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Abstract This paper presents the kinematics and

inverse dynamic analysis of a 6-SPS parallel mecha-

nism based on the principle of Kane. The parameters

of orientation and Euler angles of the moving platform

are adopted as generalized coordinate. The gravity and

inertial forces of all links and moving platform are

considered in the mathematical model of inverse

dynamics. Both kinematics and inverse dynamics

equations are derived. Driving forces–time relation is

derived form inverse dynamics model. The approach

is verified by simulation results, which are consistent

with the planned trajectory and kinematics parameters.

Keywords Parallel mechanism � Inverse dynamics �
Kinematic analysis � Kane formulation

1 Introduction

Parallel mechanisms, closed-loop link structures, are

receiving widespread attention because they provide

much higher stiffness, payload capability, more accu-

rate positioning, higher speed and acceleration oper-

ation compared with serial counterparts (Gosselin and

Angeles 1998; Merlet 2000). Parallel mechanisms

could be found in many practical applications, such as

aircraft simulators (Stewart 1965; Tsai 1999), posi-

tional tracker and telescopes (Dunlop and Jones 1999;

Carretero et al. 2000). Recently, they have been used

by many companies in development of high precision

machine tools (Huang et al. 2004), such as Giddings

and Lewis, Hexel and Toyoda.

In recent years, many research works have been

conducted on dynamics of the parallel mechanisms

(Lebret et al. 1993; Zanganeh et al. 1997). In the

context of real-time control, the relevant objective of

the dynamics is to determine the input force, which

must be exerted by actuators in order to produce a

given trajectory of the end-effectors. Several methods

such as Lagrange formulation (Xiuling et al. 2011;

Lee and Geng 1993), Newton–Euler formulation

(Dasgupta and Mruthyunjaya 1998a, b; Lu and

Hu 2006) principle of virtual work (Tsai 2000; Sokolov

and Xirouchakis 2007; Zhang and Song 1993) and

other methods (Huang et al. 2002) are proposed to

derive dynamic equations of parallel mechanisms.

Inverse dynamic analysis requires that the actuator

of a parallel mechanism to be specified in terms of its

input-force–time history, thus a motion path planning

of the end-actuator is necessary.

In this paper, a simple and efficient method is

proposed to derive inverse dynamics formulations of a
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6 degree-of-freedom (6-DOF) parallel mechanism for

dynamic simulation. The purpose of the paper is to

analyze the inverse dynamics of a DOF parallel

mechanism in which inertial forces of all links and

moving platform are considered. In this paper, inverse

dynamics formulation will be derived based on

principle of Kane. By this method, we can avoid the

explicit constraints and easily establish the dynamic

formulation form each link of the parallel mechanism.

This paper is organized as follows: in Sect. 2, Kane

formulation is introduced; next, the structure of 6-DOF

parallel mechanism, inertial coordinate frame and

moving coordinate frame are set forth in Sect. 3;

kinematics analysis is introduced in Sect. 4; inverse

dynamics equations are complete derived based on the

principle of Kane in Sect. 5; in Sect. 6, the numerical

simulation is implemented by utilizing of MATLAB and

ADAMS.

2 Kane formulation

Based on the principle of Kane, the dynamics formu-

lations of a multibody system with n bodies could be

written as follows.

Kc þ K�c ¼ 0 c ¼ 1; 2; . . .; fð Þ ð1Þ

In Eq. 1, Kc is generalized active force of the

generalized velocity c; K�c is generalized inertial force

of the generalized velocities c. According to principle

of Kane, the calculation of acceleration and partial

acceleration, the partial velocities of mass centers, and

partial angular velocities of all links are required.

3 Model description

The mechanism studied in this paper is a 6-DOF

parallel mechanism, which is shown in Fig. 1, herein

referred to as a 6-SPS (spherical-prismatic-spherical)

parallel mechanism.

This parallel mechanism consists of a moving

platform which is manipulated by six actuated links.

