed.

To enhance the element accuracy, the last three

columns in pH8(n,g,f), immediately after the equal

sign in (44) are scaled by 0.01. The predictions remain

practically constant even if the factor is reduced to

0.0001. Here, the ngf-modes play the role of stabiliz-

ing the matrix. The element is abbreviated as TH8.

7.2 Numerical examples

In this part, benchmark problems are exercised to

assess the performance of TH8. Element models to be

included for comparison are listed below.

H8 the standard isoparametric 8-node hexahedral

element.

PT the hybrid-stress 8-node hexahedral element

of Pian and Tong (1986).

OHB Bachrach’s hexahedral optimized with respect

to bending response (Bachrach 1987).

TH8 the unsymmetric Trefftz 8-node hexahedral

element proposed in the last subsection.

While the predictions of OHB are extracted from

Reference (Bachrach 1987), those of the other ele-

ments are computed using the second order quadra-

ture. PT is less susceptible to mesh distortion than the

popular QM6-3D incompatible displacement element

(Sze 1992) and therefore other enhanced assumed

strain elements. It is also popularly used for bench-

marking new elements.

7.2.1 Patch test, invariance test and isotropy test

The tests in Sect. 5 are repeated. TH8 passes the patch

test. It is also shown to be invariant and isotropic.

7.2.2 Two-element 3D cantilever

Figure 14 depicts a 2 9 2 9 10 cantilever beam

modeled by two elements under two kinds of distor-

tion characterized by length ‘e’. The deflection at A,

VA, and the bending stress at B, rXB, are computed and

normalized by the exact solution. Under the first kind

of distortion, the result yielded by H8, PT and TH8 are

very close to those of Q4, PS and TQ4 presented in

Figs. 6 and 7, respectively. Under the second kind of

distortion, the normalized results are presented in

Figs. 15 and 16 when end moment and end shear are

applied, respectively. TH8 yields far better predictions

than PT when the distortion comes in. In all cases, the

exact solutions are reproduced by TH8 when end

moment is applied.

7.2.3 Five-element cantilever and slender cantilever

The two cantilever problems shown in Figs. 8 and 11

are also considered by H8, PT and TH8. They are

generalized into 3D cantilevers by extruding the mesh

along the width direction and the width is taken to be

the same as the thickness of the beam as in Fig. 14a.

The results yielded by PT and TH8 are basically the

same as those of PS and TQ4, respectively, see Figs. 9

and 10 and Tables 3 and 4. The difference between the

predictions of Q4 and H8 are larger but their predic-

tions are far less accurate than the others. Once again,

the exact solutions are reproduced by TH8 when end

moment is applied.

7.2.4 A thick plate problem

Figure 17 shows a quadrant of the fully clamped plate

modeled by a single layer of sixteen elements. The

irregular mesh is formed by shifting certain nodes by 1

unit in directions at p/4 to the coordinate axes on the x–
y plane (Bachrach 1987). The plate is subjected to (1) a

central point load of 4000 units and (2) the plate’s own

weight of intensity 100 units per unit volume. The

material parameters are E = 107 and m = 0.3. The

reference solution is extracted from (Bachrach 1987)

which is based on the thin plate solution. The

normalized central deflections WO as well as stresses

rXO and rXB on the top face of the plate are listed in

Tables 6 and 7 for regular and irregular meshes,

respectively. Overall speaking, PT and TH8 are the

most accurate and least susceptible to mesh distortion.

Among them, TH8 is slightly less susceptible to mesh

distortion.

7.2.5 Shear panel problem

The shear panel problem in Fig. 12 is repeated by

TH8, H8 and PT. Their predictions are very close to

those of TQ4, Q4 and PS, respectively, see Table 5.

The maximum difference is within 1 %. The
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predictions of the 3D elements are not separately

reported for saving space.

8 Closure

The research community of the finite element method

is always interested in elements with good accuracy

and low susceptible to mesh distortion. Among the

proposed methods, the unsymmetric finite element

method is based on the Petrov–Galerkin formulation.

It employs the compatible parametric interpolants as

the test functions and incompatible metric interpolants

as the trial functions. The first 8-node quadrilateral and

20-node hexahedron unsymmetric elements possess

exceptional immunity to mesh distortion but are not

invariant. In this paper, an efficient approach is

proposed to secure the invariance and isotropy. It also

develops the unsymmetric 4-node quadrilateral and

8-node hexahedral elements, which do not exist in the

literature, by using the Trefftz displacement solutions

defined with respect to selected local metric coordi-

nates. Numerical examples show that the two elements

also possess exceptional immunity to mesh distortion

with respect to other advanced elements of the same

nodal configurations.
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