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Abstract An integrated computational approach is

proposed to investigate the compressive strength of

boron nitride nanotubes (BNNTs). In this approach, an

artificial intelligence (AI) cluster comprising of multi-

gene genetic programming and molecular dynamics

(MD) simulation technique, was specifically designed

to formulate the explicit relationship of compressive

strength of BNNTs with respect to system aspect ratio

(AR), temperature and vacancy defects. It was found

that the novel MD based AI model is able to model the

compressive strength of BNNTs very well, which is in

good agreement with that of experimental results

obtained from the literature. Additionally, we also

conducted sensitivity and parametric analysis to find

out specific influence and variation of each of the input

system parameters on the compressive strength of

BNNTs. It was found that the AR has the most

dominating influence on the compressive strength of

BNNTs.

Keywords Mechanical properties �
Inorganic compounds � Defects � Nanostructures

1 Introduction

Research in boron nitride nanotubes (BNNT) has

attracted significant interest in material science due to

its attractive physical and mechanical properties

(Wang et al. 2010; Griebel and Hamaekers 2007).

The exceptional qualities of BNNT has been widely

studied and investigated to explore its diverse possible

applications in real world. These include applications

in electric circuits such as BNNT-based integrated

circuits, structural composite materials and hydrogen

storage applications (Mohajeri and Omidvar 2014;

Yan et al. 2014; Lu et al. 2014). In addition, BNNT is

an ideal candidate for potential applications in nano-

biological and nano-level drug delivery devices

(Ferreira et al. 2013; Del Turco et al. 2013). These

applications of BNNT requires a critical understand-

ing of its mechanical properties which are key to

design future BNNT based nano-fluidic devices. In

addition, the increasing demand to manufacture

BNNT based nano-components for electronics indus-

try is one of the major incentives to study the

mechanical properties of BNNT.
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Numerous studies have been undertaken to predict

the mechanical properties of BNNT using experi-

mental and computational techniques. Tang et al.

(2011) determined the mechanical properties of

BNNT under tension using in situ transmission

electron microscopy and molecular dynamics (MD)

simulation approach. They found that the mechanical

properties and deformation behaviors are correlated

with the interfacial structure under atomic resolution,

which clearly demonstrates a geometry strengthening

effect. Liew and Yuan (2011) studied the structural

performance of double-walled BNNT under com-

pression at high temperatures using computational

modeling approach. They found that the compressive

strength and thermal stability of BNNTs are superior

to carbon nanotubes (CNT). Shokuhfar et al. (2012)

studied the buckling strength of BNNTs at various

temperatures using MD simulation technique. They

found that the buckling strength generally decreases

at high temperatures. Furthermore, the buckling

resistance of BNNT was also found to decrease with

increasing the length of BNNT. The effect of vacancy

defects on the structural properties of BNNT were

studied by Ebrahimi-Nejad et al. (2013). It was found

from their analysis that the compressive strength of

BNNT decreases with increasing vacancy defect

concentration in BNNT structure. The compressive

strength of BNNT for hydrogen storage applications

was analyzed by Ebrahimi-Nejad and Shokuhfar

(2013). They found that hydrogen storage decreases

the room temperature buckling strength of BNNT.

The above mentioned literature studies clearly indi-

cate that the compressive strength of BNNTs depends

on various factors such as system size, chirality,

temperature and defects. Hence, understanding the

influence of each factor on the compressive strength

of BNNTs is important for optimizing the elastic

properties of BNNT. One way of optimizing system

properties of nanoscale materials is to form an

explicit model formulation which can then be used

to extract system input variables for desirable mate-

rial performance.

