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Abstract Great strides have recently been made in

the application of computational mechanics to the

design of highly complex engineering systems. It has

now become abundantly clear that advanced model-

ling techniques are central to the competitiveness of

the industrialised nations. Excellent examples of this

assertion are the computer-integrated design of the

recent Boeing 777 aircraft, the collapsible foam-filled

structures for the car of the next century and new

prosthetic implants for Rheumatoid Arthritis. It is with

this in mind that the author focuses his attention to a

class of problems where contact mechanics plays a

major role in dictating the mechanical integrity of the

component/system. Three aspects of the current study

are accordingly examined. The first is concerned with

the development of the appropriate dynamic varia-

tional inequalities expressions, which are capable of

the accurate and consistent representation of contact

problems. The second is concerned with the develop-

ment of robust solution algorithms that guarantee

the accurate imposition of the kinematic contact

constraint and avoid interpenetration. The third is

concerned with the application of the developed

algorithms to realistic design problems involving

intricate mechanical and biomechanical systems.

Keywords Dynamic contact � Variational

inequalities � Aeroengine discs � Shot-peening �
Finger implants

1 Introduction

Contact problems play an important role in dictating

the integrity, performance and safety of many engi-

neering systems/components involved in vehicle

design, armament and ballistics, metal forming/cut-

ting, and surface treatments, just to name a few.

Despite their importance to the mechanical integrity of

the systems examined, contact effects are frequently

treated using oversimplifying assumptions, which

neglect the main feature of the problem. The reason

is that modelling dynamic contact in solids poses

mathematical and computational difficulties. With the

application of loads to the bodies in contact, the actual

surface on which these bodies meet, change with time,

and the stresses at the surfaces are generally unknown

and complex to determine.

The subject of contact mechanics may be said to

have started in 1882 with the pioneering publication of

Hertz (Hertz 1882). His theory of contact was devel-

oped for elastic smooth frictionless bodies, with the

contact region being small compared with the
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dimensions of the bodies. Hertz formulated the condi-

tions of contact by considering two elastic bodies. In

order to obtain expressions for the size of the contact

zone and the value of the contact pressure, several

simplifications and restrictions were imposed. These

include:

(i) the contacting surfaces must be smooth,

(ii) the strains and displacements adhere to the

small strain theory of elasticity,

(iii) the stress, in each of the half-space bodies

considered, is related to the strain by Hooke’s

law,

(iv) the surfaces of the elastic half-space bodies

considered are frictionless, and

(v) the bodies are in static contact.

Despite its limitations, Hertz’s theory of contact

has stood the test of time and has been a landmark in

applied mechanics for many decades. More repre-

sentative analytical solutions of contact problems,

mostly developed in the second half of the twentieth

century, have been largely associated with the

removal of some of these restrictions (see e.g.

Johnson 1985, Gladwell 1980). Expressions for

contact stresses, size of contact region and displace-

ments at the contact surface were derived for a large

number of simplified cases.

In spite of the progress so far made in analytical

contact mechanics, the proper treatment of the

general dynamic frictional contact problem is still

beyond the reach of these analytical solutions. In

order to overcome these limitations, most contact

problems are currently being treated using computa-

tional techniques, with the finite element method

being the most appealing.

2 Computational contact mechanics

With the rapid development in the capabilities of

digital computers, numerical methods became the

prime interest of researchers. Several formulations

have been proposed to treat frictional contact prob-

lems using the Boundary Element Method (BEM)

(Aliabadi and Brebbia 1993) and the Finite Element

Method (FEM) (Bathe 1996; Crisfield 1997; Hughes

1987; Zienkiewicz and Taylor 1988; Zhong 1993).

However, the FEM is now considered the most

favourable, because of its proven success in treating a

wide range of engineering problems in areas of

mechanics of solids, fluid flow, heat transfer, elec-

tromagnetism and coupled field problems. In

addition, the BEM becomes computationally ineffi-

cient when treating nonlinear problems requiring the

calculation of the field variables inside the domain

(Aliabadi and Brebbia 1993).

Original FE formulations did not accommodate the

treatment of contact and ad hoc techniques were used.

In these cases, simplifying assumptions regarding the

actual contact surface and the distribution of the

contact stress were made. These simplifying assump-

tions enabled the treatment of each individual body as

a separate problem, see for example (Kenny et al.

1991). This ad hoc technique proved inadequate in

many cases where neither the contact surface nor the

stresses on it could be easily estimated. This has

prompted the development of contact elements.

FE methods treat contact problems by extending

the variational formulation upon which the FE

method is based. Contact elements are formulated

and assembled into the original FE code in order to

enforce the contact conditions (Böhm 1987). The

solution is then obtained by solving the resulting set

of nonlinear equations. A large number of contact

element formulations has appeared in the literature

and has been implemented in a number of commer-

cial FE packages over the last two decades (see for

example Chaudhary and Bathe 1985). The solution

techniques adopted in these formulations were based

upon using either function method or Lagrange

multipliers in identifying the contact surface and

imposing the contact constraints.

Figure 1 shows a typical example of such contact

elements. This particular element is adopted in several

FE packages including ANSYS (ANSYS 1999) and

MARC (MARC 1993). In this case, the element is based

on two stiffness values. They are the normal contact

stiffness KN and the tangential contact stiffness KT.

The normal stiffness KN is used to penalize

interpenetration between the two bodies, while the

tangential stiffness KT is used to approximate the

sudden jump in the tangential force, as represented by

Coulomb’s friction law when sliding is detected

between the two contacting nodes.

Advantages of contact elements

Because of the simplicity of their formulation,

contact elements enjoy the following advantages:
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(i) they are simple to formulate,

(ii) they are easily accommodated into existing FE

codes, and

(iii) they are easy to use.

However, experience with contact elements indicates

that they suffer from several difficulties as indicated

below.

Disadvantages of contact elements

Figure 2a, b show the variation of the normal and

tangential stiffness, KN and KT, with displacement. A

major problem in the implementation of contact

element is the assignment of values to KN and KT.

The values of KN and KT are required to be very

large. However, the use of excessively high values of

KN and KT results in ill-conditioned global stiffness

matrices, leading to numerical errors and divergence.

On the other hand, the use of smaller values of KN

and KT, results in convergence to the wrong solution

allowing for interpenetration and wrong estimates of

the stick and slip regions. In addition, they lack in

mathematical rigor as evidenced by Böhm (1987) as

they ignore the non-differentiability of Coulomb’s

friction law. Therefore, the difficulties with contact

elements can be summarized as follows:

(i) their performance, in terms of convergence and

accuracy, depends on user defined parameters,

(ii) they increase the size of the problem, and

(iii) they do not deal with the non-differentiability

issue of Coulomb’s friction forces.

In an attempt to overcome some of these difficul-

ties, several formulations combined the method of

Lagrange multipliers with that of the penalty function

method. In this case, the active contact constraints are

first identified by a penalty-type contact element and

then the frictional forces are estimated and used with

Lagrange multipliers to enforce contact conditions.

Although these formulations are better than the above

two approaches, they are still dependent upon user

defined parameters which govern the convergence

and accuracy of the solution. In addition, mathemat-

ical inconsistencies associated with the use of

Coulomb friction forces are not resolved by combin-

ing the two techniques.

