
Hygrothermal analysis of antisymmetric cross-ply laminates
using a refined plate theory

A. M. Zenkour • D. S. Mashat • R. A. Alghanmi

Received: 23 April 2013 / Accepted: 17 January 2014 / Published online: 29 January 2014

� Springer Science+Business Media Dordrecht 2014

Abstract The effect of hygrothermal conditions on

the antisymmetric cross-ply laminates has been inves-

tigated using a unified shear deformation plate theory.

The present plate theory enables the trial and testing of

different through-the-thickness transverse shear-

deformation distributions and, among them, strain

distributions do not involve the undesirable implica-

tions of the transverse shear correction factors. The

differential equations of laminated plates whose

deformations are governed by either the shear defor-

mation theories or the classical one are derived.

Displacement functions that identically satisfy bound-

ary conditions are used to reduce the governing

equations to a set of coupled ordinary differential

equations with variable coefficients. A wide variety of

results is presented for the static response of simply

supported rectangular plates under non-uniform sinu-

soidal hygrothermal/thermal loadings. The influence

of material anisotropy, aspect ratio, side-to-thickness

ratio, thermal expansion coefficients ratio and stacking

sequence on the hygrothermally induced response is

studied.

Keywords Hygrothermal/thermal conditions �
Unified theory � Anti-symmetric � Laminated

plates

1 Introduction

The composite materials are widely used in civil,

aerospace, automobile and other engineering fields

due to their advantage of high stiffness and strength to

weight ratio. With the ever-increasing applications of

laminated composites in environmental conditions

hygrothermal behavior of such laminates has attracted

considerable attention. During the operational life, the

variation of temperature and moisture reduces the

elastic moduli and degrades the strength of the

laminated material. As a result, a careful evaluation

of the effects of environmental exposure is required to

find the nature and extent of their deleterious effects

upon performance.

Sai Ram and Sinha (1991, 1992) have studied the

hygrothermal effects on the bending and free vibration

behavior of laminated composite plates using the first-

order shear deformation theory and employing finite

element method. The effects of moisture and temper-

ature on the deflections and stress resultants are
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presented for simply supported and clamped anti-

symmetric cross-ply and angle-ply laminates using

reduced lamina properties at elevated moisture con-

centration and temperature. Lee et al. (1992) have

studied the influence of hygrothermal effects on the

cylindrical bending of symmetric angle-ply laminated

plates subjected to uniform transverse load for differ-

ent boundary conditions via classical laminated plate

theory and von-Karman’s large deflection theory. The

material properties of the composite are assumed to be

independent of temperature and moisture variation. It

has been observed that the classical laminated plate

theory may not be adequate for the analysis of

composite laminates even in the small deflection

range. However, studies of temperature and moisture

effects on the bending of rectangular plates based on

the shear deformation theories are limited in number,

and all these studies assumed perfectly initial config-

urations (Sai Ram and Sinha 1991, 1992; Pipes et al.

1976). Many studies based on classical plate theory of

thin rectangular plates subjected to mechanical or

thermal loading or their combinations as well as the

hygrothermal effects are presented in the literature

(Sai Ram and Sinha 1992; Whitney and Ashton 1971;

Bahrami and Nosier 2007).

Rao and Sinha (2004) have studied the effects of

moisture and temperature on the bending characteris-

tics of thick multidirectional fibrous composite plates.

The finite element analysis accounts for the hygro-

thermal strains and reduced elastic properties of

multidirectional composites at an elevated moisture

concentration and temperature. Deflections and stres-

ses are evaluated for thick multidirectional composite

plates under uniform and linearly varying through-the-

thickness moisture concentration and temperature.

Results reveal the effects of fiber directionality on

deflection and stresses. Wang et al. (2005) have

studied the response of dynamic interlaminar stresses

in laminated composite plates with piezoelectric

layers using an analytical approach. Benkhedda et al.

(2008) have proposed an analytical approach to

calculate the hygrothermal stresses in laminated

composite plates, and took into account the change

of mechanical characteristics due to moisture and

temperature. In their study, the distribution of the

transient in-plane stresses through the thickness of

laminates is presented, whereas the transverse stresses

were not taken into account. Ameur et al. (2009) have

analyzed the problem of interfacial stresses in steel

beams strengthened with bonded hygrothermal aged

composite laminates by using linear elastic theory.

From the literatures reviewed, it can be found that the

research on local hygrothermal stresses of cross-ply

laminates and sandwich plates subjected to tempera-

ture and moisture effects seems to be lacking, which is

the problem to be addressed in this paper.

The so-called equivalent single-layer models, such as

classical and shear deformation theories, have been

developed for the analysis of laminated plates. There are

additional models have effectively been employed in

developing a two-dimensional model for laminated

plates, which is capable of determining the in-plane and

interlaminar stresses such as the layerwise (Reddy 1987)

and zig-zag (Carrera 2003 and all references therein)

theories. The object of this paper is to study the

deflections and stresses of antisymmetric cross-ply

laminates under sinusoidally non-uniform distribution

temperature and/or sinusoidally non-uniform distribu-

tion moisture and/or sinusoidally distributed transverse

mechanical load. A unified theory that takes into

account the effect of transverse normal strain of

laminated composite plates is presented. The governing

equations are converted into a single-order system of the

equations. Analytical solutions for simply supported

laminated plates are developed using the Navier’s

procedure and separation of variable technique. Numer-

ical results for deflection and stresses are presented.

2 Theoretical development

Consider a fiber reinforced rectangular laminated plate

occupying the region [0, a] 9 [0, b] 9 [-h/2, ?h/2]

in the unstressed reference configuration (see Fig. 1).

The mid-plane is defined by z = 0 and its external

bounding planes being defined by z = ±h/2. The plate

composed of n orthotropic layers oriented at angles h1,

h2,…,hn. The material of each layer is assumed to

possess one plane of elastic symmetry parallel to the

x–y plane. Perfect bonding between the orthotropic

layers and temperature-independent mechanical, ther-

mal and moisture properties are assumed. The plate

subjected to a transverse static mechanical load

q(x, y) and temperature field T(x, y, z) as well as

moisture concentration C(x, y, z).