Theoretical studies based on MD simulation has

become more popular to study the compressive

strength of BNNTs when compared to that of labora-

tory based experiments. This is due to the reason that

MD simulation allows rapid reconstruction of defects,

altering of chirality and system size (Wong and

Vijayaraghavan 2012a). This is useful to understand

the influence of system parameters on the mechanical

properties of BNNT. Hence, MD simulation models

can be used as a viable alternative compared to time

consuming and expensive experiments for estimating

mechanical properties at nanoscale (Vijayaraghavan

et al. 2013a, b, 2014; Vijayaraghavan and Wong

2013a, b). In addition, MD simulation is capable of

generating accurate solutions in predicting mechanical

and thermal properties of nanoscale system with

minimal cost and high rapidity (Vijayaraghavan and

Wong 2013c, d, 2014; Wong and Vijayaraghavan

2012b, 2014). However, the MD simulation does not

provide information on relationship between the input

parameters and the generated output. Artificial intel-

ligence (AI) techniques can prove to be a useful tool

for predicting the relationship between the input

parameters and generated output. However, they

cannot be used to predict system properties in

nanoscale materials. Additionally, several novel

approaches of soft computing methods have been

proposed such as hybridizing differential evolution

algorithm with receptor editing property of immune

system (Yildiz 2012, 2013a, b), artificial bee colony

algorithm with Taguchi’s method (Yildiz 2013c, d),

differential algorithm with Taguchi’s method (Yildiz

2013e), cuckoo search algorithm (Yildiz 2013f) and

immune algorithm with hill climbing local search

algorithm (Yildiz 2009a, b) to optimize the perfor-

mance characteristics of the materials.

Therefore, there is a need to develop an integrated

MD based AI simulation technique for modeling the

material properties of nanoscale materials such as

BNNT. The new integrated approach combines pow-

erful advantages of accuracy and low cost of MD

simulation with the explicit model formulation of AI

techniques. These methods require input training data

which can be obtained from the MD simulations which

is based on a specific geometry and temperature.

Considering input data, the AI technique can then be

able to generate meaningful solutions for the compli-

cated problems (Vijayaraghavan et al. 2013a, b).

Additionally, among the various available AI tech-

niques, an evolutionary approach, namely, Multi-

Gene Genetic Programming (MGGP) offers the

advantage of a fast and cost-effective explicit formu-

lation of a mathematical model based on multiple

variables with no existing analytical models (Cevik

et al. 2010; Gandomi and Alavi 2011). It is to the best

of author’s knowledge that limited or no work exists
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on the application of AI based MD simulation model

on evaluating mechanical properties of the nanoscale

system. Additionally, the potential future applications

of BNNT in electronics industry require a thorough

understanding and investigation of various input

parameters on the compressive strength of BNNT.

Hence, the main purpose of the present study is to

investigate the compressive strength of BNNT. The

proposed MD based AI approach is employed to

investigate the effect of aspect ratio (AR), temperature

and vacancy defects on the compressive strength of

BNNT. The functional expression (model) of com-

pressive strength with respect to AR, temperature and

vacancy defects is obtained. The performance of the

proposed model is evaluated against the actual data

obtained from literature. Further the parametric and

sensitivity analyses conducted is used to validate the

robustness of the proposed model by unveiling

important hidden parameters and non-linear

relationships.

2 Integrated MD based AI computational model

The compressive characteristics of BNNTs described

in this work is modeled entirely using an integrated

MD based AI simulation approach as shown in Fig. 1.

In this approach, the MD is integrated in the paradigm

of popular AI method, MGGP. For understanding the

notion of an integrated approach, each of MD and

MGGP method is discussed in the following.

The empirical Tersoff (1988) potential is used to

model the compressive characteristics of BNNT based

on potential parameters for describing the covalent

bonding of boron and nitride atoms developed by Albe

et al. (1997) and Albe and Möller (1998). These

potential parameters are determined from experimen-

tal studies involving impact of nitrogen on hexagonal

boron nitride target (Zhang et al. 2009a) and ion-beam

deposition on boron nitride thin films (Zhang et al.

2008). The Tersoff potential is described mathemat-

ically as,

Initial population of 
models

Evaluate performance 
of models

Genetic operations on 
selected models

New population

Evaluate performance 
of models

Check termination criterion?

Select the best model based 
on minimum training error

Yes

No

Start

Stop

Data set generated 
using MD simulation

Evaluate the performance of 
best model on testing data

Fig. 1 Mechanism of MD

based AI approach for

modelling compressive

strength of BNNTs
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ETersoff ¼
1

2

X

i

X

i6¼j

fcutðrijÞ AijfRðrijÞ � BijfAðrijÞ
� �

ð1Þ

where rij represents scalar distance between the atoms

i and j, fcut(rij) represents the cutoff function, fR and fA
denotes the repulsive and attractive pair terms respec-

tively. The Aij and Bij terms are used to include the

Tersoff empirical bond order between the atoms.

