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Abstract The effect of hygrothermal conditions on
the antisymmetric cross-ply laminates has been inves-
tigated using a unified shear deformation plate theory.
The present plate theory enables the trial and testing of
different through-the-thickness transverse shear-
deformation distributions and, among them, strain
distributions do not involve the undesirable implica-
tions of the transverse shear correction factors. The
differential equations of laminated plates whose
deformations are governed by either the shear defor-
mation theories or the classical one are derived.
Displacement functions that identically satisfy bound-
ary conditions are used to reduce the governing
equations to a set of coupled ordinary differential
equations with variable coefficients. A wide variety of
results is presented for the static response of simply
supported rectangular plates under non-uniform sinu-
soidal hygrothermal/thermal loadings. The influence
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of material anisotropy, aspect ratio, side-to-thickness
ratio, thermal expansion coefficients ratio and stacking
sequence on the hygrothermally induced response is
studied.
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1 Introduction

The composite materials are widely used in civil,
aerospace, automobile and other engineering fields
due to their advantage of high stiffness and strength to
weight ratio. With the ever-increasing applications of
laminated composites in environmental conditions
hygrothermal behavior of such laminates has attracted
considerable attention. During the operational life, the
variation of temperature and moisture reduces the
elastic moduli and degrades the strength of the
laminated material. As a result, a careful evaluation
of the effects of environmental exposure is required to
find the nature and extent of their deleterious effects
upon performance.

Sai Ram and Sinha (1991, 1992) have studied the
hygrothermal effects on the bending and free vibration
behavior of laminated composite plates using the first-
order shear deformation theory and employing finite
element method. The effects of moisture and temper-
ature on the deflections and stress resultants are
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presented for simply supported and clamped anti-
symmetric cross-ply and angle-ply laminates using
reduced lamina properties at elevated moisture con-
centration and temperature. Lee et al. (1992) have
studied the influence of hygrothermal effects on the
cylindrical bending of symmetric angle-ply laminated
plates subjected to uniform transverse load for differ-
ent boundary conditions via classical laminated plate
theory and von-Karman’s large deflection theory. The
material properties of the composite are assumed to be
independent of temperature and moisture variation. It
has been observed that the classical laminated plate
theory may not be adequate for the analysis of
composite laminates even in the small deflection
range. However, studies of temperature and moisture
effects on the bending of rectangular plates based on
the shear deformation theories are limited in number,
and all these studies assumed perfectly initial config-
urations (Sai Ram and Sinha 1991, 1992; Pipes et al.
1976). Many studies based on classical plate theory of
thin rectangular plates subjected to mechanical or
thermal loading or their combinations as well as the
hygrothermal effects are presented in the literature
(Sai Ram and Sinha 1992; Whitney and Ashton 1971;
Bahrami and Nosier 2007).

Rao and Sinha (2004) have studied the effects of
moisture and temperature on the bending characteris-
tics of thick multidirectional fibrous composite plates.
The finite element analysis accounts for the hygro-
thermal strains and reduced elastic properties of
multidirectional composites at an elevated moisture
concentration and temperature. Deflections and stres-
ses are evaluated for thick multidirectional composite
plates under uniform and linearly varying through-the-
thickness moisture concentration and temperature.
Results reveal the effects of fiber directionality on
deflection and stresses. Wang et al. (2005) have
studied the response of dynamic interlaminar stresses
in laminated composite plates with piezoelectric
layers using an analytical approach. Benkhedda et al.
(2008) have proposed an analytical approach to
calculate the hygrothermal stresses in laminated
composite plates, and took into account the change
of mechanical characteristics due to moisture and
temperature. In their study, the distribution of the
transient in-plane stresses through the thickness of
laminates is presented, whereas the transverse stresses
were not taken into account. Ameur et al. (2009) have
analyzed the problem of interfacial stresses in steel
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beams strengthened with bonded hygrothermal aged
composite laminates by using linear elastic theory.
From the literatures reviewed, it can be found that the
research on local hygrothermal stresses of cross-ply
laminates and sandwich plates subjected to tempera-
ture and moisture effects seems to be lacking, which is
the problem to be addressed in this paper.

The so-called equivalent single-layer models, such as
classical and shear deformation theories, have been
developed for the analysis of laminated plates. There are
additional models have effectively been employed in
developing a two-dimensional model for laminated
plates, which is capable of determining the in-plane and
interlaminar stresses such as the layerwise (Reddy 1987)
and zig-zag (Carrera 2003 and all references therein)
theories. The object of this paper is to study the
deflections and stresses of antisymmetric cross-ply
laminates under sinusoidally non-uniform distribution
temperature and/or sinusoidally non-uniform distribu-
tion moisture and/or sinusoidally distributed transverse
mechanical load. A unified theory that takes into
account the effect of transverse normal strain of
laminated composite plates is presented. The governing
equations are converted into a single-order system of the
equations. Analytical solutions for simply supported
laminated plates are developed using the Navier’s
procedure and separation of variable technique. Numer-
ical results for deflection and stresses are presented.