Because of the difficulties associated with tradi-

tional contact elements, current research efforts on

the subject are focused on the formulation and

implementation of the newly developed Variational

Inequalities (VI) formulations.

2.1 Solution techniques

The exact variational representation of frictional contact

problems results in a variational inequality. However,

most FE methods treat contact problems by extending

the variational formulation, which involve integrals

over unknown contact surfaces (e.g., Hughes 1987;

Zienkiewicz and Taylor 1988; Zhong 1993). Hughes

et al. were the first to provide a detailed analysis of a

class of impact frictionless problems (Hughes et al.

1976). In their method, Lagrange multipliers together

with Newton-Raphson iterative procedure were utilised

to solve the resulting dynamic expressions. Chaudhary

and Bathe used Lagrange formulation to solve the static

and dynamic contact problems accounting for friction

(Chaudhary and Bathe 1986). Wriggers and Simo

developed consistently linearised contact formulations

for static problems (Wriggers and Simo 1985), while

Wriggers et al. (1990) used a penalty formulation to

solve these dynamic contact problems. Parisch devel-

oped consistent tangent stiffness matrices for treating

quasi-static large deformation problems (Parisch 1989).

Laursen and Simo developed an approach for treating

Fig. 1 A typical contact element

Fig. 2 Variation of contact stiffness with relative nodal

displacement: (a) normal stiffness KN and (b) tangential

stiffness KT
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dynamic frictional contact problems which experience

large deformations (Laursen and Simo 1993). In order to

impose the kinematic contact conditions, they employed

the penalty and augmented Lagrangian regularisation

approaches.

The use of the variational method to formulate

quasi-static or dynamic contact problems lacks in

mathematical rigour, especially when frictional effects

are taken into account. This is partly due to the non-

differentiability of Coulomb’s friction law, which is

not properly addressed in the variational formulations.

Furthermore, it usually results in the introduction of

user-defined parameters, which influence the accuracy

of the solution and the rate of convergence (see e.g.,

Böhm 1987; Refaat and Meguid 1994).

3 Variational inequalities formulations

The theory of variational inequalities is a relatively

young mathematical discipline. It can be considered as

an alternative mathematical description of physical

problems, which is useful in problems involving

constraints. A wide range of applications ranging

from network economics to contact mechanics, are

ideally formulated using variational inequalities (see

e.g., Ferris and Pang 1997). However, the VI approach

has not gained popularity in the engineering commu-

nity because most of the work has appeared in the

mathematical literature. The focus of the work was to

examine the existence and uniqueness of the resulting

inequalities (Adams 1975; Duvaut and Lions 1976;

Glowinski et al. 1981; Hlavacek et al. 1988; Rabier

et al. 1986; Kinderlehrer and Stampacchia 1980).

Only in the last two decades interesting results related

to contact have appeared in the engineering literature

(see e.g., Kikuchi and Oden 1988; Oden and Martins

1983, 1985; Refaat and Meguid 1996).

The main basis for the development of VI formu-

lations for contact problems was the works of Duvaut

(Duvaut and Lions 1976) on the solution of the

Signorini problem. Later on, Stampacchia laid the

foundation of the theory itself (Kinderlehrer and

Stampacchia 1980). Several authors examined the

existence and uniqueness of the VI formulation of

contact problems (see e.g., Kikuchi and Oden 1988;

Klarbring 1988).

However, the literature indicates that little work has

been carried out to develop suitable computational

techniques to make use of these theoretical results. In

this regard, dynamic elastic contact for small defor-

mation was presented by Kikuchi and Oden (Kikuchi

and Oden 1988; Oden and Martins 1983, 1985). They

devoted their efforts to the mathematical questions

concerning existence and uniqueness of the variational

inequalities representing different contact problems.

They also presented a solution technique based on the

use of the penalty method, regularisation, and implicit

Newmark time integration. Unfortunately, the result-

ing solution algorithm suffers from the same

disadvantages as those outlined in the traditional

penalty approach. A few other publications have

devoted attention to the practical implementation of

variational inequalities in static contact problems (see

e.g., Bogomolny 1984; Bischoff 1984; Qin and He

1995; El-Abbasi 1999).

The current research study overcomes these diffi-

culties by developing and implementing a new

variational inequalities methodology to treat dynamic

frictional contact in engineering structures.

In the unilateral (Signorini-type) problem, the

contact constraints are shown in Fig. 3, and can be

expressed as follows:

before/after contact uN � g\0) rN

¼ 0 & _uN is unconstrained ð1aÞ

during contact uN � g ¼ 0) rN� 0 & _uN� 0 ð1bÞ

These contact constraints state that: (i) the magnitude

of the normal contact stress is less than or equal to

zero, and (ii) the displacement of the contacting

surfaces must not allow for interpenetration. Note

that no constants are required to describe the

contacting surfaces in the normal direction.

Coulomb’s friction condition can be expressed as

follows:

uN\g) rT ¼ 0 ð2Þ

uN¼g)
jrTj� �lrN

jrTj\�lrN) _uT¼0;
jrTj¼�lrN)9k�0; _uT¼�krT:

8
<

:
ð3Þ

where l is the coefficient of friction and is assumed

to be independent of velocity. This means that

tangential stresses are only present if there is contact.
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3.1 Dynamic VI formulation for elasto-plastic

media

The dynamic contact problem for elastic-plastic

media must satisfy the following equations:

(i) The equation of motion:

otrij

otxj

þ tfi ¼ tq
o2ðtuiÞ

ot2
ð4Þ

(ii) The constitutive law governing the behaviour of

the material:

rijðuÞ ¼ CijkleklðuÞ ð5Þ

(iii) The initial conditions:

uð0Þ ¼ uo; _uð0Þ ¼ _uo ð6Þ
(iv) The displacement and traction boundary

conditions:

ui ¼ �uo on CD ð7Þ
rini ¼ ti on CF ð8Þ
(v) The kinematic contact and frictional conditions

on CC.

Restrictions imposed upon admissible displace-

ment, velocity and stress field are not, in general,

equalities but rather inequalities. Accordingly, the

variational inequalities approach can be viewed as

being the formulation of the principle of rate of

virtual work in an inequality form. In the following,

we will derive the variational inequality for dynamic

frictional contact problems. The basic steps of the

derivation are summarised in Fig. 4.

The elasto-plastic material considered here is

assumed to experience large displacements and large

strains. In this case, it is necessary to adopt the

Fig. 3 Two bodies in contact: (a) unilateral contact model, and (b) schematic of kinematic contact condition

Fig. 4 Basic steps of derivation of dynamic VI formulations for elastic media
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Green-Lagrange strain tensor and its energy conju-

gate, the second Piola-Kirchhoff stress tensor, to

account for the necessary kinematic relationships.