The data obtained from the MD simulation is

further fed into MGGP cluster. The key difference

between GP and the MGGP is that, in the latter, the

model participating in the evolution is a combina-

tion of several sets of genes/trees. GP based on

Darwin’s theory of ‘survival of the fittest’ finds the

optimal solution by mimicking the process of

evolution in nature Koza (1994). Due to which,

MGGP has been extensively applied for solving

symbolic regression problems of various systems

(Garg et al. 2014a, b, c, d).

The initial population of models is obtained by

randomly combining the elements from the function

and terminal sets. The elements in the function set can

be arithmetic operators (?, -, /, 9), non-linear

functions (sin, cos, tan, exp, tanh, log) or Boolean

operators. The elements of the terminal set are input

process variables and random constants. The present

study has three input process variables, and, therefore

these are chosen as elements of terminal set. The

constants are chosen randomly in the range as

specified by the user since these accounts for the

human or experimental error. The performance of the

initial population is measured using the fitness func-

tion, which compares the predicted values of the

MGGP model to that of the actual values. Fitness

function must be minimized for obtaining better

solutions. Typically used fitness function, namely,

root mean square error (RMSE) is given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Gi � Aij j2

N

s

ð2Þ

where Gi is the valued predicted of ith data sample by

the MGGP model, Ai is the actual value of the ith data

sample and N is the number of training samples.

The performance of the initial population is eval-

uated and the termination criterion is checked. The

termination criterion is specified by the user and is the

maximum number of generations and/or the threshold

error of the model. If the performance does not match

the criterion, the new population is generated by

performing the genetic operators on the selected

individuals of the initial population. Genetic operators

applied are crossover, mutation and reproduction.

Tournament selection method is used to select the

individuals for the genetic operations. This selection

method maintains genetic diversity in the population

and thus avoids local/premature convergence. Tour-

nament sizes of 2, 4 and 7 are preferred. The models

with lowest fitness value reproduce or copied in the

next generation. The crossover operation, namely,

subtree crossover is used. Figure 2 shows the func-

tioning of subtree crossover in which the branch of the

two models is chosen randomly and swapped. The

mutation used is subtree mutation (Fig. 3) in which the

branch of the model is replaced with the newly

randomly generated model/tree. As recommended by

Koza (1994), the probability rate of reproduction,

crossover and mutation kept is 85, 10 and 5 %

respectively. This indicates that most of the new

population came from the application of crossover

operation. The iterative phenomenon of generating

new population continues as long as the termination

criterion is met. The best model is selected based on

minimum RMSE and its performance is evaluated on

testing data.

3 Modeling mechanical loading of BNNT structure

The BNNT structure is first thermally equilibrated in

an NVT ensemble to release any residual stresses. The

simulations are carried out by maintaining the desired

system temperature. Six temperatures ranging from 0

to 1,500 K are considered in our study to gather the

required data of mechanical strength. The mechanical

strength in our study is defined as the maximum

compressive force that BNNT structure can sustain

under compression. The temperature stability of the

system is attained by using the Nose–Hoover thermo-

stat (Hoover 1985; Nose 1984). Following equilibra-

tion, the SWCNT is subjected to compressive loading

as shown in Fig. 4. It can be seen from Fig. 4 that the

end atoms enclosed inside the red rectangle is

subjected to a constant inward displacement (strain

rate = 0.001 ps-1). The system is allowed to relax

after every 1,000 time steps such that the atoms attain

the favorable minimum energy positions. The inward
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velocity and the trajectories of end atoms are calcu-

lated and the atoms are subsequently shifted to the new

position. The remaining atoms are relaxed in an NVT

ensemble and the procedure is repeated until failure

occurs. We used a total of 600,000 time steps

(including 200,000 time steps for initial equilibration)

with each time step equivalent to 1 fs. The snap shot of

computer simulation of compressing the BNNT

structure is shown in Fig. 5. It can be seen from this

figure that when no force is applied, the BNNT

maintains its stable structure. However, application of

compressive force results in buckling that causes kinks

and fins to be formed along the surface of BNNT.

Figure 6 shows the variation of the engineering stress

of BNNT with strain resulting from our computer

simulation. The variation of engineering stress with

strain from our simulation model agrees well with the

experimental results of Tang et al. (2011) which

confirms the accuracy of our study.