2 Theoretical development

Consider a fiber reinforced rectangular laminated plate
occupying the region [0, a] x [0, b] x [—h/2, +h/2]
in the unstressed reference configuration (see Fig. 1).
The mid-plane is defined by z = 0 and its external
bounding planes being defined by z = £h/2. The plate
composed of n orthotropic layers oriented at angles 0,
05,...,0,. The material of each layer is assumed to
possess one plane of elastic symmetry parallel to the
x—y plane. Perfect bonding between the orthotropic
layers and temperature-independent mechanical, ther-
mal and moisture properties are assumed. The plate
subjected to a transverse static mechanical load
q(x, y) and temperature field T(x, y, z) as well as
moisture concentration C(x, y, z).

The displacement field at a point (x, y, z) in the
laminated plate can be expressed as (Zenkour 2005b,
2007, 2008):
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Fig. 1 Coordinate system z
and schematic diagram for

z 90

the plate

ow
x\As Vs = UuU—<=- v X
(x,3,2) = u—z5-+ ¥(2)e

ow
dy
u(x,y,2) =w+ ¥ (2)0,,

MY(xvyvz):V_Z +'I’(z)qoy, (1)

where (u,, u,, u.) are the displacements along x, y, and
z directions, respectively; (u, v, w) are the in-plane
displacements; (¢,, ¢,) are rotations of the normal to
the middle plane about y-axes and x-axes, respec-
tively; ¢, is additional displacement account for the
effect of normal stress. All of the generalized
displacements (u, v, w, ¢,, ¢y, ¢,) are functions of
x and y. The displacement field can be obtained in the
case of classical plate theory (CPT) by putting:

Y(z)=0 and ¢, =0, (2)

the case of first-order (or uniform) shear deformation
plate theory (FPT) by putting:

Y(z)=z and ¢, =0. (3)

However, the displacement field can be obtained in
the case of higher-order shear deformation plate
theory (HPT) (see Reddy 1984) by putting:

2
Y(z) =z [1 —% (ﬁ) ] and ¢, =0. (4)

Many refined theories are given by taking different
forms of W(z) (see, e.g., Atmane et al. 2010). In the
case of simple sinusoidal shear deformation plate
theory (SPT) (Zenkour 2004a, b, c, 2005a, 2006;
Zenkour et al. 2013) by putting:

N

Y(z) = %sin (%) and ¢, =0. (5)

Finally, the displacement field can be obtained in
the case of refined sinusoidal shear deformation plate
theory (RPT) (Zenkour 2007) by putting:

Y(z) = %sin (%) and ¢, #0. (6)

Note that, no shear correction factors are needed in
computing the shear stresses for HPT, SPT and RPT,
because a correct representation of the transverse
shearing strain is given.

The strains compatible with the displacements field
given in Eq. (1) can be expressed as

Exx ggx Kxx Mxx
0
Eyy =94 &y ptzy Ky ot b4 (Z) fyy ¢
Txy V%, Kxy My
1 0 'VVZ ! ’y;)Z
8"2 = 'Il (Z)sz7 i = qj (Z) 0 b
VXZ y Xz

G0 1)
0 , 0 . 0
V_VZ = (pv + ayz7 yxz X + a};? 8ZZ = (pz?
w w w
Kxe = — ) Kyy = s Nx T A AAL
0x? » oy Ox0y
S 0 op, 0
xx T O My Oy y My = O O . (8)
ox v gy ox Oy
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Each lamina in the laminated plate is assumed to be
in a three-dimensional stress state so that the consti-
tutive relations for a typical lamina k can be written as

o) Ten e oen 000 ¢t
Tyy ci2 ¢ 3 0 0 e
oz | _|cz ¢33 ¢z 0 0 3
Tyz o 0 0 0 Cq4 C45 0
Txz 0 0 0 C45 Cs5 0
Try cie ¢ 36 0 0 ces
exx — 0, AT — p,AC k
&y — oy AT — B,AC
" & — 0 AT — p.AC 7 ()
Vyz
'))XZ
Vay — Gy AT — B, AC

where c(k) are the transformed elastic coeffi-

cients; AT T — Ty, AC=C — Cy in which T =
T(x, v, z) is the temperature distribution, T} is the
reference temperature and C = C(x, y, z7) is the
moisture distribution, Cy is the reference moisture
concentration; d,, &,, &, and o, are the thermal
expansion coefficients and f,, B, i, and f,, are the
moisture concentration coefficients.

3 Governing equations of equilibrium

The equilibrium equations can be derived by using the
principle of virtual that yields

h/2

/ / {ai’;)égxx + ayy )36,y + a®) e, + rx) )67
—h2 @

+100,. + 10y, | a0dz- / g(x,y)owdQ = 0.
Q
(10)
Integrating the displacement gradients in Eq. (10)
by parts and setting the coefficients of dou, dv, ow,

0y, 0¢, and d¢, to zero separately, we obtain the
equilibrium equations as

0N, n ON,y o, 0N,y N ON,, o,
Ox Oy ax Oy
M, M, M,
+2 =+ +q=0,
Ox2 Ox0y 0y?
0S8y +% 3 _0 GSxy asn 0
aax aaé Xz T Y ax )«.
Oy vz _
Ty N==0 (11)
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where
NxxaN))aNXy Tk+1
Mxva)wM = ; / (()')(Cl;c)7 o'y;)7 r)((’;))
SXX7 Syy7 Sxy - *
1 n Zk+1
< dz, N.= / ( >lP//( )d (12)
q] Z) k=1 Zk
n Tk+1
(000 = [ ()

k=1
%

Using Eq. (9) in Eq. (12), we can write the stress
resultants functions N, the stress couples M, the addi-
tional stress couples S, the transverse shear stress resul-
tants Q and the transverse normal stress resultant N, as:

N A B B (e NH
M3»=|B D D* — ¢ M3
S B* D* F¢ st

zz?