The displacement field at a point (x, y, z) in the

laminated plate can be expressed as (Zenkour 2005b,

2007, 2008):
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uxðx; y; zÞ ¼ u� z
ow

ox
þWðzÞux;

uyðx; y; zÞ ¼ v� z
ow

oy
þWðzÞuy;

uzðx; y; zÞ ¼ wþW0ðzÞuz;

9
>>>>>=

>>>>>;

ð1Þ

where (ux, uy, uz) are the displacements along x, y, and

z directions, respectively; (u, v, w) are the in-plane

displacements; (/x, /y) are rotations of the normal to

the middle plane about y-axes and x-axes, respec-

tively; /z is additional displacement account for the

effect of normal stress. All of the generalized

displacements (u, v, w, /x, /y, /z) are functions of

x and y. The displacement field can be obtained in the

case of classical plate theory (CPT) by putting:

WðzÞ ¼ 0 and uz ¼ 0; ð2Þ

the case of first-order (or uniform) shear deformation

plate theory (FPT) by putting:

WðzÞ ¼ z and uz ¼ 0: ð3Þ

However, the displacement field can be obtained in

the case of higher-order shear deformation plate

theory (HPT) (see Reddy 1984) by putting:

WðzÞ ¼ z 1� 1

3

z

h=2

� �2
" #

and uz ¼ 0: ð4Þ

Many refined theories are given by taking different

forms of W(z) (see, e.g., Atmane et al. 2010). In the

case of simple sinusoidal shear deformation plate

theory (SPT) (Zenkour 2004a, b, c, 2005a, 2006;

Zenkour et al. 2013) by putting:

WðzÞ ¼ h

p
sin

pz

h

� �
and uz ¼ 0: ð5Þ

Finally, the displacement field can be obtained in

the case of refined sinusoidal shear deformation plate

theory (RPT) (Zenkour 2007) by putting:

WðzÞ ¼ h

p
sin

pz

h

� �
and uz 6¼ 0: ð6Þ

Note that, no shear correction factors are needed in

computing the shear stresses for HPT, SPT and RPT,

because a correct representation of the transverse

shearing strain is given.

The strains compatible with the displacements field

given in Eq. (1) can be expressed as

exx

eyy

cxy

8
><

>:

9
>=

>;
¼

e0
xx

e0
yy

c0
xy

8
><

>:

9
>=

>;
þ z

jxx

jyy

jxy

8
><

>:

9
>=

>;
þWðzÞ

gxx

gyy

gxy

8
><

>:

9
>=

>;
;

ezz ¼ W00ðzÞe0
zz;

cyz

cxz

� �

¼ W0ðzÞ
c0

yz

c0
xz

( )

;

where

e0
xx ¼

ou

ox
; e0

yy ¼
ov

oy
; c0

xy ¼
ov

ox
þ ou

oy
;

c0
yz ¼ uy þ

ouz

oy
; c0

xz ¼ ux þ
ouz

ox
; e0

zz ¼ uz;

jxx ¼ �
o2w

ox2
; jyy ¼ �

o2w

oy2
; jxy ¼ �2

o2w

oxoy
;

gxx ¼
oux

ox
; gyy

¼
ouy

oy
; gxy ¼

ouy

ox
þ oux

oy
: ð8Þ

Fig. 1 Coordinate system

and schematic diagram for

the plate
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Each lamina in the laminated plate is assumed to be

in a three-dimensional stress state so that the consti-

tutive relations for a typical lamina k can be written as

rxx

ryy

rzz

syz

sxz

sxy

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

k

¼

c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

k

�

exx � axDT � bxDC

eyy � ayDT � byDC

ezz � azDT � bzDC

cyz

cxz

cxy � axyDT � bxyDC

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

k

; ð9Þ

where cij
(k) are the transformed elastic coeffi-

cients; DT = T - T0, DC = C - C0 in which T :
T(x, y, z) is the temperature distribution, T0 is the

reference temperature and C : C(x, y, z) is the

moisture distribution, C0 is the reference moisture

concentration; ax, ay, az and axy are the thermal

expansion coefficients and bx, by, bz and bxy are the

moisture concentration coefficients.

3 Governing equations of equilibrium

The equilibrium equations can be derived by using the

principle of virtual that yields

Zh=2

�h=2

Z

X

rðkÞxx dexx þ rðkÞyy deyy þ rðkÞzz dezz þ sðkÞxy dcxy

h

þsðkÞyz dcyz þ sðkÞxz dcxz

i
dXdz�

Z

X

qðx; yÞdwdX ¼ 0:

ð10Þ
Integrating the displacement gradients in Eq. (10)

by parts and setting the coefficients of du, dv, dw,

d/x, d/y and d/z to zero separately, we obtain the

equilibrium equations as

oNxx

ox
þ oNxy

oy
¼ 0;

oNxy

ox
þ oNyy

oy
¼ 0;

o2Mxx

ox2
þ 2

o2Mxy

oxoy
þ o2Myy

oy2
þ q ¼ 0;

oSxx

ox
þ oSxy

oy
� Qxz ¼ 0;

oSxy

ox
þ oSyy

oy
� Qyz ¼ 0;

oQxz

ox
þ oQyz

oy
� Nzz ¼ 0; ð11Þ

where

Nxx;Nyy;Nxy

Mxx;Myy;Mxy

Sxx; Syy; Sxy

8
>><

>>:

9
>>=

>>;

¼
Xn

k¼1

Zzkþ1

zk

rðkÞxx ; r
ðkÞ
yy ; s

ðkÞ
xy

� �

1

z

WðzÞ

8
><

>:

9
>=

>;
dz; Nzz ¼

Xn

k¼1

Zzkþ1

zk

rðkÞzz W00ðzÞdz;

ðQxz;QyzÞ ¼
Xn

k¼1

Zzkþ1

zk

ðsðkÞxz ; s
ðkÞ
yz ÞW0ðzÞdz:

ð12Þ

Using Eq. (9) in Eq. (12), we can write the stress

resultants functions N, the stress couples M, the addi-

tional stress couples S, the transverse shear stress resul-

tants Q and the transverse normal stress resultant Nzz as:

N

M

S

8
><

>:

9
>=

>;
¼

A B Ba

B D Da

Ba Da Fa

2

6
4

3

7
5

e

j

g

8
><

>:

9
>=

>;
�

NH

MH

SH

8
><

>:

9
>=

>;
;

Q¼Aac; Nzz¼ La �L L̂
� 	

e

j

g

8
><

>:

9
>=

>;
þ ~L33e

0
zz�NH

zz ; ð13Þ

where

N ¼ Nxx;Nyy;Nxy


 �t
; M ¼ Mxx;Myy;Mxy


 �t
;

S ¼ Sxx; Syy; Sxy


 �t
;NH ¼ NH

xx;N
H
yy;N

H
xy

n ot

;

MH ¼ MH
xx;M

H
yy;M

H
xy

n ot

; SH ¼ SH
xx; S

H
yy; S

H
xy

n ot

;

e ¼ e0
xx; e

0
yy; c

0
xy

n ot

; j ¼ jxx; jyy; jxy


 �t
;

g ¼ gxx; gyy; gxy


 �t
; ð14Þ

and

A¼
A11 A12 A16

A12 A22 A26

A16 A26 A66

2

6
4

3

7
5; B¼

B11 B12 B16

B12 B22 B26

B16 B26 B66

2

6
4

3

7
5;

D¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2

6
4

3

7
5; Ba ¼

Ba
11 Ba

12 Ba
16

Ba
12 Ba

22 Ba
26

Ba
16 Ba

26 Ba
66

2

6
4

3

7
5;

Da ¼
Da

11 Da
12 Da

16

Da
12 Da

22 Da
26

Da
16 Da

26 Da
66

2

6
4

3

7
5; Fa ¼

Fa
11 Fa

12 Fa
16

Fa
12 Fa

22 Fa
26

Fa
16 Fa

26 Fa
66

2

6
4

3

7
5:

ð15Þ
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Note that ‘‘t’’ denotes the transpose of the given

vector. The laminate stiffness coefficients Aij and Bij,

… etc., are given in terms of cij
(k) for the layers

k = 1, 2,…,n as:

fAij;Bij;Dijg¼
Xn

k¼1

Zzkþ1

zk

c
ðkÞ
ij f1;z;z2gdz; i; j¼ 1;2;6ð Þ;

Aa
ij ¼

Xn

k¼1

Zzkþ1

zk

c
ðkÞ
ij W0ðzÞ½ �2dz; i; j¼ 4;5ð Þ;

fBa
ij;D

a
ij;F

a
ijg¼

Xn

k¼1

Zzkþ1

zk

c
ðkÞ
ij 1;z;WðzÞf gWðzÞdz;

i; j¼ 1;2;6ð Þ;

fLa
i3; �Li3; L̂i3g¼

Xn

k¼1

Zzkþ1

zk

c
ðkÞ
i3 1;z;WðzÞf gW00ðzÞdz;

i¼ 1;2;6ð Þ;

~L33 ¼
Xn

k¼1

Zzkþ1

zk

c
ðkÞ
33 W0ðzÞ½ �2dz: ð16Þ

The stress and moment resultants Nxx
H , Mxx

H … etc.,

due to the hygrothermal loading are defined by:

Consistent with the present unified plate theory, the

temperature variation and the moisture concentration

through the thickness are, respectively, assumed to be

Tðx; y; zÞ ¼ T1ðx; yÞ þ
z

h
T2ðx; yÞ þ

WðzÞ
h

T3ðx; yÞ;

Cðx; y; zÞ ¼ C1ðx; yÞ þ
z

h
C2ðx; yÞ þ

WðzÞ
h

C3ðx; yÞ;

9
>>=

>>;

ð18Þ

where Tm and Cm(m = 1, 2, 3) are the thermal loads

and moisture concentration factors, respectively.

Substituting Eq. (13) into Eq. (11), one obtains the

following operator equation,

½L�fdg ¼ ffg; ð19Þ

where {d} and {f} denote the columns

fdg ¼ fu; v;w;ux;uy;uzgt; ffg
¼ ff1; f2; f3; f4; f5; f6gt: ð20Þ

The elements of the symmetric matrix [L] are given

in Appendix 1. The components of the generalized

force vector {f} are given by:

f1 ¼
oNH

xx

ox
þ

oNH
xy

oy
; f2 ¼

oNH
xy

ox
þ

oNH
yy

oy
;

f3 ¼ q� o2MH
xx

ox2
� 2

o2MH
xy

oxoy
�

o2MH
yy

oy2
;

f4 ¼
oSH

x

ox
þ

oSH
xy

oy
; f5 ¼

oSH
xy

ox
þ

oSH
y

oy
; f6 ¼ NH

zz :

ð21Þ

4 Analytical solution

For simply supported laminates the following bound-

ary conditions are imposed at the side edges,

v¼ w¼ uy ¼ uz ¼ Nx ¼Mx ¼ Sx ¼ 0 at x¼ 0;a;

u¼ w¼ ux ¼ uz ¼ Ny ¼My ¼ Sy ¼ 0 at y¼ 0;b:

ð22Þ
We assume that the applied transverse load q,

the transverse temperature loads Tm and the mois-

ture concentration Cm can be expressed

as:

NH
xx;M

H
xx; S

H
xx

NH
yy;M

H
yy; S

H
yy

NH
xy;M

H
xy; S

H
xy

8
><

>:

9
>=

>;
¼
Xn

k¼1

Zzkþ1

zk

c11 c12 c13 c16

c12 c22 c23 c26

c13 c23 c33 c36

c16 c26 c36 c66

2

6
6
6
4

3

7
7
7
5

ðkÞ axDT þ bxDC

ayDT þ byDC

azDT þ bzDC

axyDT þ bxyDC

8
>>><

>>>:

9
>>>=

>>>;

� 1; z;WðzÞð Þdz;

NH
zz ¼

Xn

k¼1

Zzkþ1

zk

c13 c23 c33 c36½ �ðkÞ

axDT þ bxDC

ayDT þ byDC

azDT þ bzDC

axyDT þ bxyDC

8
>>><

>>>:

9
>>>=

>>>;

W00ðzÞdz: ð17Þ
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q

Tm

Cm

8
><

>:

9
>=

>;
¼

q0

Tm

Cm

8
><

>:

9
>=

>;
sinðkxÞ sinðlyÞ; m ¼ 1; 2; 3;

ð23Þ

where k = ip/a, l = jp/b in which i and j are mode

numbers and q0 represents the initial mechanical load.

There are three specific co-ordinates transformations

under which an orthotropic material retains mono-

clinic symmetry, namely, rotations about the axes x,

y or z. The transformation formulae for the stiffness

cij
(k) are given in Appendix 2.