These formulations are developed in the updated

Lagrangian framework. The incremental dynamic

variational inequality takes the form:

hq€u; _v� _ui þ Aðu; _v� _uÞ þ jðu; _vÞ � jðu; _uÞ�Rð _v
� _uÞ;
_v 2 K

ð9Þ
uð0Þ ¼ uo and _uð0Þ ¼ _uo

where,

(i) the first term represents the rate of virtual work

done by the inertia forces:

hq€u; _vi ¼
Z

tþDtX

q€u � _vd tþDtX ð10Þ

(ii) the second represents the rate of virtual work

done by the internal forces:

Aðu; _vÞ ¼
Z

tX

tC
ep
ijrs teijðuÞ teijð _vÞd tX

þ
Z

tX

trijðuÞ tgijð _vÞd tX ð11Þ

(iii) the fourth and fifth terms represent the rate of

virtual dissipation by the frictional forces, and

can be represented as follows:

jðu; _vÞ ¼
Z

tþDtCC

�ltþDt rNðuÞ _vTj jd tþDtS ð12Þ

(iv) the term on the right-hand-side represents the

rate of virtual work done by the residual

external forces (unbalance force between the

external loading and internal stresses):

Rð _vÞ ¼
Z

tþDtX

tþDtf � ð _vÞd tþDtX

þ
Z

tþDtCF

tþDtt � ð _vÞd tþDtS

�
Z

tX

trijðuðtÞÞteijð _vÞd tX ð13Þ

In addition to the above variational inequality,

the elasto-plastic behaviour of the material will be

characterised by a yield function F, a strain

hardening function tj and the appropriate flow

rule. In this case, the constitutive relations take the

following form:

Fðtrij;
tjÞ ¼ 0; d te

p
ij ¼ tdk

oF

o trij

ð14Þ

trij

r
dt ¼ tC

e
ijrsðd ters � d te

p
rsÞ ð15Þ

with Ce
ijrs being the material elastic constitutive

tensor.

3.2 Special sub-problems of VI formulations

Currently, there is no direct method available for the

solution of the general frictional contact problem of

Eq. 9 with all the terms included. In our approach, we

divide the general elasto-dynamic variational

inequality into two consistent sub-problems. Details

are provided below.

3.2.1 Sub-problem I: prescribed tangential stresses

If the tangential stresses rT are assumed to be known

everywhere on the boundaries of the two bodies at

time t + Dt, then variational inequality (9) reduces to

(Fig. 5a):

hq€u; _v� _ui þ Aðu; _v� _uÞ�R1ð _v� _uÞ _v 2 K

ð16Þ

where

R1ð _vÞ ¼ Rð _vÞ þ
Z

tþDtCC

rT � _vd tþDtS ð17Þ

The effect of friction is now included in the

expression of R1ð _vÞ as known tractions over the

boundary CC. Note that for the unilateral contact

model, the rate of work done by the normal contact

stresses hPðuÞ; _v� _ui is always negative or equal to

zero. Therefore, variational inequality Eq. 16 is

reduced to:

hq€u; _v� _ui þ Aðu; _v� _uÞ�R1ð _v� _uÞ ð18Þ
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3.2.2 Sub-problem II: prescribed normal stresses

and contact surface

In sub-problem II, where the normal stresses rN

together with the actual contact surface CC are

known (Fig. 5b), the variational inequality (9)

reduces to:

hq€u; _v� _ui þ Aðu; _v� _uÞ þ jð _vÞ � jð _uÞ�R2ð _v
� _uÞ;
_v 2 K

ð19Þ

where

jð _vÞ ¼
Z

tþDtCC

�tþDtr̂N _vTj jd tþDtS ð20aÞ

R2ð _vÞ ¼ Rð _vÞ þ
Z

tþDtCC

tþDtrN _vNd tþDtS ð20bÞ

The above VI formulation (19) has a non-differ-

entiable frictional term j(�) (Eq. 20a). In order to

overcome this difficulty, two approaches, regularisa-

tionand nondifferentiable optimisation, were adopted

(Czekanski and Meguid 2001).

3.3 Modelling of friction

The above VI formulation (19) has a non-differen-

tiable frictional term j(�) (Eq. 20a). In order to

overcome this difficulty, two approaches, regularisa-

tionand nondifferentiable optimisation, were adopted

(Czekanski and Meguid 2001).

3.3.1 Regularisation technique

In the first method, we adopt the following regular-

isation approximation and its derivative:

j _uj ! weð _uÞ ¼
j _uj � e

2
; j _uj[ e

1
2e _u � u; j _uj � e

�

ð21Þ

/eð _uÞ ¼
_u
j _uj ; j _uj[ e
_u
e ; j _uj � e

(

ð22Þ

In this case, the regularised friction conditions reduce

to:

uN� g) rT� r̂T

_uT

j _uTj ; j _uTj[ e
_uT

e ; j _uj � e

(

ð23aÞ

uN\g) rT ¼ 0 ð23bÞ
Accordingly, the regularised form of j(.) can be

expressed as:

jeð _vÞ ¼
Z

tþDtCC

tþDtr̂Tweð _vÞ d tþDtS ð24Þ

In this case, the regularised frictional term is convex

and differentiable with respect to the second argu-

ment (Kikuchi and Oden 1988). The partial

derivatives of jeð _wÞ in the direction _v, are given by:

hJeð _wÞ; _vi � hojeð _wÞ; _vi

¼
Z

tþDtCC

tþDtr̂N/eð _wÞ _vTd tþDtS ð25Þ

Based on this regularisation technique, the following

formulation is obtained:

Fig. 5 (a) Prescribed tangential contact stresses on the boundaries (sub-problem I), and (b) prescribed normal contact stresses

together with the actual contact surface CC (sub-problem II)
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hq€u; _v� _ui þ Aðu; _v� _uÞ þ hJeð _uÞ; _v� _ui
¼ R2ð _v� _uÞ ð26Þ

It is appropriate to identify the role of the

regularisation parameter e. This parameter determines

the region where the tangential component of the

relative sliding velocity on the contact surface is

small enough to represent sticking. Experimental

studies concerning friction between metallic surfaces

indicate the existence of a gradual transition from

sticking to slipping, which can be represented using

the parameter e (Oden and Martins 1985).

3.3.2 Nondifferentiable optimisation

Mathematical formulation and the numerical compu-

tations required as well as the accuracy of the

solution obtained using the above technique is

dependent on the form of the regularisation function

employed and the value of the user-defined regular-

isation parameter. Several NDO algorithms have

been proposed (Balinski and Wolfe 1975; Fletcher

1982; Lemarechal 1974; Mifflin 1982; Shimizu et al.

1997; Shor 1985; Wierzbicki 1982). However, they

are inappropriate for dealing with the current VI

problem. These difficulties have been overcome in

the current solution strategy. The solution of varia-

tional inequality (19) is equivalent to the

minimisation of the following function p:

p ¼ hq€u; _ui þ 1

2
Aðu; _uÞ þ jð _uÞ � Rð _uÞjN � u

� g� 0 on CC ð27Þ

The function p is nondifferentiable, because of the

existence of the absolute value function |�| in the

frictional term j(�). The frictionless VI formulation is

strictly convex and assumes a unique minimum

(Hlavacek et al. 1988, Kikuchi and Oden 1988). By

considering the frictional formulation, the problem

remains convex and quadratic, if the line representing

_uT ¼ 0 is not crossed. In other words, the function is a

convex and quadratic on either side of the _uT ¼ 0 .