K
n
&
0=A", Npo=[L* L L]} x p+Ls3e’,— N, (13)

where
N = {N s Ny, Ny } M = {Mxvava’C\ tv

S = {Sy, Sy, S} N = {NH NH NH},

¥
Mt {Mﬁ,Mg,MH} st {Sfx,sg,sﬂ}
! t
€= {sgﬁsgy’ygy} ’ K= {KXMK,V,V? ny} ’
t
n= {nxx”’/yyanxy} ) (14)
and
A A Agg By By Bis
A= |Ap An Ax|, B=|Bpp Bxn Bxy|,
Aig Az Ass Bis B Bes
Dy1 Di» Dis Bi, B{, Bf,
D= |Diy Dy Dy|, B'= B‘fz B3, Bgs )
Dis Dy Degs 36

DY, Df, Df
D' = D, D5 Di |,
Dis Dis Dge

]2 F22 F26
Fis Fy Foo
(15)
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Note that “t” denotes the transpose of the given
vector. The laminate stiffness coefficients A;; and B,
... etc., are given in terms of ¢’ for the layers
k=1,2,..,nas:

Tk+1
n +

{AijaBlijlj}:Z/ Cl('jk){lazvzz}dzv (ivj:13276)a

k=1
Tk
n Zk+1
Aj= / P (@ dz, (1,j=4,5),
k=1
2k
n Zk+1
By Dy Fgy =" | e {12 V(@) ¥ (),
k=1 Zk
(i)j:17276)7
n Zk+1
(L4 L} =) / i {1,2, P} (2)dz,

k=1
2k

(l: 17276)7

Tk+1
n

Ls=3 / 1P (2)) dz. (16)

k=1
2k

The stress and moment resultants N2, M2 ... etc.,
due to the hygrothermal loading are defined by:

where T, and C,,(m = 1, 2, 3) are the thermal loads
and moisture concentration factors, respectively.

Substituting Eq. (13) into Eq. (11), one obtains the
following operator equation,

[L){o} ={f}, (19)
where {0} and {f} denote the columns
{6} = {u,v,w, 0, Py, q)z}t7 i}

= {fi.fo.f5fa.f5: 6} (20)

The elements of the symmetric matrix [L] are given
in Appendix 1. The components of the generalized
force vector {f} are given by:

L own o awn o
T Tay ) P e T y
pH o PME *mE
f3 =q- 0 XX _ 9 Xy »y
ox? OxQy 0y?
f4:ﬁ % SZaSg’ % fé_NH
ox oy’ ox oy’ =
(1)

4 Analytical solution

For simply supported laminates the following bound-
ary conditions are imposed at the side edges,

e ocn oy celW( wdT + BAC

Ngafoanx n Skl AT+ﬁ AC
o
N§7M57Sfy _ Z / Cl2 Cxn €23 (2 y y % (1,Z, ‘I’(z))dz,
N py €13 €23 €33 C36 2 AT + p,AC
s s O xy 2
A " lew w6 cos oty AT + f,,AC
0, AT + f,4C
Tt 1
n o0, AT + B,AC
N = Z/ [cis e em c]®{ g P (z)dz. (17)
2z = 0, AT + p,4C
' oy AT + B, AC

Consistent with the present unified plate theory, the
temperature variation and the moisture concentration
through the thickness are, respectively, assumed to be

v=w=¢,=¢, =N, =M, =5§,=0 at x=0,aq,
u=w=¢, =@, =N, =M, =85,=0 at y=0,b.

Z ¥(z (22)
T(3,2) = Ta(e) + S Ta(e ) + D Ty, ), |

h h We assume that the applied transverse load g,

b4 Y(z .
Clx,y,2) = C1(x,y) + = Calx,y) + ( )C3(x,y), the transverse telpperature loads 7, and the mois

h h ture  concentration C,, can be expressed

(18)

as:
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q q0
T, p =< Tp psin(ix)sin(uy), m=1,2,3,
Cm Em

(23)

where A = in/a, 1 = jn/b in which i and j are mode
numbers and g, represents the initial mechanical load.
There are three specific co-ordinates transformations
under which an orthotropic material retains mono-
clinic symmetry, namely, rotations about the axes x,
y or z. The transformation formulae for the stiffness
cf]k) are given in Appendix 2.

If the plate construction is cross-ply, i.e., 0; should
be either 0° or 90°, then the following plate stiffness

coefficients are identically zero:

A=A =A% =0, Big=By =0,

Big = B3 =0, Dic= Dy =0,

Dig =D =0, Fjg=F; =0,

LY = Ley = Ley = 0. (24)

In addition, the thermal expansion coefficient a,,
and the moisture concentration coefficient f,, van-
ishes, i.e., oy, = 0 and B, = 0.