Each link is connected with fixed platform and moving

platform through spherical hinge. Since six links are

identical, one link is choosed to derive dynamic

equation. As shown in Fig. 2, it illustrates a link of

parallel mechanism. Coordinate frames Cum-XumYumZum

and Cbm-XbmYbmZbm are two moving coordinate frames

that are located in up link and bottom link respectively.

The origin of Cum is located the in mass centre of up

extensible link. The origin of Cbm is located in the mass

centre of bottom extensible link. Axis Xum and axis Xbm

along with link AiBi (i = 1, 2,…,6). Axis Yum and axis

Ybm are perpendicular to plane OAiBi (i = 1, 2,…,6).

Axis Zum and axis Zbm comply with right hand rule.

O-XYZ is inertial coordinate frame that fixed on the

fixed platform of parallel mechanism. O1-X1Y1Z1 is

moving coordinate frame that fixed on the moving

platform of parallel mechanism. The origin of the

inertial coordinate frame O-XYZ locates in the mass

center of the fixed platform. The original of the moving

coordinate frame O1-X1Y1Z1 locates in the mass center

of the moving platform.

4 Kinematics analysis

q = [x, y, z, a, b, c]T is defined as generalized coordinate

vector of the system. x, y and z denote orientation vector

of the origin of the moving coordinate frame O1-X1Y1Z1

Fig. 1 Model of 6-SPS parallel mechanism

Fig. 2 One link of parallel mechanism
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in inertial coordinate frame O-XYZ, and a, b and c
denote three Euler angles of moving coordinate frame

O1-X1Y1Z1 in inertial coordinate frame O-XYZ. Thus,

generalized velocity of the moving platform could be

written as q
�
¼ x;

�
y;
�

z;
�

a;
�

b;
�

c
:

h iT

¼ v; x½ �T

in inertial coordinate frame O-XYZ. v and x denote

line velocity and angular velocity of the moving

platform respectively.

According to Fig. 2, vector equation of link AiBi

could be written as follows.

S ¼ Pþ Rbi � Ai ði ¼ 1; 2; . . .; 6Þ ð2Þ

where R¼
cbcc �cbsc sb

sasbccþ casc cacc� sasbsc �sacb
sasc� casbcc casbscþ sacc cacb

2
4

3
5;

s denotes sine function and c denotes cosine function.

In Eq. 2 S denotes the vector of link AiBi in inertial

coordinate frame O-XYZ; P denotes orientation vectors

of the origin of the moving coordinate frame O1-X1

Y1Z1 in inertial coordinate frame O-XYZ; bi denotes the

orientation vector of point Bi in moving coordinate

frame O1-X1Y1Z1; Ai denotes the orientation vector of

point Ai in inertial coordinate frame O-XYZ; R denotes

transformation matrix.

By differentiating Eq. 2, the equation could be

written as follows

S
�
¼ P
�
þx� ci ð3Þ

where ci = Rbi. S
�

denotes the velocity of the point Bi

in inertial coordinate frame. P
�

denotes the velocity of

the origin O1 in the inertial coordinate frame. x
denotes the angular velocity of the moving platform in

inertial coordinate frame.

It is assumed that the length l and unit vector s of

link AiBi are predefined. There exists the formulation

s = S/l and Eq. 3 could be transformed as follows

S
�
¼ l
�
sþ xl � S ð4Þ

where l
�

denotes relative line velocity between up link

and bottom link; xl denotes angular velocity of link

AiBi.

Cross-producting with unit vector s on both sides of

Eq. 4 yields

xl ¼
s� S

�

l
¼ s� vþ x� cið Þ

l
; i ¼ 1; 2; . . .; 6ð Þ

ð5Þ

Mass centre velocity of moving platform vm could

be written as follows

vm ¼ vþ x� rm ð6Þ

where rm denotes mass centre orientation vector of

moving platform in moving coordinate frame.