Therefore, it is necessary to create an artificial cutting

line located at vector _uT ¼ 0 , which we will denote

artificial nondifferentiable optimisation (ANDO)con-

straint. Therefore, the frictional term j(�) represented in

Eq. 20, can be described by two complementary sub-

problems with additional ANDO constraints (Fig. 6):

jð _uÞ ¼
Z

tþDtCC

tþDtr̂T _uTd tþDtSj _uT� 0 on CC ð28aÞ

jð _uÞ ¼ �
Z

tþDtCC

tþDtr̂T _uTd tþDtSj _uT� 0 on CC

ð28bÞ
In this case, each of these complementary two sub-

problems is strictly convex and assumes a unique

minimum.

Fig. 6 Solution of nondifferentiable VI function using complementary sub-problems
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The frictional contact problem involves two dis-

tinct states: slip and stick. The two complementary

NDO sub-problems of Eqs. 27 and 28 lead to two

solutions. The ANDO constraint is always active

ð _uT ¼ 0Þ in at least one of the two sub-problems. For

the second sub-problem, the ANDO constraint could

also be active. In this case, both sub-problems must

have the same solution, which represents a state of

stick. On the other hand, the constraint in the second

sub-problem could be inactive. In this case, the

solution of the second sub-problem is always the

global minimum, which represents a state of slip.

4 Representation of kinematic contact conditions

The accurate and efficient representation of contact

surfaces has received little attention in the scientific

literature. Most formulations rely on the use of

element interpolation functions to describe the con-

tact surface and to impose the kinematic contact

conditions. In most contact algorithms, the contact

surfaces are defined as a sequence of lines (or curves)

connecting the FE nodes with only C0-continuity. In

this case, the normal vector is not uniquely defined at

element boundaries (Fig. 7).

Even when higher order elements, such as the 8

and 9 noded 2D elements, are used, the contact

surfaces are still non-smooth at the exterior nodes. In

fact, higher-order smoothness of the contact surface

cannot be achieved through appropriate element

selection, since the use of C1 or higher-order

continuous elements in mechanics problems is unde-

sirable (Zienkiewicz and Taylor 1988). On the other

hand, only C0-continuity of the contact surface

violates the assumptions of smoothness, which are

essential to the proofs of uniqueness and convexity of

contact problems (Kikuchi and Oden 1988). To

overcome these inconsistencies, contact problems

commonly involve a disproportionately fine mesh at

the vicinity of the contact region.

This has motivated the use of splines passing

through the FE nodes and possessing at least C1-

continuity. The resulting normal vector is uniquely

defined at all point belonging to the selected surface

(Fig. 7).

4.1 Cubic spline interpolation of surfaces

Figure 8 shows a smooth cubic spline segment

connecting two points in a 2D space. Assuming a

Fig. 7 Contact surface and normal vector based on spline and

traditional element interpolations

Fig. 8 Characteristics of a cubic spline segment

Fig. 9 Overhauser splines and associated control points
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parametric representation, the coordinates of any

point on this curve can be expressed in terms of an

independent variable u, such that:

x uð Þ ¼ x uð Þ
y uð Þ

� �

; 0� u� 1 ð29Þ

For each curve segment a, the interpolation

function passes through the end points p0 and p3,

while the intermediate points p1 and p2 dictate the

shape of the curve (Fig. 9). The segment can be

described as follows:

xa uð Þ ¼
X3

i¼0

B3
i uð Þ pa

i ð30Þ

where

Bm
i uð Þ ¼ m

i

� �

ui ð1� uÞm�i ð31Þ

are the Bernstein polynomials.

Each spline segment interpolates between two

neighbouring points on the contact surface. The end

control points p0 and p3 are located at these points.

This guarantees that the interpolated surface passes

through all the external points. The intermediate

points p1 and p2 of each segment dictate the shape of

the curve and their location is selected based on the

specific spline form adopted. In this case, the location

of the intermediate control points for all the spline

segments are coupled. They can be obtained by

solving a predominantly tri-diagonal matrix express-

ing the C2 continuity equations (Hughes et al. 1976).

When the location of the FE nodes changes, the

matrix must be solved again for the new location of

the intermediate points. The overhead associated with

this process does not offset the advantages of second

order continuity. Note, however, that if the change in

the nodal locations is governed by an affine transfor-

mation, such as rigid body translation, rotation or

shearing, the modified spline needed not be evaluated

again (Hughes et al. 1976). Accordingly, the use of

C2 cubic splines is only justified for rigid surfaces.

By requiring just C1 continuity, simpler and faster

interpolation functions can be constructed where the

intermediate control points can be obtained without

resorting to matrix solution. In this case, the location

of the intermediate control points of a segment is only

governed by a few neighboring nodes. This property

is known as local support. A detailed review of C1-

continuous cubic splines is provided in Ref. (Hughes

et al. 1976). Interpolation functions can be con-

structed which satisfy a prescribed tangential vector,

a prescribed tangential direction or a prescribed

normal direction (Hughes et al. 1976; Wriggers et al.

1990). However, these vectors are generally not

available in standard FE meshes. Overhauser splines

offer an alternative approach that ensures C1-conti-

nuity without requiring prescribed tangential or

normal vectors (Parisch 1989; Laursen and Simo

1993). Accordingly, they are the most suitable

interpolation form for the finite element contact

problem involving flexible bodies. These splines have

also been used to develop smooth boundary elements

(Refaat and Meguid 1994) and to evaluate contact

between gear teeth (Ferris and Pang 1997). Other

cubic spline interpolation schemes possessing the

same properties as Overhauser splines were also

developed (Duvaut and Lions 1976; Adams 1975).

However, not all of them are unique. The Catmull-

Rom spline (Duvaut and Lions 1976), for example, is

identical to the Overhauser spline.

Each Overhauser curve segment can be considered

a linear blend of two parabolas qa-1 and qa (Fig. 9):

xa uð Þ ¼ 1� uð Þ qa�1 uþ 1ð Þ þ u qa uð Þ; 0� u� 1

ð32Þ

Each parabola passes through the two surface nodes

pa
0 and pa

3 as well as a neighboring surface node (one

from each side). Consequently, the Overhauser spline

can be expressed directly in terms of the coordinates

of the two points defining the segment and their two

adjacent points:

xa uð Þ ¼ pa�1
0 pa

0 pa
3 paþ1

3

� �

� 1
2

u3 þ u2 � 1
2

u
3
2

u3 � 5
2

u2 þ 1

� 3
2

u3 þ 2u2 þ 1
2

u
1
2

u3 � 1
2

u2

2

6
6
6
4

3

7
7
7
5
; 0� u� 1

ð33Þ

It is convenient to use the Bernstein polynomial form

of Eq. 30 to represent all forms of cubic splines. In

this case, only the location of the four control points

should be stored for each spline segment. The first

and last control points of each segment coincide with

the finite element nodes, while the intermediate

control points can generally be obtained using the

following relationship:

428 S. A. Meguid, A. Czekanski

123



pa
1 ¼ pa

0 þ 1
3

mað0Þ
pa

2 ¼ pa
3 � 1

3
mað1Þ ð34Þ

where m is the vector tangent to the spline curve such that:

m uð Þ ¼ d

du
x uð Þ ð35Þ

Splines possess several properties which are funda-

mental to their use for modeling contact surfaces.