Following the Navier’s solution procedure, we
assume the following form for displacements that
satisfy the boundary conditions,

u Uy cos() i)
w o i sin(Ax) sin(uy
ou (=22 Xyeos(ix)sin(wy) (+ (25
o | TN Yysin(ix) cos(uy)
. Z;; sin(Ax) sin(y)

where Uy, Vi, Wy, X;;, Y and Z;; are arbitrary param-
eters. Substituting Eq. (25) into Eq. (19), one obtains
the following operator equation,

{4} = {F}, (26)

where {A} and {F} denote the columns

{A}_{ ijs lj7 lJathv 1]7le}

(27)
{F}i{F ’J ’J U U U}

The components of the generalized force vector
{F} and the elements of the symmetric matrix [C] are
given in Appendix 3.

The stress components for the RPT are
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o) = —{C(lkl)wij + el uvy Z(C(ll?;”z + C(lg)ﬂz) Wi
(). (el 2+l ) + el P (2)2
+ (el + ) 71 + 275 + BTy — To)
(B elB, ) (€1 +2C + PG - o]}

x sin(Ax) sin(uy),
(28a)
G§'§) {C@’{UU*C(ZIQ#VU‘* ( );2+C22H )W
V(). (X + ety ) + v ()2
+ (eWou+ oy ) [Ty + 2T+ PR3 ~ 7o)
(BB + B, ) [Cr 420+ PGy — Gl
x sin(Ax) sin(uy),
(28b)
ol = —{ci’;)w,;,- e uvi— z(cﬁ’?)» + ¥ )W
(). (X + W ury) + v ()2
+ (ot céa)ay) [Ty + 2Ty + V()T — T
(013 B+ sz ﬁy) [C1 +2Ca+ P(2)Cs — Co]}
x sin(Ax) sin(uy),

(28¢)

r)((y =cg ){,uUU + AV — 2z2uW;; + P (z)
(,uXij + /IYU-) } cos(4x) cos(py), (28d)
o) = ) ¥ () sin( i) cos (). (28¢)
) = i W' (2)X; cos(4x) sin(uy). (28¢)

The above stresses may be suitable for the FPT,
HPT and SPT when the transverse normal stress is
ignored and setting Z; = 0. However, one gets for the
CPT only
o) = —{0(11{1)1%‘ + vy — Z(Cgli))vz + C(lg)ﬂz) Wi

(2 (2, + ety ) (e + B
x [Ty +zT2 — To] + (c(lk1>ﬁx + C@ﬁy)
x [Cy 4 zCy — Co)} sin(/x) sin(uy),

(29a)
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k), k k k
y;) - {C(lz)ﬂUij + C§2>#Vij - Z(C(lz))“2 + ng)'“z) Wi
00 (25, + ) (e + )

X(Ty + 2> = To] + (9, + <8,

X [C1 +7ZCy — Co]} sin(Zx) sin(uy),
(29b)
) = W {uUy + 2Vyj — 222uW;; } cos(2x) cos(uy).
(29¢)

5 Numerical results and discussions

To verify the analytical formulation presented in the
previous section, a variety of sample problems is
considered. For the sake of brevity, only linearly
varying (across the thickness) temperature distribution
T =T, +zT, and moisture distribution C = C;+
z7C,, non-linearly varying (across the thickness)
temperature distribution 7 = ¥(z) T3 and moisture
distribution C = ¥(z) Cs. Finally a combination of
both T=T,+ 7T, + lI/(Z)T3 and C=C;+zC, +
(z) C; are considered. In what follows, the reference
temperature T, and moisture concentration C, are
dropped. The improvement in the prediction of
displacements and stresses by the present unified
theory will be discussed. In all our problems, the
lamina properties are assumed to be (Jacquemin and
Vautrin 2002):

E,=181GPa, E,=E,=10.3GPa,

Gy =G,,=1.17GPa, G,, =2.39GPa,

Vi = Vi, = 0.28, v, =0.43,
% =0.02x107°/°C, o, =0, =22.5%x107/°C,
B.=0, B,=p.=0.6(wt%H,0)"'

Computations are carried out for the fundamental
mode (i.e., i =j=1). All of the lamina are
assumed to be of the same thickness and made of
the same orthotropic material. We will assume in
all of the analyzed cases (unless otherwise stated)
that ¢ =0,a/h =5,a/b=2,T, = 0,T, = 300, and
Ci = C3 = 0. The thermal parameter t = T3/T> may
be takes a constant value. The dimensionless deflec-
tions due to hygrothermal conditions are given by

n? h

Uy = ?MS MAS = 7_1,{3
o Tha® ' 1000, Tra?