If the plate construction is cross-ply, i.e., hk should

be either 0� or 90�, then the following plate stiffness

coefficients are identically zero:

A16 ¼ A26 ¼ Aa
45 ¼ 0; B16 ¼ B26 ¼ 0;

Ba
16 ¼ Ba

26 ¼ 0; D16 ¼ D26 ¼ 0;

Da
16 ¼ Da

26 ¼ 0; Fa
16 ¼ Fa

26 ¼ 0;

La
63 ¼ �L63 ¼ L̂63 ¼ 0: ð24Þ

In addition, the thermal expansion coefficient axy

and the moisture concentration coefficient bxy van-

ishes, i.e., axy = 0 and bxy = 0.

Following the Navier’s solution procedure, we

assume the following form for displacements that

satisfy the boundary conditions,

u

v

w

ux

uy

uz

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

¼
X1

i¼1

X1

j¼1

Uij cosðkxÞ sinðlyÞ
Vij sinðkxÞ cosðlyÞ
Wij sinðkxÞ sinðlyÞ
Xij cosðkxÞ sinðlyÞ
Yij sinðkxÞ cosðlyÞ
Zij sinðkxÞ sinðlyÞ

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

; ð25Þ

where Uij, Vij, Wij, Xij, Yij and Zij are arbitrary param-

eters. Substituting Eq. (25) into Eq. (19), one obtains

the following operator equation,

½C�fDg ¼ fFg; ð26Þ

where {D} and {F} denote the columns

fDg ¼ Uij;Vij;Wij;Xij; Yij; Zij


 �t
;

fFg ¼ F
ij
1 ;F

ij
2 ;F

ij
3 ;F

ij
4 ;F

ij
5 ;F

ij
6


 �t
:

ð27Þ

The components of the generalized force vector

{F} and the elements of the symmetric matrix [C] are

given in Appendix 3.

The stress components for the RPT are

rðkÞxx ¼� c
ðkÞ
11 kUijþ c

ðkÞ
12 lVij� z c

ðkÞ
11 k2þ c

ðkÞ
12 l2

� �
Wij

n

þWðzÞ: c
ðkÞ
11 kXijþ c

ðkÞ
12 lYij

� �
þ c
ðkÞ
13 W00ðzÞZij

þ c
ðkÞ
11 axþ c

ðkÞ
12 ay

� �
�T1þ �z �T2þ �WðzÞ�T3� T0½ �

þ c
ðkÞ
11 bxþ c

ðkÞ
12 by

� �
�C1þ �z �C2þ �WðzÞ �C3�C0½ �

o

� sinðkxÞ sinðlyÞ;
ð28aÞ

rðkÞyy ¼� c
ðkÞ
12 kUijþ c

ðkÞ
22 lVij� z c

ðkÞ
12 k2þ c

ðkÞ
22 l2

� �
Wij

n

þWðzÞ: c
ðkÞ
12 kXijþ c

ðkÞ
22 lYij

� �
þ c
ðkÞ
23 W00ðzÞZij

þ c
ðkÞ
12 axþ c

ðkÞ
22 ay

� �
�T1þ �z �T2þ �WðzÞ�T3� T0½ �

þ c
ðkÞ
12 bxþ c

ðkÞ
22 by

� �
�C1þ �z �C2þ �WðzÞ �C3�C0½ �

o

� sinðkxÞ sinðlyÞ;
ð28bÞ

rðkÞzz ¼� c
ðkÞ
13 kUijþ c

ðkÞ
23 lVij� z c

ðkÞ
13 k2þ c

ðkÞ
23 l2

� �
Wij

n

þWðzÞ: c
ðkÞ
13 kXijþ c

ðkÞ
23 lYij

� �
þ c
ðkÞ
33 W00ðzÞZij

þ c
ðkÞ
13 axþ c

ðkÞ
23 ay

� �
�T1þ �z �T2þ �WðzÞ�T3� T0½ �

þ c
ðkÞ
13 bxþ c

ðkÞ
23 by

� �
�C1þ �z �C2þ �WðzÞ �C3�C0½ �

o

� sinðkxÞ sinðlyÞ;
ð28cÞ

sðkÞxy ¼ c
ðkÞ
66 lUij þ kVij � 2zklWij þWðzÞ



� lXij þ kYij

� 
g cosðkxÞ cosðlyÞ; ð28dÞ

sðkÞyz ¼ c
ðkÞ
44 W0ðzÞYij sinðkxÞ cosðlyÞ; ð28eÞ

sðkÞxz ¼ c
ðkÞ
55 W0ðzÞXij cosðkxÞ sinðlyÞ: ð28fÞ

The above stresses may be suitable for the FPT,

HPT and SPT when the transverse normal stress is

ignored and setting Zij = 0. However, one gets for the

CPT only

rðkÞxx ¼ � c
ðkÞ
11 kUij þ c

ðkÞ
12 lVij � z c

ðkÞ
11 k2 þ c

ðkÞ
12 l2

� �
Wij

n

þWðzÞ: c
ðkÞ
11 kXij þ c

ðkÞ
12 lYij

� �
þ c

ðkÞ
11 ax þ c

ðkÞ
12 ay

� �

� �T1 þ �z �T2 � T0½ � þ c
ðkÞ
11 bx þ c

ðkÞ
12 by

� �

� �C1 þ �z �C2 � C0½ �g sinðkxÞ sinðlyÞ;
ð29aÞ
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rðkÞyy ¼ � c
ðkÞ
12 kUij þ c

ðkÞ
22 lVij � z c

ðkÞ
12 k2 þ c

ðkÞ
22 l2

� �
Wij

n

þWðzÞ: c
ðkÞ
12 kXij þ c

ðkÞ
22 lYij

� �
þ c

ðkÞ
12 ax þ c

ðkÞ
22 ay

� �

� �T1 þ �z �T2 � T0½ � þ c
ðkÞ
12 bx þ c

ðkÞ
22 by

� �

� �C1 þ �z �C2 � C0½ �g sinðkxÞ sinðlyÞ;
ð29bÞ

sðkÞxy ¼ c
ðkÞ
66 lUij þ kVij � 2zklWij


 �
cosðkxÞ cosðlyÞ:

ð29cÞ

5 Numerical results and discussions

To verify the analytical formulation presented in the

previous section, a variety of sample problems is

considered. For the sake of brevity, only linearly

varying (across the thickness) temperature distribution

T ¼ T1 þ �z T2 and moisture distribution C ¼ C1þ
�z C2, non-linearly varying (across the thickness)

temperature distribution T ¼ �WðzÞ T3 and moisture

distribution C ¼ �WðzÞC3. Finally a combination of

both T ¼ T1 þ �z T2 þ �WðzÞ T3 and C ¼ C1 þ �z C2 þ
�WðzÞC3 are considered. In what follows, the reference

temperature T0 and moisture concentration C0 are

dropped. The improvement in the prediction of

displacements and stresses by the present unified

theory will be discussed. In all our problems, the

lamina properties are assumed to be (Jacquemin and

Vautrin 2002):

Ex ¼ 181 GPa; Ey ¼ Ez ¼ 10:3 GPa;

Gxy ¼ Gxz ¼ 7:17 GPa; Gyz ¼ 2:39 GPa;

mxy ¼ mxz ¼ 0:28; myz ¼ 0:43;

ax ¼ 0:02� 10�6=�C; ay ¼ az ¼ 22:5� 10�6=�C;

bx ¼ 0; by ¼ bz ¼ 0:6 ðwt:% H2OÞ�1:

Computations are carried out for the fundamental

mode (i.e., i = j = 1). All of the lamina are

assumed to be of the same thickness and made of

the same orthotropic material. We will assume in

all of the analyzed cases (unless otherwise stated)

that q ¼ 0; a=h ¼ 5; a=b ¼ 2; �T1 ¼ 0; �T2 ¼ 300; and
�C1 ¼ �C3 ¼ 0. The thermal parameter s ¼ �T3=�T2 may

be takes a constant value. The dimensionless deflec-

tions due to hygrothermal conditions are given by

�u3 ¼
h2

a1
�T2a3

u3; û3 ¼
h

100a1
�T2a2

u3:

In addition, the following dimensionless stresses

have been used throughout the tables and figures:

�r1 ¼ �
1

100a1
�T2E1

rx

a

2
;
b

2
;

z

h

� �

;

�r2 ¼ �
1

10a1
�T2E1

ry

a

2
;
b

2
;

z

h

� �

;

�r3 ¼
h

a1
�T2E1a

rz

a

2
;
b

2
;
z

h

� �

;

�r4 ¼ �
1

a1
�T2E1

syz

a

2
; 0;

z

h

� �
;

�r5 ¼
1

10a1
�T2E1

sxz 0;
b

2
;

z

h

� �

;

�r6 ¼ �
1

100a1
�T2E1

sxy 0; 0;
z

h

� �
:

Table 1 shows the effect of thickness on the

dimensionless center deflections û3 of two-layer

(0�/90�) cross-ply square plates subjected to sinusoidal

hygrothermal or thermal conditions. The hygrother-

mal environment, affects on the center deflections û3

more than the thermal one. It is to be noted that, the

hygrothermal deflections may be twice the thermal

ones. Table 2 shows a comparison of the dimension-

less center deflections û3 of four-layer anti-symmetric

cross-ply (0�/90�/0�/90�) rectangular plates subjected

to sinusoidal hygrothermal distribution linearly vary-

ing through the plate thickness. In addition, Table 2

contains the center deflections û3 that are caused by a

sinusoidal temperature distribution linearly varying

through the thickness. The hygrothermal environment

affects more on the deflections than the thermal one.

Generally, the difference between hygrothermal and

thermal results for all theories are decreasing as the

aspect ratio increases. The deflection due to CPT for

both hygrothermal and thermal cases has the same

value for all values of the ratio a/h. The deflection of

the square plate shows the highest sensitivity. It is

clear that for both hygrothermal and thermal results,

the RPT yields the smallest deflections. The HPT and

SPT yield very close results to each other.

Table 3 shows the effect of thickness on the

dimensionless stresses of two-layer cross-ply rectan-

gular plates subjected to combine sinusoidal hygro-

thermal conditions. The FPT gives the smallest normal

stress �r1 and the transverse in-plane stress �r6 while it

gives highest longitudinal stress �r2. As it is already

known, the FPT gives the smallest and uniform shear

stresses �r5 and �r5. The CPT gives reliable results only
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for thin plates. The other shear deformation theories

HPT and SPT give stresses very close to each other

with small relative error than the RPT. However, the

RPT gives the accurate stresses.

Figure 2 shows the variation of dimensionless

deflection �u3 with side-to-thickness ratio for a four-

layer anti-symmetric (0�/90�/0�/90�) cross-ply rectan-

gular plate in thermal or hygrothermal environment.

The existence of moisture in the hygrothermal case

affects more on the center deflections than thermal

one. For both cases, the deflection decreases rapidly

with the increasing of the ratio a/h. The FPT, HPT and

Table 1 Effect of thickness on the dimensionless center deflection û3 of cross-ply (0�/90�) square plates in hygrothermal envi-

ronment (s = 0)

a/h �C2 ¼ 0 ð0:507968Þa �C2 ¼ 0:01ð0:959164Þa

FPT HPT SPT RPT FPT HPT SPT RPT

100 0.507968 0.507971 0.507971 0.421048 0.959164 0.959169 0.959170 0.794982

50 0.507968 0.507978 0.507980 0.420947 0.959164 0.959184 0.959186 0.794790

25 0.507968 0.508009 0.508014 0.420540 0.959164 0.959241 0.959250 0.794022

20 0.507968 0.508031 0.508039 0.420234 0.959164 0.959284 0.959297 0.793443

15 0.507968 0.508081 0.508095 0.419570 0.959164 0.959377 0.959403 0.792190

10 0.507968 0.508221 0.508252 0.417658 0.959164 0.959641 0.959700 0.788578

5 0.507968 0.508972 0.509094 0.406911 0.959164 0.961059 0.961289 0.768277

a Numbers between parentheses are given based on the CPT

Table 2 The dimensionless center deflections û3 of (0�/90�/0�/90�) rectangular plates in hygrothermal or thermal environment

ðs ¼ 0; �C2 ¼ 0:01Þ

a/h Theory a/b = 1/3 a/b = 0.5 a/b = 1 a/b = 1.5 a/b = 2

5 FPT 0.49694 (0.26353) 0.76870 (0.40736) 1.00357 (0.53145) 0.70098 (0.37120) 0.46019 (0.24368)

HPT 0.50098 (0.26567) 0.77290 (0.40958) 1.00271 (0.53105) 0.70047 (0.37093) 0.46079 (0.24399)