Line velocity of point Bi in moving platform could

be obtained

vBi
¼ vþ x� rBi

i ¼ 1; 2; . . .; 6ð Þ ð7Þ

where rBi
denotes orientation vector of point Bi in

moving coordinate frame.

Mass centre velocity of bottom link vdm could be

obtained

vdm ¼ xl � Sdm ¼ ldm xl � sð Þ ¼ ld
2

xl � sð Þ ð8Þ

where ld denotes the length of the bottom link and ldm

denotes the length from point Ai to mass centre of

bottom link.

Mass centre velocity of up link vum could be

obtained

vum ¼ l
�
sþ l� lu

2

� �
xl � sð Þ ð9Þ

where lu denotes the length of the up link.

Relative line velocity between up link and bottom

link could be obtained

vr ¼ S
�
�s ¼ vþ x� cið Þ � s ð10Þ

Partial velocity vk
m and partial angular velocity xk

m

of mass centre of the moving platform could be

obtained (Huang et al. 2002)

vk
m ¼ I3; I3 � rm½ � ð11Þ

where I3 is 3 9 3 unit matrix.

xk
m ¼ 03; I3½ � ð12Þ

where 03 is 3 9 3 zero matrix.

Partial angular velocity xk
l of links could be

obtained (Huang et al. 2002)

xk
l ¼

s� I3

l
;

sT cð ÞI3 � csT

l

� �
ð13Þ

where c = [ci]

Partial velocity vk
dm of up links could be obtained

vk
dm ¼

ld

2l
I3 � ssT ; sT c

� �
I3 � csT

� 	
� s

� 	
ð14Þ
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Partial velocity vk
um of up links could be obtained

vk
um ¼ sT I3 þ 1� lu

2l

� �
I3 � ssT
� �

; c� sð ÞT I3

�

þ 1� lu

2l

� �
sT c
� �

þ csT
� �� 	

� s

�
ð15Þ

Partial velocity vk
r of up link and bottom link

corresponding to their relative velocity could be

obtained

vk
r ¼ sT I3; c� sð ÞTI3

� 	
ð16Þ

5 Dynamics analysis

Generalized active forces of constrains are zero, thus

neglecting constrains in calculation of generalized

active forces. Fi denotes driving force in link AiBi, thus

generalized active force corresponding to generalized

velocity q
�

could be obtained

Fq
� ¼ Fi � vk

q
� i ¼ 1; 2; . . .; 6ð Þ ð17Þ

M is predefined mass of moving platform. Mid and

Miu are predefined the mass of bottom link and up link

in link AiBi respectively. FW and mw denote external

force and torque that exerted on the mass centre of

the moving platform. g denotes gravity acceleration.

Moving platform’s generalized active force Fvx, Fvy

and Fvz corresponding to generalized velocities vx, vy

and vz could be obtained (Huang et al. 2002).

Fvx¼Mg �vk
m;vxþFw � vk

m;vxþ
X6

i¼1

Fi � l
�
s


 �k

vx

þ
X6

i¼1

Midg �vk
idm;vxþMiug �vk

ium;vx


 �
ð18Þ

Fvy¼Mg �vk
m;vyþFw � vk

m;vyþ
X6

i¼1

Fi � l
�
s


 �k

vy

þ
X6

i¼1

Midg �vk
idm;vyþMiug �vk

ium;vy


 �
ð19Þ

Fvz ¼ Mg � vk
m; vz þ Fw � vk

m; vz þ
X6

i¼1

Fi � l
�
s


 �k

vz

þ
X6

i¼1

Midg � vk
idm; vz þMiug � vk

ium; vz


 �
ð20Þ

Moving platform’s generalized active forces Fxx,

Fxy and Fxz of the generalized velocities xx, xy and

xz could be obtained (Huang et al. 2002)