In addition, the following dimensionless stresses
have been used throughout the tables and figures:

_ 1 ab z

= 1ooo<1T2E1 “‘(2’2%)’
ab z

10a]T2E1 (2 E’Z)’

5 abz
3_oc1T2E1a ¢ 2’2’/’1 ’

o
bz
5 h)
1000, THE; ™ ( % )

Table 1 shows the effect of thickness on the
dimensionless center deflections i3 of two-layer
(0°/90°) cross-ply square plates subjected to sinusoidal
hygrothermal or thermal conditions. The hygrother-
mal environment, affects on the center deflections i3
more than the thermal one. It is to be noted that, the
hygrothermal deflections may be twice the thermal
ones. Table 2 shows a comparison of the dimension-
less center deflections i3 of four-layer anti-symmetric
cross-ply (0°/90°/0°/90°) rectangular plates subjected
to sinusoidal hygrothermal distribution linearly vary-
ing through the plate thickness. In addition, Table 2
contains the center deflections 3 that are caused by a
sinusoidal temperature distribution linearly varying
through the thickness. The hygrothermal environment
affects more on the deflections than the thermal one.
Generally, the difference between hygrothermal and
thermal results for all theories are decreasing as the
aspect ratio increases. The deflection due to CPT for
both hygrothermal and thermal cases has the same
value for all values of the ratio a/h. The deflection of
the square plate shows the highest sensitivity. It is
clear that for both hygrothermal and thermal results,
the RPT yields the smallest deflections. The HPT and
SPT yield very close results to each other.

Table 3 shows the effect of thickness on the
dimensionless stresses of two-layer cross-ply rectan-
gular plates subjected to combine sinusoidal hygro-
thermal conditions. The FPT gives the smallest normal
stress ) and the transverse in-plane stress G while it
gives highest longitudinal stress &,. As it is already
known, the FPT gives the smallest and uniform shear
stresses a5 and as. The CPT gives reliable results only

g6 — —
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Table 1 Effect of thickness on the dimensionless center deflection i3 of cross-ply (0°/90°) square plates in hygrothermal envi-

ronment (t = 0)

arh G, = 0(0.507968)" C> = 0.01(0.959164)"
FPT HPT SPT RPT FPT HPT SPT RPT

100 0.507968 0507971 0.507971 0.421048 0.959164 0.959169 0.959170 0.794982
50 0.507968 0.507978 0.507980 0.420947 0.959164 0.959184 0.959186 0.794790
25 0.507968 0.508009 0.508014 0.420540 0.959164 0.959241 0.959250 0.794022
20 0.507968 0.508031 0.508039 0420234 0.959164 0.959284 0.959297 0.793443
15 0.507968 0.508081 0.508095 0.419570 0.959164 0.959377 0.959403 0.792190
10 0.507968 0.508221 0.508252 0.417658 0.959164 0.959641 0.959700 0.788578
5 0.507968 0508972 0.509094 0.406911 0.959164 0.961059 0.961289 0.768277

? Numbers between parentheses are given based on the CPT

Table 2 The dimensionless center deflections i3 of (0°/90°/0°/90°) rectangular plates

(t=0, C, =0.01)

in hygrothermal or thermal environment

alb =1

alb = 1.5

alb =2

a/h Theory alb = 1/3 alb = 0.5

5 FPT 0.49694 (0.26353) 0.76870 (0.40736)
HPT 0.50098 (0.26567) 0.77290 (0.40958)
SPT 0.50144 (0.26591) 0.77332 (0.40980)
RPT 0.35943 (0.19073) 0.63077 (0.33434)

10 FPT 0.42533 (0.22562) 0.66959 (0.35490)
HPT 0.42670 (0.22635) 0.67137 (0.35584)
SPT 0.42688 (0.22644) 0.67158 (0.35595)
RPT 0.31082 (0.16500) 0.55354 (0.29346)

20 FPT 0.40498 (0.21485) 0.63898 (0.33869)
HPT 0.40535 (0.21505) 0.63948 (0.33896)
SPT 0.40540 (0.21507) 0.63954 (0.33899)
RPT 0.29580 (0.15705) 0.52769 (0.27978)

50 FPT 0.39908 (0.21173) 0.62988 (0.33388)
HPT 0.39914 (0.21176) 0.62996 (0.33392)
SPT 0.39915 (0.21177) 0.62997 (0.33393)
RPT 0.29135 (0.15470) 0.51987 (0.27564)

100 FPT 0.39823 (0.21128) 0.62856 (0.33318)
HPT 0.39825 (0.21129) 0.62858 (0.33319)
SPT 0.39825 (0.21129) 0.62858 (0.33319)
RPT 0.29071 (0.15436) 0.51873 (0.27503)
CPT 0.39795 (0.21113) 0.62812 (0.33295)

1.00357 (0.53145)
1.00271 (0.53105)
1.00259 (0.53099)
0.89567 (0.47438)
1.00347 (0.53145)
1.00328 (0.53135)
1.00325 (0.53134)
0.91576 (0.48502)
1.00347 (0.53145)
1.00343 (0.53143)
1.00342 (0.53142)
0.92062 (0.48759)
1.00347 (0.53145)
1.00347 (0.53145)
1.00346 (0.53145)
0.92196 (0.48830)
1.00347 (0.53145)
1.00347 (0.53145)
1.00347 (0.53145)
0.92215 (0.48840)
1.00347 (0.53145)