The effect of size on mechanical strength of BNNTs

is studied by varying the AR (ratio of length to

diameter of the BNNT). The diameter of BNNT is

varied by changing the chirality of BNNT structure.

The effect of temperature is studied by carrying out the

mechanical loading of BNNT at six different temper-

atures, viz. 0, 300, 600, 900, 1,200 and 1,500 K. The

influence of vacancy defects on the mechanical

strength of BNNT is studied by manually reconstruct-

ing vacancy defects ranging from 1 to 4 missing atoms

in the perfect hexagonal lattice of BNNT.

4 Results and discussion

4.1 Effect of AR of BNNT

The mechanical strength of BNNTs with various AR is

described in this section. As defined in Sect. 3, the

measure of mechanical strength is defined by the

maximum compressive force that the BNNT can

sustain under compression. The variation of maximum

compressive force with AR of BNNT is described in

Fig. 7. It can be noted from this figure that the

maximum compressive force shows a decreasing trend

with AR of BNNT which is in perfect agreement with

previous studies on compression of nanotubes (Wong

and Vijayaraghavan 2014; Liew et al. 2004). This is

because for a given diameter, increasing the AR

sin

x1

-

+

5

+

2 x2 4

/

x1

× +

3 x2

GP model : 5+sin(x1)-2+x2 GP model: 4x1/(3+x2)

sin

x1

-

+

5

×

4 x1 2

/

x2

+ +

3 x2
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GP model: 2+x2/3+x2

New Children

Branch of GP models
exchanged

Fig. 2 Subtree crossover

operation
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6 x2
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sin

x1

+

×

3

+
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+
+
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Child

GP model: 7+x1+6+x2

ReplacedFig. 3 Subtree mutation

operation

Fig. 4 Procedure of mechanical loading of BNNT under compression. The end atoms enclosed within the red colored rectangle is

subjected to inward displacement to effect compression. (Color figure online)

Fig. 5 Snap shot of

mechanical testing of BNNT

under compression. The

BNNT maintains a stable

structure at strain e = 0 (a),

further application of

compressive forces results

in formation of kinks and

fins which distorts the

BNNT structure at strain

e = 4.2 (b)
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increases the length of BNNT. Hence BNNTs with

higher ARs are comparatively more slender to that of

small AR stocky BNNTs. The slenderness will result

in lateral bending of the BNNT structure which

decreases the ability of BNNT to withstand pure axial

compression. Additionally, we note that bigger

BNNTs can sustain large compressive force compared

to small diameter BNNT. This could be explained due

to the reason that increasing the diameter results in an

increase in cross-sectional area of BNNT that

improves the compression characteristic of BNNT.

4.2 Effect of temperature

The effect of temperature on the mechanical strength

of BNNTs is also studied in our work. The effect of

temperature is considered by varying the simulation

temperature from T = 0 K to T = 1,500 K in steps of

300 K. The variation of maximum compressive force

of BNNT with temperatures for various ARs is shown

in Fig. 8. We note from this figure that the mechanical

strength of BNNTs decreases with increasing temper-

ature. This is due to the reason that increasing the

temperature of BNNT will result in greater thermal

vibration of atoms which correspondingly increases

the thermal stress of BNNT. This increase in thermal

stress will in turn decrease the compressive charac-

teristics of BNNT. Additionally, the percentage

decrease in compressive force of BNNT due to

increase in temperature with varying ARs is listed in

Table 1. We see from this table that a bigger BNNT

(i.e. with small AR) is more sensitive to temperature

compared to that of a smaller BNNT (i.e. with large

AR). This phenomenon as explained by Zhang and

Shen (2007) is probably due to reason that the onset of

buckling is caused by perturbations and disturbances

along the tube wall of BNNT. Increasing the temper-

ature will result in larger amplitude of thermal

oscillations that correspondingly results in wide

disturbances over a large surface area (in BNNTs

with large tube diameter) which assists in faster

buckling of bigger BNNTs.

Fig. 6 Plot showing the variation of engineering stress with

strain of BNNT. The data obtained from our computer

simulation agrees well with experimental data of Tang et al.