Fxx ¼ Mg � vk
m;xx þ mw � vk

m;xx þ
X6

i¼1

Fi � l
�
s


 �k

xx

þ
X6

i¼1

Midg � vk
idm;xx þMiug � vk

ium;xx


 �
ð21Þ

Fxy ¼ Mg � vk
m;xy þ mw � vk

m;xy þ
X6

i¼1

Fi � l
�
s


 �k

xy

þ
X6

i¼1

Midg � vk
idm;xy þMiug � vk

ium;xy


 �
ð22Þ

Fxz ¼ Mg � vk
m;xz þ mw � vk

m;xz þ
X6

i¼1

Fi � l
�
s


 �k

xz

þ
X6

i¼1

Midg � vk
idm;xz þMiug � vk

ium;xz


 �
ð23Þ

Moving platform’s generalized inertial forces F�vx,

F�vy and F�vz of the generalized velocities vx, vy and vz

could be obtained

F�vx ¼ �Mam � vk
m; vx

�
X6

i¼1

Midaid � vk
idm; vx þMiuaiu � vk

ium; vx


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vx

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vx ð24Þ

F�vy ¼ �Mam � vk
m; vy

�
X6

i¼1

Midaid � vk
idm; vy þMiuaiu � vk

ium; vy


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vy

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vy ð25Þ

F�vz ¼ �Mam � vk
m; vz

�
X6

i¼1

Midaid � vk
idm; vz þMiuaiu � vk

ium; vz


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vz

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vz ð26Þ
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where aid and aiu denote line acceleration of up link and

bottom link in link AiBi respectively. iid and iiu denote

rotary inertia of up link and bottom link in link AiBi res-

pectively. eis denotes angular acceleration of link AiBi.

Moving platform’s generalized inertial forces

F�xx; F�xy and F�xz of the generalized velocities xx,

xy and xz could be obtained

F�xx ¼ �Mam � vk
xx � Imem þ xm � Imxmð Þ � xk

xx

�
X6

i¼1

Midaid � vk
idm;xx þMiuaiu � vk

ium;xx


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xx

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xx ð27Þ

F�xy ¼ �Mam � vk
xy � Imem þ xm � Imxmð Þ � xk

xy

�
X6

i¼1

Midaid � vk
idm;xy þMiuaiu � vk

ium;xy


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xy

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xy ð28Þ

F�xz ¼ �Mam � vk
xz � Imem þ xm � Imxmð Þ � xk

xz

�
X6

i¼1

Midaid � vk
idm;xz þMiuaiu � vk

ium;xz


 �

�
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xz

�
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xz ð29Þ

where em denotes angular acceleration of the moving

platform; eis denotes tangential acceleration of the

link; Im denotes rotary inertia of the moving platform;

Iid denotes rotary inertia of the bottom link; Iiu denotes

rotary inertia of the up link;

The transformation of Eq. 1 could be written as

follows

Fvx þ F�vx ¼ 0

Fvy þ F�vy ¼ 0

Fvz þ F�vz ¼ 0

Fxx þ F�xx ¼ 0

Fxy þ F�xy ¼ 0

Fxz þ F�xz ¼ 0

9>>>>>>=
>>>>>>;

ð30Þ

Substituting Eqs. 18–29 into Eq. 30 and rearrang-

ing that a set of line equation could be obtained

corresponding to external force Fi (i = 1, 2,…,6)