SPT 0.50144 (0.26591) 0.77332 (0.40980) 1.00259 (0.53099) 0.70048 (0.37093) 0.46095 (0.24408)

RPT 0.35943 (0.19073) 0.63077 (0.33434) 0.89567 (0.47438) 0.62846 (0.33280) 0.40644 (0.21522)

10 FPT 0.42533 (0.22562) 0.66959 (0.35490) 1.00347 (0.53145) 0.73054 (0.38684) 0.47932 (0.25379)

HPT 0.42670 (0.22635) 0.67137 (0.35584) 1.00328 (0.53135) 0.72986 (0.38647) 0.47904 (0.25364)

SPT 0.42688 (0.22644) 0.67158 (0.35595) 1.00325 (0.53134) 0.72978 (0.38643) 0.47901 (0.25363)

RPT 0.31082 (0.16500) 0.55354 (0.29346) 0.91576 (0.48502) 0.67827 (0.35916) 0.44622 (0.23627)

20 FPT 0.40498 (0.21485) 0.63898 (0.33869) 1.00347 (0.53145) 0.74378 (0.39384) 0.48841 (0.25860)

HPT 0.40535 (0.21505) 0.63948 (0.33896) 1.00343 (0.53143) 0.74353 (0.39371) 0.48828 (0.25853)

SPT 0.40540 (0.21507) 0.63954 (0.33899) 1.00342 (0.53142) 0.74350 (0.39369) 0.48826 (0.25852)

RPT 0.29580 (0.15705) 0.52769 (0.27978) 0.92062 (0.48759) 0.69699 (0.36907) 0.46063 (0.24389)

50 FPT 0.39908 (0.21173) 0.62988 (0.33388) 1.00347 (0.53145) 0.74827 (0.39622) 0.49158 (0.26027)

HPT 0.39914 (0.21176) 0.62996 (0.33392) 1.00347 (0.53145) 0.74823 (0.39619) 0.49155 (0.26026)

SPT 0.39915 (0.21177) 0.62997 (0.33393) 1.00346 (0.53145) 0.74822 (0.39619) 0.49155 (0.26026)

RPT 0.29135 (0.15470) 0.51987 (0.27564) 0.92196 (0.48830) 0.70311 (0.37231) 0.46534 (0.24639)

100 FPT 0.39823 (0.21128) 0.62856 (0.33318) 1.00347 (0.53145) 0.74895 (0.39658) 0.49205 (0.26053)

HPT 0.39825 (0.21129) 0.62858 (0.33319) 1.00347 (0.53145) 0.74894 (0.39657) 0.49205 (0.26052)

SPT 0.39825 (0.21129) 0.62858 (0.33319) 1.00347 (0.53145) 0.74894 (0.39657) 0.49205 (0.26052)

RPT 0.29071 (0.15436) 0.51873 (0.27503) 0.92215 (0.48840) 0.70403 (0.37279) 0.46606 (0.24677)

CPT 0.39795 (0.21113) 0.62812 (0.33295) 1.00347 (0.53145) 0.74918 (0.39670) 0.49222 (0.26061)

The numbers between parentheses are given for the thermal deflections ð �C2 ¼ 0Þ
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SPT yield closer results while RPT gives the accurate

deflections and the CPT gives appropriate deflections

especially after greater values of a/h.

The deflection due to the RPT is plotting through-

the-thickness of the (0�/90�/0�/90�) rectangular plate

in Fig. 3 according some values of the thermal

parameter s. The deflection is very sensitive to its

position through the plate thickness. This does not

occur for deflections due to other theories which they

are independent of the z-axis. In addition, the

deflection increases with the increase of the thermal

parameter value. The present RPT also gives the

transverse normal stress �r3 alone. Figures 4 and 5 plot

this stress through-the-thickness of (0�/90�) and

(0�/90�/0�/90�) rectangular plates, respectively. These

figures allow themselves to underline their great

influence on transverse normal stress through-the-

thickness of different plates. The sensitivity of the

thermal parameter on �r3 is also showed in these

figures.

Table 3 The dimensionless stresses of (0�/90�) rectangular plates in hygrothermal or thermal environment ðs ¼ 0; �C2 ¼ 0:01Þ

a/h Theory �r1ð�0:5Þ �r2ð0:25Þ �r6ð�0:5Þ �r4ð0Þ �r5ð0Þ

5 FPT 0.60741 (0.32049) 1.77140 (0.93732) 2.65162 (1.40485) 2.24970 (1.18992) 1.34982 (0.71395)

HPT 0.80752 (0.42632) 1.17467 (0.62169) 2.78924 (1.47764) 2.77808 (1.46937) 1.67991 (0.88856)

SPT 0.82310 (0.43457) 1.11033 (0.58766) 2.80083 (1.48377) 2.85837 (1.51184) 1.73277 (0.91652)

RPT 0.85345 (0.45063) 1.30117 (0.68872) 2.47666 (1.31214) 2.91788 (1.54331) 1.87776 (0.99326)

10 FPT 1.10195 (0.58206) 2.20182 (1.16498) 2.92694 (1.55047) 1.62141 (0.85760) 0.97285 (0.51456)

HPT 1.17634 (0.62139) 1.99217 (1.05408) 2.97770 (1.57732) 1.97647 (1.04539) 1.19837 (0.63385)

SPT 1.18212 (0.62446) 1.96976 (1.04223) 2.98195 (1.57957) 2.03210 (1.07482) 1.23431 (0.65287)

RPT 1.18026 (0.62346) 1.38594 (0.73311) 2.62332 (1.38968) 2.06303 (1.09116) 1.35297 (0.71567)

20 FPT 1.30227 (0.68801) 2.37617 (1.25719) 3.03846 (1.60946) 0.91128 (0.48199) 0.54677 (0.28920)

HPT 1.32342 (0.69920) 2.31784 (1.22634) 3.05285 (1.61707) 1.10540 (0.58467) 0.67068 (0.35475)

SPT 1.32507 (0.70007) 2.31163 (1.22306) 3.05406 (1.61771) 1.13609 (0.60090) 0.69042 (0.3651)

RPT 1.32124 (0.69803) 1.55089 (0.82024) 2.69220 (1.42610) 1.15795 (0.61245) 0.75907 (0.40152)