(2011) validating the accuracy of our simulation model

Fig. 7 Compressive force of BNNTs with various ARs at

temperature, T = 0 K. The data is grouped based on the

diameter of BNNT

Fig. 8 Compressive force of BNNTs for temperatures ranging

from 0 to 1,500 K. The data is grouped based on the AR of

BNNT

The elastic properties of BNNTs 7
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4.3 Effect of vacancy defects

The effect of defects on the mechanical strength of

BNNT is taken into account by constructing vacancy

defects in the geometry of BNNT. The variation of

compressive force of BNNTs with varying vacancy

concentrations is shown in Fig. 9. The compressive

force of BNNT decreases with increasing vacancy

defect concentration in BNNT. The variation of

compressive force with vacancy defects predicted

from our study is in qualitative agreement with

previous studies on compressive characteristics of

nanotubes (Zhang et al. 2009; Wong 2010). We also

note from Fig. 9 that smaller BNNTs are more

susceptible to vacancy defects compared to that of

bigger BNNTs. This is because the vacancy defect

occupies a much larger surface area in smaller BNNT

compared to that of bigger BNNTs. This increase in

surface area results in lesser number of bonds which

can hold the structure of BNNT. This ultimately

results in larger drop in the compressive force of

BNNT.

4.4 Description of data

Data obtained from the MD simulations comprise of

three input process variables i.e., AR of BNNTs (x1),

temperature (x2), number of vacancy defects (x3) and

the one output process variable, namely, the compres-

sive strength (y1). 47 data points for BNNTs are

obtained from the MD simulations as discussed in

Sects. 4.1 and 4.2. Nature of the data points collected is

shown in Table 2. Selection of the training samples

affect the learning phenomenon of the proposed

model. In this work, 80 % of the total samples are

chosen randomly as training samples with the remain-

ing used as the set of the test samples. Data is then fed

into cluster of the proposed model.

In the present work, GPTIPS (Hinchliffe et al.

1996; Searson et al. 2010) is used to perform the

implementation of proposed approach for the evalu-

ation of compressive strength of BNNTs. Several

applications of this approach is discussed (Garg et al.

2014e, f, g, h; Garg and Tai 2013). Approach is applied

to the data set as shown in Table 1. For the effective

implementation of the proposed approach, the param-

eter settings are adjusted using the trial-and-error

method (see Table 3). Wide range of elements is

chosen in the function set so as to generate the

mathematical models of different sizes. Depending on

the problem, the values of population size and

generations are set. The size and variety of forms of

the model to be searched in the solution space is

determined by the maximum number of genes and

depth of the gene. Based on collection of good number

of data samples for the BNNTs, the maximum number

of genes and maximum depth of gene is chosen at 8

and 6 respectively. The performance of the best model

(see Eq. 3) selected is shown in the following section.

In this model, x1, x2 and x3 are AR, temperature and

number of vacancy defects for the BNNTs.

Table 1 Percentage decrease in compressive force due to

increasing temperature from T = 0 K to T = 1,500 K for

select ARs of BNNT

Aspect ratio Percentage decrease in

compressive force of BNNT

due to increasing temperature

from T = 0 K to T = 1,500 K

4.746 51.72

3.318 39.42

1.483 30.65

Fig. 9 Compressive force of BNNTs of select ARs with

varying vacancy defect concentrations at temperature, T = 0 K

8 V. Vijayaraghavan et al.
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4.5 Performance evaluation of proposed MD

based AI model to that of actual results

The results obtained from the MD based AI model is

illustrated in Fig. 10 on the training and testing data.

Performance of the proposed model is evaluated

against the actual results of Ebrahimi-Nejad and

Shokuhfar (2013) using the five metrics: the square

of the correlation coefficient (R2), the mean absolute

percentage error (MAPE), the RMSE, relative

error (%) and multi-objective error function (MO)

given by

R2 ¼
Pn

i¼1 ðAi � AiÞðMi �MiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðAi � AiÞ2

Pn
i¼1 ðMi �MiÞ2

q

0

B@

1

CA

2

ð4Þ

MAPE ð%Þ ¼ 1

n

X

i

Ai �Mi

Ai

����

����� 100 ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Mi � Aij j2

N

s

ð6Þ

Relative error ð%Þ ¼ Mi � Aij j
Ai

� 100 ð7Þ

Multiobjective error ¼ MAPE þ RMSE

R2
ð8Þ

Table 2 Descriptive statistics of the input and output process variables obtained from MD simulations for BNNTs

Statistical parameter Aspect ratio (x1) Temperature (x2) Number of vacancy defects (x2) Compressive strength (y)