According to the convex hull property, the spline

curve cannot exceed the geometric bounds of the

control polygon (Hughes et al. 1976). This polygon is

formed from the spline’s control points. This feature

is extremely useful for contact detection, since it is

much simpler and faster to check interference

between a master node and the control polygon

rather than the actual spline curve. Most cubic spline

interpolation schemes are invariant under affine

transformations. This property is generally useful

for modeling rigid surfaces. Local support is another

important feature that should be present in the splines

defining the contact surface. This implies that a

change in the location of one of the contact nodes

only affects a few neighboring splines and not the

entire contact surface. Note, however, that C2-

continuous cubic splines do not possess this property.

4.2 Node-to-surface spline slave-master

algorithm

In cases involving contact between flexible bodies,

analytical surface profiles that describe the initial geom-

etry cannot be used to describe the deformed one. As a

result, spline-based surface interpolation should be used.

Based on a master-slave technique, for every point

on the master contact surface Cm a corresponding

closest point on the slave surfaces Cs is determined

from the kinematics of the deformation (Fig. 10).

This is defined for x 2 Cm as being

kx� y�ðtxÞk ¼ min
y2CS

ktx� tyk ð36Þ

The unit normal vector to the slave surface can be

defined as:

tN ¼ oty�=on� oty�=og

koty�=on� oty�=ogk
ð37Þ

where n and g are two orthogonal directions tangen-

tial to the contact surface. If the contact surfaces are

sufficiently smooth, the normal can alternatively be

expressed as:

tN ¼
ty�ðtxÞ � tx

kty�ðtxÞ � txk ð38Þ

The unit outward normal vector for a 2-D spline

segment a can be expressed as:

tNa uð Þ ¼
½�tma

y uð Þ tma
x uð Þ �T

ktma uð Þk ð39Þ

The gap function between two contact surfaces at

unknown configuration t + Dt can be expressed as

(Fig. 10):

tþDtgðxÞ ¼ tþDty�ðxÞ � tþDtx
� �

� tþDtN� 0 ð40Þ

This gap function is generally nonlinear. However,

for incremental finite element analysis, a linearised

form yields:

tþDtgðxÞ ¼ tgðxÞ þ Dtuðy�Þ � DtuðxÞ
� �

� tN� 0

ð41Þ

where Du is the incremental displacement vector.

Contact search

Using nonlinear relationships, such as splines, to

represent the contact surface can slow down the

contact search procedure. To overcome this, the

contact search is divided into two stages. The purpose

of the first stage is to obtain a quick estimate of the

proximity of a master node to a specific spline

Fig. 10 Kinematic contact constraints
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segment. In this stage, interference is checked

between the master node and the control polygon of

the spline segment, as shown in Fig. 11. According to

the convex hull property, the spline curve cannot

exceed the geometric bounds of the control polygon

(Hughes et al. 1976). For rapid penetration problems,

it is sometimes useful to search within a wider

envelope surrounding the control polygon. If the

master node is inside the search region, an accurate

iterative contact check is performed in the second

stage of the search. In this stage, the exact target point

and gap/penetration are determined.

4.3 Contact constraints

The discretisation of a contact constraint a (Eq. 40 or

41) can be represented as:

Aal da � Gað Þ� 0 ð42Þ

where Ga is the gap and da is the vector of nodal

degrees of freedom associated with this constraint.

da ¼ fDUM DUSð1Þ DUSð2Þ � � � DUSðLÞ gT

ð43Þ

where DUi represents all degrees of freedom associ-

ated with node i and L is the number of nodes on the

slave surface that affect the displacement of the target

node.

Matrix Aa, which represents the contact constraint,

can be expressed as follows:

Aaf g ¼ ½NT
a �/Sð1ÞN

T
a �/Sð2ÞN

T
a � � � �USðLÞN

T
a �
ð44Þ

where the weight function /S(i) is the contribution of

each of the surface nodes to the normal displacement

at the target point on the slave contact surface. These

values are determined based on the contact search

and are subject to the following restriction:

XL

i¼1

/SðiÞ ¼ 1 ð45Þ

For Overhauser splines, the four weight functions can

easily be evaluated based in Eq. 33.

Finally, the assembly of all contact constraints

yields a set of inequalities of the form:

AU�G ð46Þ

where G is the global vector of the gap functions, U

is the assembled displacement vector and the A-

matrix represents the standard finite element assem-

bly of all individual Aa constraint matrices.

5 Finite element implementation

5.1 Time integration schemes

In order to solve the above VI formulations (Eqs. 16

and 19), the finite difference method is employed in the

time domain to establish a relationship between the

acceleration, velocity and displacement fields. The

Newmark method (Newmark et al. 1959), the most

frequently used implicit time integration scheme,

allows us to approximate the velocities and displace-

ments at time t + Dt in terms of acceleration at time

t + Dt and the field variables at time t, as follows:

tþDt _U ¼ t _Uþ ½ð1� cÞt €Uþ c tþDt €U�Dt ð47aÞ
tþDtU ¼ tUþ t _UDtþ ½ð0:5� bÞt €Uþ b tþDt €U�Dt2

ð47bÞ

It has been shown that the use of the trapezoidal rule

(c = 0.5 and b = 0.25) with a fully implicit treatment

of the contact constraints produces oscillations, which

can be significant as the time steps and spatial discret-

izations are refined (Chaudhary and Bathe 1986).

Recently, the generalized-a method was developed for

solving structural dynamics problems with second order

accuracy (Chung and Hulbert 1993). In this method, the

equation of motion is modified as follows:

M ðtþDtÞ�aB €Uþ C ðtþDtÞ�aH _UþK ðtþDtÞ�aH U

¼ ðtþDtÞ�aH F ð48Þ

whereFig. 11 Control polygon used for preliminary contact search
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ðtþDtÞ�aH U ¼ 1� aHð ÞtþDtUþ aH
tU

ðtþDtÞ�aH _U ¼ 1� aHð ÞtþDt _Uþ aH
t _U

ðtþDtÞ�aB €U ¼ 1� aBð ÞtþDt €Uþ aB
t €U

ðtþDtÞ�aH F ¼ 1� aHð ÞtþDtFþ aH
tF

ð49Þ

The Newmark time-integration scheme (Eq. 47) is

used to solve the above equation of motion.

5.2 General algorithm for dynamic contact

problems

The reduced VI sub-problems are integrated into two-

step and one-step algorithms to provide the complete

solution. For each time increment, the solution

algorithm is summarised as follows (Fig. 12a):

(i) the effective stiffness matrix and load vector are

calculated using generalized-a time integration,

(ii) the reduced VI problem(s) is solved iteratively

to obtain the displacement, velocity and accel-

eration fields as well as the current contact

surface, contact forces, and

(iii) steps (i) and (ii) are repeated until the final time

is reached.