JF ¼ C ð31Þ

where J is Jacobian matrix of the parallel mechanism,

and Ci (i = 1, 2,…,6) just as follows

C1 ¼ M am � gð Þ � vk
m; vx � Fw � vk

m; vx

þ
X6

i¼1

Mid aid � gð Þ � vk
idm; vx þMiu aiu � gð Þ � vk

ium; vx


 �

þ
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vx

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vx

C2 ¼ M am � gð Þ � vk
vy � Fw � vk

m; vy

þ
X6

i¼1

Mid aid � gð Þ � vk
idm; vy þMiu aiu � gð Þ � vk

ium; vy


 �

þ
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vy

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vy

C3 ¼ M am � gð Þ � vk
vz � Fw � vk

m; vz

þ
X6

i¼1

Mid aid � gð Þ � vk
idm; vz þMiu aiu � gð Þ � vk

ium; vz


 �

þ
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il; vz

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il; vz

C4 ¼ M am � gð Þ � vk
m;xx � mw � vk

m;xx

þ
X6

i¼1

Mid aid � gð Þ � vk
idm;xx þMiu aiu � gð Þ � vk

ium;xx


 �

þ Imem þ xm � Imxmð Þ � xk
xx

þ
X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xx

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xx

C5 ¼ M am � gð Þ � vk
m;xy � mw � vk

m;xy

þ
X6

i¼1

Mid aid � gð Þ � vk
idm;xy þMiu aiu � gð Þ � vk

ium;xy


 �

þ Imem þ xm � Imxmð Þ � xk
xy þ

X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xy

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xy
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C6 ¼ M am � gð Þ � vk
m;xz � mw � vk

m;xz

þ
X6

i¼1

Mid aid � gð Þ � vk
idm;xz þMiu aiu � gð Þ � vk

ium;xz


 �

þ Imem þ xm � Imxmð Þ � xk
xz þ

X6

i¼1

Iideis þ xil � Iidxilð Þ � xk
il;xz

þ
X6

i¼1

Iiueis þ xil � Iiuxilð Þ � xk
il;xz

where am denotes acceleration of the moving platform.

6 Numerical example

In this section, simulations of the inverse dynamics are

performed to study the inverse dynamic characteristics

of the actuated forces in links. A line trajectory is

utilized for the demonstration. Moving platform and

fixed platform are both circle platform. The radius and

mass of moving platform are 0.1 m and 1 kg respec-

tively. Initial orientation vector of the moving plat-

form mass center is [0, 0.2, 0.45]T m in inertial

coordinate frame. Initial velocity vector of the moving

platform mass centre is v = [0, 0.1, 0]T m/s, and initial

acceleration vector of the moving platform mass

centre is a = [0, 0.1, 0]T m/s2. External forces that

exerted on the mass centre of moving platform is

Fw = [80, -50, -100]T N. Moving time of the

moving platform is 2 s.

Inverse dynamics calculation program of 6-SPS

parallel mechanism is programmed by using of

MATLAB. Driving forces of six links is solved out

by calculation program as shown in Fig. 3.

The software ADAMS is widely used for the

mechanical system dynamic simulation. In this study,

the ADAMS is used to verify the inverse dynamics

analysis derived above (Wu and Wu 2008). Firstly, the

model is imported into the ADAMS software by

adding various constrains; secondly, the driving forces

data is imported into motion of the ADAMS model,

their driving functions as below:

SFORCE_1: AKISPL (time, 0, spline_F1, 0),

SFORCE_2: AKISPL (time, 0, spline_F2, 0),

SFORCE_3: AKISPL (time, 0, spline_F3, 0),

SFORCE_4: AKISPL (time, 0, spline_F4, 0),

SFORCE_5: AKISPL (time, 0, spline_F5, 0),

SFORCE_6: AKISPL (time, 0, spline_F6, 0),

Import the above six driving functions into the six

forces driving respectively, we can get the parallel

mechanism trajectory, shown as Fig. 4. The relation-

ship of velocity, acceleration and displacement of

mass centre of moving platform with time are shown

in Figs. 5, 6 and 7.

Fig. 3 Driving forces of links

Fig. 4 The simulation trajectory of mass centre

Fig. 5 The relationship between mass center velocity and time

126 P. Wu et al.

123



From above Figs. 4, 5, 6 and 7, we can see that, the

simulation trajectory and other kinds of motion

parameters are consistent with the planned ones,

which proves the correctness and feasibility of inverse

dynamics mathematic model. Cross-producting and

dot-producting are main computing means in dynamic

model which are suitable for computer solving and

with high speed. This method is suitable for the real-

time control of parallel mechanisms in industrial field.
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