Mean 3.04 627.65 5.36 3,562.38

Standard error 0.19 64.98 0.50 280.88

Median 3.31 550 6 4,271.71

Standard deviation 1.36 445.48 3.46 1,925.63

Variance 1.85 198,457.44 12.01 3.70

Kurtosis -1.59 -0.86 -1.02 -0.85

Skewness 0.01 0.47 -0.10 -0.26

Minimum 1.48 0 0 61.00

Maximum 4.74 1,500 12 7,016

Table 3 Parameter settings for proposed MD based AI model

Parameters Values assigned

Runs 8

Population size 100

Number of generations 100

Tournament size 3

Max depth of tree 6

Max genes 8

Functional set (F) (Multiply, plus, minus, plog,

tan, tanh, sin, cos exp)

Terminal set (T) (x1, x2, x3, [-10 10])

Crossover probability rate 0.85

Reproduction probability rate 0.10

Mutation probability rate 0.05

MD AI Model ¼ 7075:9395þ 0:15325ð Þ � exp 4:751686ð Þð Þð Þ þ exp plog x2ð Þð Þð Þð Þ
þ 29:9508ð Þ � tan cos plog x2ð Þð Þð Þð Þ þ plog cos exp x3ð Þð Þð Þ � sin x3ð Þ þ x1ð Þð Þð Þð Þð Þð Þ
þ �0:010533ð Þ � exp x3ð Þð Þ � cos exp x3ð Þð Þð Þ � sin 4:798872ð Þð Þð Þð Þð Þ � cos x3ð Þð Þ � sin 4:798872ð Þð Þð Þð Þð Þ
þ �59:0461ð Þ � x1ð Þ � x1ð Þð Þ � tan 4:428378ð Þð Þð Þð Þ
þ �53:8336ð Þ � plog plog cos exp x3ð Þð Þð Þ � cos x3ð Þ þ x1ð Þð Þð Þð Þð Þð Þ
þ �85:7442ð Þ � x3ð Þ þ x3ð Þ � x1ð Þð Þð Þ þ x3ð Þð Þ
þ �242:8619ð Þ � tanh plog cos exp x3ð Þð Þð Þ � sin x3ð Þ þ x1ð Þð Þð Þð Þð Þð Þ
þ 61:3814ð Þ � sin x3ð Þ þ x1ð Þð Þð Þ � sin x3ð Þ þ x1ð Þð Þ þ x1ð Þð Þð Þð Þ ð3Þ
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where Mi and Ai are the predicted and actual values

respectively, Mi and Ai are the average values of the

predicted and actual respectively and n is the number of

training samples. Since, the values of R2 do not change

by changing the models values equally and the functions:

MAPE, RMSE and relative error only shows the error

and no correlation. Therefore, a MO error function that is

a combination of these metrics is also used.

The result of the training phase shown in Fig. 10a

indicates that the proposed model have impressively

learned the non-linear relationship between the input

variables and compressive strength with high correla-

tion values and relatively low error values. The result

of the testing phase shown in Fig. 10b indicates that

the predictions obtained from the MD based AI model

are in good agreement with the actual data, with

achieved values of R2 as high as 0.98.

MO values of the proposed model are computed on

the training and testing data as shown in Table 4. The

descriptive statistics of the relative error of the proposed

model are shown in Table 5, which illustrates error

mean, standard deviation (SD), standard error of mean

(SE mean), lower confidence interval (LCI) of mean at

95 %, upper confidence interval (UCI) of mean at 95 %,

median, maximum and minimum. The lower values of

range (UCI–LCI) of the confidence intervals of the

proposed model indicates that it is able to generalize the

compressive strength values satisfactory based on the

variations in AR, temperature and incursion of defects.

Goodness of fit of the proposed model is evaluated

based on the hypothesis tests and shown in Table 6.

These are t tests to determine the mean and f tests for

variance. For the t tests and the f tests, the P value of

the model is[0.05, so there is not enough evidence to

conclude that the actual values and predicted values

from the model differ. Therefore, the proposed model

has statistically satisfactory goodness of fit from the

modeling point of view.