Step (ii) of the above algorithm rely on the

decomposition of the physical problem into two and

one sub-problem(s). The first two-step approach

integrates the two sub-problems in one algorithm to

provide the complete solution (Fig. 12b). For each

time instant, first, sub-problem I is solved to obtain

the current contact surface and normal contact

stresses. Then, sub-problem II is solved to obtain

the displacement, velocity, acceleration as well as the

frictional forces. Those two steps are repeated until

convergence is reached. The second one-step

approach is based on the iterative solution of sub-

problem II (Fig. 12c). It is worth noting that both

proposed algorithms are identical in the frictionless

cases.

Generally, convergence in contact problems is

measured by the change in the contact and

frictional states as well as an energy norm. In this

study, the solution is deemed converged once the

change in the normal and tangential contact forces

between two consecutive iterations is less then

0.01%.

5.3 Two step algorithm

The proposed VI algorithm relies on the decompo-

sition of the physical problem into two sub-problems

to identify the candidate contact surface and contact

stresses.

Fig. 12 Flow charts of:

(a) general algorithm for

dynamic contact problems,

(b) two-step algorithm, and

(c) one-step algorithm
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5.3.1 Solution of sub-problem I

Using expression (18), in conjunction with the

generalized-a method, the reduced VI formulation

is equivalent to solving the following minimisation

problem (Czekanski et al. 2001):

min
1

2
tþDtUT K̂ tþDtU� tþDtUT tþDtF̂

1

� �

8 tþDtUjA tþDtU�G

ð50Þ

where

K̂ ¼ 1� aHð ÞKþ 1� aBð Þ 1

bDt2
M ð51aÞ

tþDtF̂1¼ 1�aHð ÞtþDtFþaH
tFþ tþDtFT

�aBMt €U�aHKtUþ 1�aBð ÞM

� 1

bDt2
tUþ 1

bDt
t _Uþ 1

2b
�1

� �
t €U

� �

ð51bÞ

where b and c are Newmark time integration

parameters, aH is the generalized-a time integration

parameter which modifies all terms in the equation of

motion with the exception of the inertia term. The

generalized-a time integration aB modifies only the

inertia term. Selection of those four parameters is

crucial to the stability and accuracy of the solution.

The details regarding the selection of the time

integration scheme and parameters are provided in

the chapter five.

F represents the vector of external nodal forces,

while vector FT represents the frictional forces acting

on CC. The Hessian matrix K̂ in Eq. 50 is the effective

stiffness matrix, which is positive definite. Accord-

ingly, expression (50) represents a convex Quadratic

Programming problem. The current contact surface is

directly defined by the active set of constraints. In this

study, we adopt the technique of Quadratic Program-

ming to solve this minimisation problem based on the

projected gradients search method. The flow chart for

the algorithm of the sub-problem I for unilateral

contact model is depicted in Fig. 13.

5.3.2 Solution of sub-problem II

The solution of sub-problem II is equivalent to the

minimisation of the functional tþDtU , subject to the

equality constraint BtþDtU ¼ G resulting from the

known contact surface CC and the prescribed dis-

placements on CD (Czekanski et al. 2001), i.e.,

minðpðtþDtUÞÞjBtþDtU ¼ G on CC [ CD ð52Þ

where

p tþDtU
	 


¼ 1
2

tþDtUTð1� aHÞKtþDtU� tþDtFT
a

tþDtU

þtþDt €UTð1� aBÞMtþDtUþ tþDtFT
T

tþDtWe

ð53Þ

The modified external force vector is defined as:

Fig. 13 Flow chart of

algorithm for sub-problem I
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tþDtFa ¼ ð1� aHÞtþDtFþ aH
tF� tUTaHK

� t €UTaBM ð54Þ

The last term in Eq. 53 represents the regularised discrete

frictional forces. The solution to Eq. 53 can be obtained

using Lagrange multipliers. In this case, the equivalent

unconstrained functionalv tþDtU; tþDtK
	 


is as follows:

v tþDtU; tþDtK
	 


¼ 1

2
tþDtUTð1� aHÞKtþDtU

þ tþDt €UTð1� aBÞMtþDtU

� tþDtFT
a

tþDtUþ tþDtFT
TWe

þ tþDtKðBtþDtU�GÞ ð55Þ

which attains its extremum when:

L1 ¼
ovðtþDtU; tþDtKÞ

otþDtU
¼ 0 and L2

¼ ovðtþDtU; tþDtKÞ
otþDtK

¼ 0 ð56Þ

where L1 and L2 are defined as:

L1ðtþDtU; tþDtKÞ ¼ K̂tþDtU� tþDtF̂þ UT
e

tþDtFT

þ BtþDtK
¼ 0

ð57aÞ

L2ðtþDtU; tþDtKÞ ¼ BtþDtU�G ¼ 0 ð57bÞ
K̂ is the effective stiffness matrix defined in Eq.

51a, K represents the vector of nodal normal forces,

and F̂ is the effective load vector, defined as:

tþDtF̂¼ 1�aHð ÞtþDtFþaH
tþDtF�aBMt €U�aHKtU

� 1�aBð ÞM 1

bDt2
tUþ 1

bDt
t _Uþ 1

2b
�1

� �
t €U

� �

ð58Þ

The elements of the matrix Ue of Eq. 57 (dimension

m x n), which represents the regularisation function

/eð _vÞ , can be calculated as:

where m is the number of active contact constraints

and n is the total number of degree of freedom.

In the above expression, the discretised tangential

velocity component _UT is determined by multiplying

the global velocity vector _U with the T matrix, as

follows:

tþDt _UT ¼ TtþDt _U ð60Þ

Equations 57a and 57b can be represented as

follows:

L1ðtþDtU; tþDtKÞ
L2ðtþDtU; tþDtKÞ

� �

¼ 0
0

� �

ð61Þ

or in the equivalent compact form LðtþDtU; tþDtKÞ ¼
0 . The vector functions L1 and L2 are of dimensions

n and m respectively. To solve this system of

equations, a Newton–Raphson technique is used.

The solution for iteration i is as follows:

tþDtU
tþDtK

" #i

¼
tþDtU
tþDtK

" #i�1

�L0ðtþDtUi�1; tþDtKi�1Þ�1

� LðtþDtUi�1; tþDtKi�1Þ; i [ 1

The corresponding matrix of first derivatives L0

can be expressed as:

L0ðtþDtU; tþDtKÞ

¼
oL1ðtþDtU; tþDtKÞ

otþDtU

oL1ðtþDtU; tþDtKÞ
otþDtK

oL2ðtþDtU; tþDtKÞ
otþDtU

oL2ðtþDtU; tþDtKÞ
otþDtK

2

6
6
4

3

7
7
5 ð63Þ

where

oL1ðtþDtU; tþDtKÞ
otþDtU

¼ K̂þ c
bDt

tþDtCT;

oL1ðtþDtU; tþDtKÞ
otþDtK

¼ BT

ð64aÞ

n
Ue

o

ij
¼ Tij

1;
Pn

k¼1

Tik
tþDt _Uk [ e

1
e

Pn

k¼1

Tik
tþDt _Uk;

Pn

k¼1

Tik
tþDt _Uk

�
�
�
�

�
�
�
�� e

�1;
Pn

k¼1

Tik
tþDt _Uk\� e

8
>>>>>><

>>>>>>:

i ¼ 1; . . .;m; j ¼ 1; . . .; n ð59Þ
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oL2ðtþDtU; tþDtKÞ
otþDtU

¼ B; and
oL2ðtþDtU; tþDtKÞ

otþDtK
¼ 0

ð64bÞ
Finally, the damping matrix CT, which results

from the regularisation of the frictional term, can be

expressed as follow:

tþDtCT

� 

ij

�
Xm

l¼1

tþDtFT

� 

l
Tf gij

0;
Pn

k¼1

Tij
tþDt _Uk

�
�
�
�

�
�
�
�[ e

Tij

e ;
Pn

k¼1

Tij
tþDt _Uk

�
�
�
�

�
�
�
�� e

8
>>><

>>>:

ð65Þ

Fig. 14 Flow chart of algorithm of sub-problem II
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The flow chart for the algorithm for the sub-

problem-II for unilateral contact model is depicted in

Fig. 14.