0.70098 (0.37120)
0.70047 (0.37093)
0.70048 (0.37093)
0.62846 (0.33280)
0.73054 (0.38684)
0.72986 (0.38647)
0.72978 (0.38643)
0.67827 (0.35916)
0.74378 (0.39384)
0.74353 (0.39371)
0.74350 (0.39369)
0.69699 (0.36907)
0.74827 (0.39622)
0.74823 (0.39619)
0.74822 (0.39619)
0.70311 (0.37231)
0.74895 (0.39658)
0.74894 (0.39657)
0.74894 (0.39657)
0.70403 (0.37279)
0.74918 (0.39670)

0.46019 (0.24368)
0.46079 (0.24399)
0.46095 (0.24408)
0.40644 (0.21522)
0.47932 (0.25379)
0.47904 (0.25364)
0.47901 (0.25363)
0.44622 (0.23627)
0.48841 (0.25860)
0.48828 (0.25853)
0.48826 (0.25852)
0.46063 (0.24389)
0.49158 (0.26027)
0.49155 (0.26026)
0.49155 (0.26026)
0.46534 (0.24639)
0.49205 (0.26053)
0.49205 (0.26052)
0.49205 (0.26052)
0.46606 (0.24677)
0.49222 (0.26061)

The numbers between parentheses are given for the thermal deflections (C, = 0)

for thin plates. The other shear deformation theories
HPT and SPT give stresses very close to each other
with small relative error than the RPT. However, the
RPT gives the accurate stresses.

Figure 2 shows the variation of dimensionless
deflection i3 with side-to-thickness ratio for a four-

@ Springer

layer anti-symmetric (0°/90°/0°/90°) cross-ply rectan-
gular plate in thermal or hygrothermal environment.
The existence of moisture in the hygrothermal case
affects more on the center deflections than thermal
one. For both cases, the deflection decreases rapidly
with the increasing of the ratio a/h. The FPT, HPT and
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Table 3 The dimensionless stresses of (0°/90°) rectangular plates in hygrothermal or thermal environment (t = 0, C, = 0.01)

G6(—0.5)

64(0)

a5(0)

a/h Theory G1(—0.5) 7,(0.25)

5 FPT 0.60741 (0.32049) 1.77140 (0.93732)
HPT 0.80752 (0.42632) 1.17467 (0.62169)
SPT 0.82310 (0.43457) 1.11033 (0.58766)
RPT 0.85345 (0.45063)  1.30117 (0.68872)

10 FPT 1.10195 (0.58206) 2.20182 (1.16498)
HPT 1.17634 (0.62139) 1.99217 (1.05408)
SPT 1.18212 (0.62446) 1.96976 (1.04223)
RPT 1.18026 (0.62346) 1.38594 (0.73311)

20 FPT 1.30227 (0.68801) 2.37617 (1.25719)
HPT 1.32342 (0.69920) 2.31784 (1.22634)
SPT 1.32507 (0.70007) 2.31163 (1.22306)
RPT 1.32124 (0.69803) 1.55089 (0.82024)

50 FPT 1.36759 (0.72256) 2.43302 (1.28726)
HPT 1.37111 (0.72442) 2.42338 (1.28216)
SPT 1.37138 (0.72457) 2.42236 (1.28162)
RPT 1.36782 (0.72267) 1.61453 (0.85387)

100 FPT 1.37730 (0.72770) 2.44147 (1.29173)
HPT 1.37819 (0.72817) 2.43905 (1.29045)
SPT 1.37826 (0.72820)  2.43880 (1.29032)
RPT 1.37477 (0.72634) 1.62435 (0.85906)
CPT 1.38057 (0.72942) 2.44431 (1.29324)

2.65162 (1.40485)
2.78924 (1.47764)
2.80083 (1.48377)
2.47666 (1.31214)
2.92694 (1.55047)
2.97770 (1.57732)
2.98195 (1.57957)
2.62332 (1.38968)
3.03846 (1.60946)
3.05285 (1.61707)
3.05406 (1.61771)
2.69220 (1.42610)
3.07482 (1.62869)
3.07721 (1.62995)
3.07741 (1.63006)
2.71534 (1.43834)
3.08023 (1.63155)
3.08083 (1.63187)
3.08088 (1.63189)
2.71881 (1.44018)
3.08204 (1.63251)

2.24970 (1.18992)
2.77808 (1.46937)
2.85837 (1.51184)
2.91788 (1.54331)
1.62141 (0.85760)
1.97647 (1.04539)
2.03210 (1.07482)
2.06303 (1.09116)
0.91128 (0.48199)
1.10540 (0.58467)
1.13609 (0.60090)
1.15795 (0.61245)
0.37763 (0.19974)
0.45735 (0.24190)
0.46999 (0.24859)
0.47978 (0.25376)
0.18979 (0.10038)
0.22981 (0.12155)
0.23615 (0.12491)
0.24113 (0.12753)

1.34982 (0.71395)
1.67991 (0.88856)
173277 (0.91652)
1.87776 (0.99326)
0.97285 (0.51456)
1.19837 (0.63385)
1.23431 (0.65287)
1.35297 (0.71567)
0.54677 (0.28920)
0.67068 (0.35475)
0.69042 (0.3651)

0.75907 (0.40152)
0.22658 (0.11984)
0.27755 (0.14680)
0.28566 (0.15110)
0.31435 (0.16628)
0.11387 (0.06023)
0.13946 (0.07377)
0.14354 (0.07592)
0.15797 (0.08356)

The numbers between parentheses are given for the thermal stresses (C, = 0)

Fig. 2 Effect of thickness (a) 50 [T T
on the dimensionless “le
deflection i3 of a four-layer, 46 1\
anti-symmetric cross-ply 4 [
(0°/90°/Of/90°) rectangular 34 r

plate: a C, =0, A

b C, = 0.01 28

a’h

(b) 10

N W A~ OO N o

a’h

SPT yield closer results while RPT gives the accurate
deflections and the CPT gives appropriate deflections
especially after greater values of a/h.