50 FPT 1.36759 (0.72256) 2.43302 (1.28726) 3.07482 (1.62869) 0.37763 (0.19974) 0.22658 (0.11984)

HPT 1.37111 (0.72442) 2.42338 (1.28216) 3.07721 (1.62995) 0.45735 (0.24190) 0.27755 (0.14680)

SPT 1.37138 (0.72457) 2.42236 (1.28162) 3.07741 (1.63006) 0.46999 (0.24859) 0.28566 (0.15110)

RPT 1.36782 (0.72267) 1.61453 (0.85387) 2.71534 (1.43834) 0.47978 (0.25376) 0.31435 (0.16628)

100 FPT 1.37730 (0.72770) 2.44147 (1.29173) 3.08023 (1.63155) 0.18979 (0.10038) 0.11387 (0.06023)

HPT 1.37819 (0.72817) 2.43905 (1.29045) 3.08083 (1.63187) 0.22981 (0.12155) 0.13946 (0.07377)

SPT 1.37826 (0.72820) 2.43880 (1.29032) 3.08088 (1.63189) 0.23615 (0.12491) 0.14354 (0.07592)

RPT 1.37477 (0.72634) 1.62435 (0.85906) 2.71881 (1.44018) 0.24113 (0.12753) 0.15797 (0.08356)

CPT 1.38057 (0.72942) 2.44431 (1.29324) 3.08204 (1.63251) – –

The numbers between parentheses are given for the thermal stresses ð �C2 ¼ 0Þ

Fig. 2 Effect of thickness

on the dimensionless

deflection �u3 of a four-layer,

anti-symmetric cross-ply

(0�/90�/0�/90�) rectangular

plate: a �C2 ¼ 0;

b �C2 ¼ 0:01
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Fig. 3 The deflection �u3

due to RPT through-the-

thickness of a (0�/90�/0�/

90�) rectangular plate for

various values of s:

a �C2 ¼ 0; b �C2 ¼ 0:01

Fig. 4 The distribution of

dimensionless normal stress

�r3 through the thickness of a

(0�/90�) rectangular plate

for various values of s:

a �C2 ¼ 0; b �C2 ¼ 0:01

Fig. 5 The distribution of

dimensionless normal stress

�r3 through the thickness of a

(0�/90�/0�/90�) rectangular

plate for various values of s:

a �C2 ¼ 0; b �C2 ¼ 0:01:

Fig. 6 The distribution of

dimensionless shear stress

�r4 through the thickness of a

(0�/90�/0�/90�) rectangular

plate: a �C2 ¼ 0; b �C2 ¼ 0:01
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Figure 6 shows the distribution of transverse shear

stress �r4 through the thickness of a four-layer cross-

ply anti-symmetric (0�/90�/0�/90�) rectangular plate

due to both thermal and hygrothermal effects. The

distribution of transverse shear stress �r5 through the

thickness of (0�/90�/0�/90�) cross-ply anti-symmetric

rectangular plate due to both thermal and hygrother-

mal effects is also shown in Fig. 7. The results

displayed in these figures show that the stress conti-

nuity across each layer interface is not imposed in the

present theories. The FPT may be insufficient for

transverse shear stresses while HPT and SPT gives

very close results to each other. The disagreement

between HPT and RPT, especially at the plate center,

is owing to the higher-order contributions of RPT.

6 Conclusions

The static response of antisymmetric cross-ply lami-

nated plates is discussed analytically and numerical

results are given using a unified theory. The present

plate is subjected to sinusoidally non-uniform distri-

butions of temperature and moisture concentrations.

Analytical solutions for governing differential equa-

tions of simply-supported laminates are developed

using Navier’s procedure and separation of variable

technique. The dimensionless deflections and stresses

are computed and compared using various plate

theories. It was found that, the CPT predicts deflec-

tions and stresses, as it is expected, significantly

different from those of the shear deformation theories.

The FPT results are less accurate in prediction of

deflections and stresses than other shear deformation

theories. In some cases, the HPT gives transverse

shear stresses with relative errors comparing with SPT

and RPT. In most problems the HPT and SPT give

close results to each other. However, RPT gives more

accurate results and that is due to the influences of

transverse normal strain in this theory.

Appendix 1

The elements of the symmetric matrix [L], for RPT,

are given by:

L11 ¼ A11d11 þ 2A16d12 þ A66d22;

L12 ¼ A16d11 þ ðA12 þ A66Þd12 þ A26d22;

L13 ¼ �B11d111 � 3B16d112 � ðB12 þ 2B66Þd122 � B26d222;

L14 ¼ Ba
11d11 þ 2Ba

16d12 þ Ba
66d22;

L15 ¼ Ba
16d11 þ ðBa

12 þ Ba
66Þd12 þ Ba

26d22;

L16 ¼ La
13d1 þ La

63d2;

L22 ¼ A66d11 þ 2A26d12 þ A22d22;

L23 ¼ �B16d111 � ðB12 þ 2B66Þd112 � 3B26d122 � B22d222;

L24 ¼ L15;

L25 ¼ Ba
66d11 þ 2Ba

26d12 þ Ba
22d22;

L26 ¼ La
63d1 þ La

23d2;

L33 ¼ D11d1111 þ 4D16d1112 þ 2ðD12 þ 2D66Þd1122

þ 4D26d1222 þ D22d2222;

L34 ¼ �Da
11d111 � 3Da

16d112 � ðDa
12 þ 2Da

66Þd122 � Da
26d222;

L35 ¼ �Da
16d111 � ðDa

12 þ 2Da
66Þd112 � 3Da

26d122 � Da
22d222;

L36 ¼ �ð�L13d11 þ 2�L63d12 þ �L23d22Þ;
L44 ¼ Fa

11d11 þ 2Fa
16d12 þ Fa

66d22 � Aa
55;

L45 ¼ Fa
16d11 þ ðFa

12 þ Fa
66Þd12 þ Fa

26d22 � Aa
45;

L46 ¼ ðL̂13 � Aa
55Þd1 þ ðL̂63 � Aa

45Þd2;

L55 ¼ Fa
66d11 þ 2Fa

26d12 þ Fa
22d22 � Aa

44;

L56 ¼ ðL̂63 � Aa
45Þd1 þ ðL̂23 � Aa

44Þd2;

L66 ¼ �ðAa
55d1 þ 2Aa

45d12 þ Aa
44d22 � ~L33Þ:

For the FPT, HPT and SPT, the components of

[L] are the same as given above for the RPT except

Li6 = 0(i = 1, 2, …, 6). However, for the CPT, the

Fig. 7 The distribution of

dimensionless shear stress

�r5 through the thickness of a

(0�/90�/0�/90�) rectangular

plate: a �C2 ¼ 0; b �C2 ¼ 0:01

Hygrothermal analysis of antisymmetric cross-ply laminates 223

123



components of [L] are reduced to be Lij(i, j =

1, 2, 3).