5.4 One-step algorithm using nondifferentiable

optimisation

The second approach, which treats the VI formulation

in one-step approach, is based on the iterative

solution of sub-problem II discussed in chapter three.

Using Eqs. 27 and 28, in conjunction with the

generalized-a method, the discretised reduced incre-

mental VI formulation is equivalent to solving the

following minimisation problem (Czekanski et al.

2001):

min

�
1

2
tþDtDUiþ1T

K̂tþDtDUiþ1 � tþDtDUiþ1T tþDtDF̂iþ1

þtþDtDUiþ1T

TStþDtFi
T

�

8 tþDtDUiþ1 ð66Þ

subject to the following kinematic contact condition

and ANDO constraint:

AtþDtDUiþ1�G ð67aÞ

STtþDtDUiþ1� ST ðtþDtUi � tUÞ ð67bÞ

where

K̂ ¼ ð1� aHÞKþ 1� aBð Þ 1

bDt2
M ð68Þ

tþDtDF̂iþ1 ¼ 1� aHð ÞtþDtFþ aH
tF� aBMt €U

� aHKtUþ 1� aBð ÞM

� 1

bDt2
tUþ 1

bDt
t _Uþ 1

2b
� 1

� �
t €U

� �

� tþDtFi
int ð69Þ

This incremental solution can be represented as

follows:

tþDtUiþ1 ¼ tþDtUi þ tþDtDUiþ1 for i [ 1 ð70Þ
The first constraint (Eq. 67a) represents the

assembly of the kinematic contact conditions of the

nodes on the candidate contact surface CC. The

second constraint (Eq. 67b) represents the assembly

of the ANDO constraint (sk
tþDt _UTk� 0Þ of the nodes

on the candidate contact surface CC. The sign matrix

S, which switches between the two complementary

sub-problems, is unknown in advance, and is part of

the solution. Therefore, the new algorithm employs a

sequence of convex Quadratic Programming

problems.

The flow chart for the algorithm is depicted in

Fig. 15 and can be stated in the following steps:

(i) Calculate the tangential velocity vector _UTk and

the signs of each of its terms sk, for k = 1,..., m,

where m is the number of contact constraints.

The variable sk can take only -1 or + 1 for

nodes in contact and 0 for nodes not in contact.

(ii) Create the ANDO constraint set: sk
_UTk� 0 for

k = 1,..., m.

(iii) Solve the current Quadratic Programming

problem subject to the appropriate kinematic

contact condition and ANDO constraints, and

then find the minimum of the current objective

function.

(iv) Identify the current active ANDO constraints

set ( _UTk ¼ 0 for k = 1,..., m). If this set is

empty, then we obtain the optimal solution.

(v) For each active ANDO constraint k reverses the

sign of the ANDO constraint, i.e. sk = -sk, and

solves the resulting complementary Quadratic

Programming problem and computes the min-

imum value of the objective function.

(vi) If all the elements of the active ANDO

constraints are considered and cannot produce

an improved value of the objective function,

then U is the optimal solution. Exit.

The above algorithm is guaranteed to converge in

a finite number of steps, because of the condition of

strict convexity assumed and because the number of

the cutting planes (i.e. the planes given by _UTk ¼ 0;

k = 1,...,m) is finite.

6 Numerical examples

Four examples have been selected to demonstrate the

flexibility, robustness and accuracy of the newly

developed approach. The first involves dynamic

frictionless contact between a cantilever beam and a

rigid foundation. In the second example, we analyze

contact in gears. The third example is devoted to the

analysis of the fir-tree contact in aeroengine turbine

disc assembly. Finally, we analyze the residual stress
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field developed in the shot peening process as a result

of inhomogeneous elasto-plastic deformation.

6.1 Contact between a cantilever beam and a flat

rigid surface

The first example involves the dynamic frictionless

contact between a cantilever beam and a flat rigid

surface (Fig. 16). A beam of length l = 0.2 m and

height h = 0.02 m is made from aluminum with the

following properties: E = 73 GPa, m = 0.33, and

q = 2770 kg/m3. A step load of F = 103 N was

applied. The gap between the beam and the rigid

foundation was selected to be equal to the maximum

static deflection of the beam. A time step of

Dt = 5 9 10-6 s was used. The results were

obtained using the new VI approach and compared

with the traditional penalty method. The displace-

ments were normalized by the maximum static

deflection of the beam, while the user-defined penalty

stiffness parameters were normalized by the stiffness

of the beam at the point of application of the load.

Figure 17 shows the normalized tip displacement

predicted using the newly developed algorithm as

well as the traditional penalty method. The results

show that the VI does not result in any interpenetra-

tion. For low values of kN, the beam experiences

excessive unrealistic interpenetration. The penalty-

based results approach the VI solution only for kN/

kbeam values approaching 102, or higher.

Fig. 15 Details of nondifferentiable optimisation algorithm
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6.2 Analysis of spur gear contact

Gearing is one of the most effective methods of

transmitting rotary motion and torque from one shaft

to another, with or without a change of speed or

direction of motion. The design of efficient and

reliable gearing systems is governed, amongst other

factors, by their ability to withstand the frictional

contact conditions and the high bending stresses

experienced at the tooth root.

Whilst the frictional contact conditions govern the

pitting and spalling resistance of a given gear, the

high stress concentration present at its root deter-

mines the root fillet bending stresses and ultimately

its fatigue life. Recent advances in turbomachinery

have resulted in increasing the load carrying capacity

and speeds of gear trains which may, however, make

them vulnerable to failure, especially if the designer

is unable to accurately and reliably predict the states

of contact and root stresses of the mating gears.

Unfortunately, conventional gear strength equa-

tions are inaccurate and inadequate to treat modern

high speed high load gearing, since they model the

gear tooth as a cantilever beam and provide formulae

which relate the maximum root bending stress to the

design parameters. To overcome the difficulties and

limitations associated with the use of these semi-

empirical formulae, the newly developed algorithms

were use to predict root stresses in gears.

Analysis of a rack-pinion assembly

The present rack-pinion contact problem can be

approached from a number of different directions

according to the objectives and level of accuracy

desired. The gear assembly considered conforms to

AGMA standards and is shown schematically in

Fig. 18. It comprises a 20 teeth pinion with a rack.