The deflection due to the RPT is plotting through-
the-thickness of the (0°/90°/0°/90°) rectangular plate
in Fig. 3 according some values of the thermal
parameter 7. The deflection is very sensitive to its
position through the plate thickness. This does not
occur for deflections due to other theories which they
are independent of the z-axis. In addition, the

deflection increases with the increase of the thermal
parameter value. The present RPT also gives the
transverse normal stress ¢ alone. Figures 4 and 5 plot
this stress through-the-thickness of (0°/90°) and
(0°/90°/0°/90°) rectangular plates, respectively. These
figures allow themselves to underline their great
influence on transverse normal stress through-the-
thickness of different plates. The sensitivity of the
thermal parameter on G3 is also showed in these
figures.
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Fig. 3 The deflection i3
due to RPT through-the-
thickness of a (0°/90°/0°/
90°) rectangular plate for
various values of 7:
aC'Z:O,bC'2:0.Ol

Fig. 4 The distribution of
dimensionless normal stress
a3 through the thickness of a
(0°/90°) rectangular plate
for various values of 7:
aC’Z:O,bQ:O.Ol

Fig. 5 The distribution of
dimensionless normal stress
73 through the thickness of a
(0°/90°/0°/90°) rectangular
plate for various values of t:
a Cz = O7 b Cz =0.01.

Fig. 6 The distribution of
dimensionless shear stress
a4 through the thickness of a
(0°/90°/0°/90°) rectangular
plate:aC, = 0,b C, = 0.01
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Fig. 7 The distribution of (a)os
dimensionless shear stress 04 [
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Figure 6 shows the distribution of transverse shear
stress a4 through the thickness of a four-layer cross-
ply anti-symmetric (0°/90°/0°/90°) rectangular plate
due to both thermal and hygrothermal effects. The
distribution of transverse shear stress g5 through the
thickness of (0°/90°/0°/90°) cross-ply anti-symmetric
rectangular plate due to both thermal and hygrother-
mal effects is also shown in Fig. 7. The results
displayed in these figures show that the stress conti-
nuity across each layer interface is not imposed in the
present theories. The FPT may be insufficient for
transverse shear stresses while HPT and SPT gives
very close results to each other. The disagreement
between HPT and RPT, especially at the plate center,
is owing to the higher-order contributions of RPT.

6 Conclusions

The static response of antisymmetric cross-ply lami-
nated plates is discussed analytically and numerical
results are given using a unified theory. The present
plate is subjected to sinusoidally non-uniform distri-
butions of temperature and moisture concentrations.
Analytical solutions for governing differential equa-
tions of simply-supported laminates are developed
using Navier’s procedure and separation of variable
technique. The dimensionless deflections and stresses
are computed and compared using various plate
theories. It was found that, the CPT predicts deflec-
tions and stresses, as it is expected, significantly
different from those of the shear deformation theories.
The FPT results are less accurate in prediction of
deflections and stresses than other shear deformation
theories. In some cases, the HPT gives transverse
shear stresses with relative errors comparing with SPT
and RPT. In most problems the HPT and SPT give

0 02040608 112141618 2 22
5

close results to each other. However, RPT gives more
accurate results and that is due to the influences of
transverse normal strain in this theory.

Appendix 1

The elements of the symmetric matrix [L], for RPT,
are given by:

Ly = Andiy + 2A16d12 + Agsda,
Lis = Aedi1 + (A12 + Aes)d12 + Assdnr,
Li3 = —Bndin — 3Bisdii2 — (Bi2 + 2Bes)d122 — Bogdn,
Li4 = B{,di1 + 2B{¢d12» + Bggdn,
Lis = B‘f6d11 + (B‘llz + Bg6)d12 + B§6d22,
Lis = Ld) + Lgzd,
Loy = Agedi1 + 2A06d12 + An2da,
L3 = —Bisdin1 — (Bia + 2Bsg)di12 — 3Basdi2a — Baodan,
Lyy = Lys,
Lys = Bggdy1 + 2B5.dy> + BSyda,
Lo = Lgzdy + Lyzda,
L33 = Dyydiin + 4Died1112 + 2(D12 + 2Des )d1122
+ 4Dssd 1222 + Dardanm,
L3y = —Df{,di11 — 3D{¢d112 — (DY, + 2Dgg)d122 — D3gdon,
Lys = —Di¢diny — (DY, + 2D%)d112 — 3D5sd122 — D3ydom,
Lse = —(Li3di1 + 2Le3d12 + Lozday),
Lyy = F{,dyy + 2F{¢dy + Fgdoy — ASs,
Las = Figdn + (Fiy + Fg)d2 + Fgdn — Afs,
Ly = (Lis — A%)dy + (Les — Afs)da,
Lss = Fgediy + 2F5d1n + FSydon — Al
Lsg = (Les — Afs)dy + (Los — AYy)ds,
Lo = —(A%d) + 2A%d1s + Ayday — Ls3).