Thus, from the statistical comparison presented, it

can be concluded that the proposed MD based AI

Fig. 10 Performance of the MD based AI model for the BNNTs

on training and testing data

Table 4 Multi-objective error of the MD based AI model

MD based AI model Training data Testing data

BNNTs 54.84 59.25

Table 5 Descriptive statistics based on the relative error (%) of the MD based AI model

MD based AI model Count Mean LCI 95 % UCI 95 % SD SE mean Median Maximum Minimum

BNNTs 47 2.31 1.16 3.46 3.90 0.56 1.41 25.55 1.41

Table 6 P values to evaluate goodness of fit of the MD based

AI model

95 % CI BNNTs

Mean paired t test 0.98

Variance F test 0.97
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model is able to capture the dynamics of the interac-

tive effect of the AR, temperature and the number of

defects on the compressive strength of BNNTs.

4.6 Sensitivity and parametric analysis of the MD

based AI model

Sensitivity and parametric analysis about the mean is

conducted for validating the robustness of our

proposed MD based AI model. The sensitivity analysis

(SA) percentage of the output to each input parameter

is determined using the following formulas:

Li ¼ fmax xið Þ � fmin xið Þ ð9Þ

SAi ¼
LiPn
j¼1 Lj

� 100 ð10Þ

where fmax(xi) and fmin(xi) are, respectively, the

maximum and minimum of the predicted output over

the ith input domain, where the other variables are

equal to their mean values.

Figure 11 shows the plots of the sensitivity results

of input variables in the prediction of compressive

strength of BNNTs. From Fig. 11a, b, it is clear that

the process input variable, namely the AR, has the

greater impact on the compressive strength of BNNTs

followed by number of defects and temperature. This

reveals that by regulating the AR of BNNTs, a greatest

variation in compressive strength of BNNTs can be

achieved. The parametric analysis provides a measure

of the relative importance among the inputs of the

model and illustrates how the compressive strength of

BNNTs varies in response to the variation in input

variables. For this reason, on the formulated MD based

AI model, the first input is varied between its

mean ± definite number of SDs, and the compressive

strength is computed, while, the other input is fixed at

Fig. 11 Amount of impact of input variables to the compres-

sive strength of BNNT

Fig. 12 Parametric

analysis of the MD based AI

model showing the effect of

variation of compressive

strength in respect to input

variables for BNNT

The elastic properties of BNNTs 11
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its mean value. This analysis is then repeated for the

other inputs. Figure 12 displays the plots generated for

each input variable and the compressive strength of

BNNTs. These plots reveal that, for example, the

compressive strength decreases with an increase in all

three input variables. The analysis complies well in

agreement with that of studies conducted by Ebrahimi-

Nejad and Shokuhfar (2013). From the Fig. 12, we can

then select the optimal values of the input variables,

which optimises the compressive strength. In this way,

our proposed MD based AI model can be used to

reveals insights on the phenomenon of impact on the

compressive strength with variations in AR, temper-

ature and number of defects.

5 Conclusions

The present work discusses the experimental and MD

based studies conducted for the evaluation of com-

pressive strength of nanoscale materials. Alterna-

tively, we proposed the MD based AI approach and

explored its ability in simulating the compressive

strength characteristic of BNNTs based on AR,

temperature and number of defects. The results show

that the predictions obtained from the proposed model

are in good agreement with the actual data of

Ebrahimi-Nejad and Shokuhfar (2013). Based on the

sensitivity and parametric analysis, the important

process parameters and the hidden non-linear rela-

tionships are unveiled, which further validate the

robustness of our proposed model. The higher gener-

alization ability of the proposed model obtained is

beneficial for experts in evaluation of compressive

strength in uncertain input process conditions. An MD

based AI method evolve model (see Eq. 3) that

represents the explicit formulation between the com-

pressive strength and input process parameters. Thus,

by using the MD based AI model, the vital economic

factors such as time and cost for estimating the

compressive strength using the trial-and-error exper-

imental approach can be reduced.

The present work illustrates the use of proposed

approach to compute the effect of AR, temperature

and number of defects on the compressive strength of

BNNTs. The significance of the work includes the

development of explicit mathematical formulation,

which could be used by engineers for estimating the

compressive strength based on AR, temperature and

number of defects, and in-turn, will be useful for their

design purposes. However, further work is needed to

estimate the compressive strength for the other types

of hybridized BNNTs and graphene structures and

their interactions with water and evaluate any differ-

ences to those of the current study.
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