Appendix 2

The transformation formulae for the stiffness cij
(k) are

where c = cos hk, s = sin hk and cij are the material

stiffness of the lamina. For RPT one has

c11 ¼
Exð1� myzmzyÞ

D
; c12 ¼

Exðmyx þ myzmzxÞ
D

;

c13 ¼
Exðmzx þ myxmzyÞ

D
; c22 ¼

Eyð1� mxzmzxÞ
D

;

c23 ¼
Eyðmzy þ mxymzxÞ

D
; c33 ¼

Ezð1� mxymyxÞ
D

;

c44 ¼ Gyz; c55 ¼ Gxz; c66 ¼ Gxy:

in which D = 1 - mxymyx - myzmzy - mzxmxz - 2myxmxz

mzy, Ei are Young’s moduli in the material principal

directions, mij are Poisson’s ratios and Gij are shear

moduli. The material stiffness for the CPT and other

shear deformation plate theories may be reduced to:

c11 ¼
Ex

1� mxymyx

; c12 ¼
mxyEy

1� mxymyx

¼ myxEx

1� mxymyx

;

c22 ¼
Ey

1� mxymyx

; c13 ¼
mxzEz

1� mxymyx

; c23 ¼
myzEz

1� mxymyx

;

c33 ¼
Ez

1� mxymyx

; c44 ¼Gyz; c55 ¼Gxz; c66 ¼Gxy:

Appendix 3

The components of the generalized force vector {F}

are given by

F
ij
1 ¼ k AT

1
�T1 þ BT

1
�T2 þ aBT

1
�T3 þ aT

1
�C1

�

þbT
1

�C2 þ abT
1

�C3Þ;
F

ij
2 ¼ l AT

2
�T1 þ BT

2
�T2 þ aBT

2
�T3 þ aT

2
�C1

�

þbT
2

�C2 þ abT
2

�C3Þ;
F

ij
3 ¼ �q0 � h BT

1 k2 þ BT
2 l2

� 
�T1

�

þ DT
1 k2 þ DT

2 l2
� 

�T2

þ aDT
1 k2 þ aDT

2 l2
� 

�T3:þ bT
1 k2 þ bT

2 l2
� 

�C1

þ dT
1 k2 þ dT

2 l2
� 

�C2 þ adT
1 k2 þ adT

2 l2
� 

�C3�;
F

ij
4 ¼ hk aBT

1
�T1 þ aDT

1
�T2 þ aFT

1
�T3 þ abT

1
�C1

�

þadT
1

�C2 þ af T
1

�C3Þ;
F

ij
5 ¼ hl aBT

2
�T1 þ aDT

2
�T2 þ aFT

2
�T3 þ aBT

2
�C1

�

þaDT
2

�C2 þ aFT
2

�C3Þ;
F

ij
6 ¼ �h LT �T1 þ aLT �T2 þ bLT �T3 þ lT �C1

�

þalT �C2 þ blT �C3Þ;

where

c11

c12

c22

c16

c26

c66

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ðkÞ

¼

c4 2c2s2 s4 4c2s2

c2s2 c4 þ s4 c2s2 �4c2s2

s4 2c2s2 c4 4c2s2

c3s cs3 � c3s �cs3 �2cs c2 � s2ð Þ
cs3 c3s� cs3 �c3s 2cs c2 � s2ð Þ
c2s2 �2c2s2 c2s2 c2 � s2ð Þ2

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

c11

c12

c22

c66

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

;

c44

c45

c55

8
>><

>>:

9
>>=

>>;

ðkÞ

¼
c2 s2

�cs cs

s2 c2

2

6
4

3

7
5

c44

c55

( )

;

c13

c23

c63

8
>><

>>:

9
>>=

>>;

ðkÞ

¼
c2 s2

s2 c2

sc �sc

2

6
4

3

7
5

c13

c23

( )

; c
ðkÞ
33 ¼ c33;
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in which �z ¼ z=h; �WðzÞ ¼ WðzÞ=h, and �W00ðzÞ ¼
W00ðzÞ=h.

The elements of the symmetric matrix [C], for RPT,

are given by:

C11 ¼ �A11k
2 � A66l

2;

C12 ¼ �ðA12 þ A66Þkl;

C13 ¼ k½B11k
2 þ ðB12 þ 2B66Þl2�;

C14 ¼ �Ba
11k

2 � Ba
66l

2;

C15 ¼ �ðBa
12 þ Ba

66Þkl;
C16 ¼ La

13k;

C22 ¼ �A66k
2 � A22l

2;

C23 ¼ l½ðB12 þ 2B66Þk2 þ B22l
2�;

C24 ¼ C15;

C25 ¼ �Ba
66k

2 � Ba
22l

2;

C26 ¼ La
23l;

C33 ¼ �D11k
4 � 2ðD12 þ 2D66Þk2l2 � D22l

4;

C34 ¼ k½Da
11k

2 þ ðDa
12 þ 2Da

66Þl2�;
C35 ¼ l½ðDa

12 þ 2Da
66Þk

2 þ Da
22l

2�;
C36 ¼ �ð�L13k

2 þ �L23l
2Þ;

C44 ¼ �ðFa
11k

2 þ Fa
66l

2 þ Aa
55Þ;

C45 ¼ �ðFa
12 þ Fa

66Þkl;

C46 ¼ ðL̂13 � Aa
55Þk;

C55 ¼ �Fa
66k

2 � Fa
22l

2 � Aa
44;

C56 ¼ ðL̂23 � Aa
44Þl;

C66 ¼ �ðAa
55k

2 þ Aa
44l

2 þ ~L33Þ:

For the FPT, HPT and SPT, the components of

[C] are the same as given above for the RPT except

Ci6 = 0(i = 1, 2, …, 6). However, for the CPT,

the components of [C] are reduced to be

Cij(i, j = 1, 2, 3).
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