For the FPT, HPT and SPT, the components of
[L] are the same as given above for the RPT except
Le=0(=1,2, ..., 6). However, for the CPT, the
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components of [L] are reduced to be Ly(i,j=
1, 2, 3).

Appendix 2
The transformation formulae for the stiffness c{’ are
1t k)
ct 2c2s? s* 4crs?
12 2t A+t A8 —4c%s?
€22 st 2c%s? ¢t 4cs?
Ci6 s oesP s —es® —2cs(c? - 5°)
e’ As—cs® s 2es(c? — %)
€26
2?2057 PSP (c? —s%)
C66 -
K (k)
Ca4 C2 s2 C13 C2
Ca4 5
C45 = —CS CS s 23 =15
c
2 2 55
Css | s© ¢ o3 sc

Appendix 3

The components of the generalized force vector {F'}
are given by

C11
C12
C22

C66

§ C
13
2 (k) _
c y  Cz3 = (33,
(&X]

where ¢ = cos 0, s = sin 0, and c¢;; are the material
stiffness of the lamina. For RPT one has

_E(1—vyvy) E (v vyevz)
cpg=———"—"", p=—7T"T—"(""°-

A A ’
O Ei (v vpovy) CE(1 —vevy)
Cc13 = ;€00 = )
A A
o — Ey(vyy + viyVax) Con — E (1 — viyvy)
B=E—— o BT
i = Gy, 55 =Gy, o6 = Gyy.

in which A =1 — vy — Vv — VoV — 2v,0,
Vay, E; are Young’s moduli in the material principal
directions, v; are Poisson’s ratios and G; are shear
moduli. The material stiffness for the CPT and other
shear deformation plate theories may be reduced to:

B E, _ Vi Ey VyxEx
Cli=7—"—""—", Cn= 1 = ,
I — vy — VgV 1= vgvy
_ E, _ Vi E, _ vy E;
= ) 613—177 C3=—""—"—,
L — vy vy, — ViyVyx L — vy vy,
E;
C33 = , C44 = Gyz, C55 = ze, Cop — ny.
I — vy
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F] = 2(ATT, + BIT, + “B{Ts + a| C,
+b{ C; + “b] C3),
FJ = w(AIT) + BST> + “BITs + a} Cy
+b3C, + b} C3),
FJ = —qo — h[(BIJ* + BYi) Ty
+(D]2? + D) T,
+(“D2? + DY u*) T4 (b] 27 + I p*) €y
+(d] 22 + dyi?) Cr + (“d] 2 +d] 1i7) G,
FJ = hi(“B{T, + “DIT> + “FITs +“b] C,
+9d] Cy + f{ C3),
FY = hu(“BYTy +“D3T, + “FiT5 + “BLC,
+°D}C, + “F] C3),
Fl=—h(L'Ty +°L"T, +°L"T5 +1"C,
+407C, + 117 Cy),

where
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Tk+1

wrhslof =y |
k=1
Tk

(Vo + Yo {1,2.2)dz,

Zk+1
n

@.play=3 [

k=1
2k

(¥ B, + e p){1,2, 2z,

Tk+1

{aB[T7aDiT uFT} Z/

(o + el ) P12 PNz, (1= 1,2),

n 1

ol el ) =3 [ (Wb B PO PN (= 1.2),
k=1 Tk
n Zk+1

{Lhehrry =% (Cﬁ?“x + ) fxy> P'(2){1,Z, P(2)}dz,
k=1 Tk
n Zk+1

{70} = Z/ (013)3 +f ﬁ) P"(2){1,z, ¥(z) }dz,
k=1 Tk
in which 7 =z/h, lf/(z) = ¥(z)/h, and 'p”(z) — For the FPT, HPT and SPT, the components of

V(2)/h.

The elements of the symmetric matrix [C], for RPT,
are given by:
Cii = —An2* — Agsll?,

Cip = — (A2 + Ags) AL,

Ci3 = A[B117> + (B1a + 2Be) 1),
Cis = =B’ — Bgg/’,

Cis = —(B{, + Bgg) Au,

Ci6 = L5/,

Cy = —Agsl” — Anll?,
Cy3 = pu[(B1a + 2Bes) 2> + Byopt?],

Cyy = (s,
Cos = —Bie 2’ — By,
Cy = Loz,

Cyy = —D112* — 2(Dyy + 2Dg6) 27 1% — Dot
Cay = 2D, 22 + (D, + 2Dge) 1],

Css = u[(Df; +2D) 7> + D],
Cs6 = —(Li3A* + Losp?),

Cag = —(F&, 22 + Foop® + A%),
Css = —(F{, + Fg) A,

Cus = (Li3 — A%) 2,

Css = —Fgeh’ — Foppi® — AY,
Css = (Los — A%y 1,

—(AL22 + Au® + Lyy).

[C] are the same as given above for the RPT except
Cie=00=1,2,...,6). However, for the CPT,
the components of [C] are reduced to be
Cili,j=1,2,3).
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