Both components have involute teeth profiles of 20�
pressure angle, a module of 5 mm, an addendum of

one module and dedendum of 1.25 module. The

components are assumed to be made of steel with the

following elastic properties: Young’s modulus

E = 210 GPa and Poisson’s ratio m = 0.3. Further-

more, the load is represented by an upward force per

unit thickness of the rack P0 = 90 kN/m under the

assumptions of plane stress conditions. Several cases

were considered in this study, such as: (i) one-pair,

(ii) two-pairs, and (iii) three-pairs of teeth in contact.

The objective of considering two-pairs of contact-

ing teeth are: (i) to predict the effect of load-sharing

upon the resulting stresses, (ii) to examine possible

interaction effects between the adjacent teeth and (iii)

to examine the ability of the proposed method to treat

problems involving multiple contact surfaces

Fig. 16 Dynamic contact between a cantilever beam and a

rigid foundation

Fig. 17 Time variation of normalized tip displacement:

comparison between VI and penalty based solution

Fig. 18 Modelling of a pinion-rack problem
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simultaneously. Figure 19 shows both the coarse and

refined mesh of the examined model. In this case, the

coarse mesh was used to characterise the overall

structural response of the contacting teeth, while the

refined mesh was used to evaluate the contact stresses

at the desired areas. It is worth pointing out that

transferring the boundary conditions from the coarse

to the refined model is the most intricate part of using

refined mesh modelling. In this work, the boundary

conditions were transferred as interpolated displace-

ments, from the initial coarse model, using the

appropriate shape functions.

Both frictionless and frictional contact problems

were considered. Figure 20 shows the distribution of

the resulting normal contact stress over the contact

regions R1 and R2. In this case, contact region R1

represents a pitch point contact position and contact

region R2 represents a point past the start of contact.

The results reveal a reduction in the normal contact

stress as a result of load sharing between the contact-

ing teeth. In contact region R2, the contact stress

decreases monotonically along the contact length.

6.3 Analysis of fir-tree region in aeroengine

turbine discs

Contact stresses, interface conditions (friction, sur-

face roughness, residual stress), and the detailed

geometry of the fir-tree joint determine the severity of

the resulting stress field. These contact stresses do not

remain constant but vary during operation. It is

generally accepted that fretting initiated fatigue

cracks are due to intermittent high frequency engine

resonance and load fluctuations resulting from a

change in engine speed or power requirements.

Fig. 19 Coarse and refined mesh for the case of two-pairs of

teeth in contact

Fig. 20 Distribution of normal contact stresses in contact zones: (a) region R1 and (b) region R2
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It was therefore the objective of this study to

evaluate the contact behaviour of turbine disc

assemblies using the finite element method. Specif-

ically, our attention was devoted to examining the

effect of the critical geometric features upon the

contact stress distribution at the different teeth of a

fir-tree joint. These features, shown in Fig. 21,

include the number of fir-tree teeth n, flank length l,

contact angle a, flank angles b and c which define the

tooth pitch.

The fir-tree models were meshed with four-noded

quadrilateral elements (Fig. 22). Plane stress condi-

tions were assumed. No attempt was made to model

the blade in details, except insofar as providing the

necessary centrifugal loading at the interface. All

models were subjected to centrifugal loadings.

The material properties used for modelling the

blade and the disc were that of a typical Nickel alloy

used in disc design; namely, INCONEL 720. This

material is creep and fatigue resistant. In this work,

the following values were used: Young’s modulus

E = 220 GPa, 0.2% Proof stress r0.2 = 635 MPa,

Poisson’s ratio m0.2 = 0.29, density q0.2 = .8510 kg/

m3 and coefficient of friction l = 0.0, 0.1 and 0.5.

Figure 23a represents a composite image of the

photoelastic maximum shear stress contours and the

FE predictions. The isochromatic fringe patterns

compare well with the maximum shear stress contour

plots obtained with FE analysis. In particular, the

fringe patterns depict similar contact stresses and stress

concentration around the different fillets. The results

also reveal that peak stresses occur within the contact

region at the bottom and top of each flank. Figure 23b

shows the normalised maximum shear stress

trajectories along the bottom tooth interface. A max-

imum discrepancy of about 15% exists between the

two-dimensional FE predictions and the photoelastic

results.

The study also examined the effect of the critical

geometrical features, such as the number of teeth,

flank length and flank angle upon the stress field in

the disc. It was further extended to account for the

effect the interfacial friction between the disc and

attached blades upon the resulting contact stresses at

the interface. The results revealed the following:

(i) the maximum stress occurs at and just below the

lower contact point along the bottom tooth of a

turbine disc,

Fig. 21 Schematic of (a) disc and (b) fir-tree geometry

Fig. 22 Two-dimensional discretized geometry
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(ii) the position and magnitude of the maximum

stress is dramatically influenced by the number

of teeth, the contact angle, the flank length and

flank angles,

(iii) the coefficient of friction influences the peak

stress value.

6.4 Residual stress prediction in shot peening

In this case study, we examine the mechanically

induced residual stress field developed in the outer-

most material layers due to the shot peening treatment.

A finite element analysis was conducted to study the

effect of the mechanical properties of the target

material and the shot velocity of peeing media. The

following dimensions were selected for the target:

width W = 5R and height H = 4R, where

R = 0.5 mm is the radius of the shot. These dimen-

sions were carefully selected to ensure that the

boundary conditions do not affect the solution. The

shot used was assumed to be rigid and modeled with

the following properties: modulus of elasticity

E = 2 9 104 GPa, Poisson’s ratio m = 0.3, and mass

density q = 7800 kg/m3. The following material

properties were assumed for the high strength steel

target considered: modulus of elasticity E = 200 GPa,

Poisson’s ratio m = 0.3, and mass density

q = 7800 kg/m3. An elasto-plastic rate independent

bilinearly hardening material behavior was assumed

with an initial yield stress r0 = 600 MPa and strain-

hardening coefficient H = 20, 1000 and 2000 MPa

(corresponding to H/E = 0.01, 0.5 and 1.0%, respec-

tively). Three different impact velocities were used:

v = 50, 75 and 100 m/s. Coulomb’s law, with friction

coefficient l = 0.25, was assumed. The total integra-

tion time was tk = 10 ls with a maximum time step of

Dtmax = 2 9 10-8s. Generalized-a time integration

scheme was utilized with the following parameters c ¼ffiffiffi
2
p
� 1=2; b ¼ 1=2; aH ¼

ffiffiffi
2
p
� 1; and aB = 0. Four-

noded axisymmetric finite elements, with large strain

and displacement capabilities, were used to discretize

the target (Fig. 24). A fine mesh was used in the impact

region where high stress gradients are expected. The

rest of the target was discretized using larger elements.

Convergence tests were conducted revealing only

minor variations.

Figure 25 shows the time variation of the velocity

and total contact force during the entire impact

process for an initial shot velocity v = 75 m/s and

strain hardening H = 1000 MPa. The results show

that contact with the target lasts for 1.70 ls.

However, the shot rebound began at about 1.25 ls,

at which time the shot approached zero velocity.

The terminal shot velocity was 17.3 m/s leading to a

coefficient of restitution of 23%. This effectively

indicates that approximately 95% of the total initial

kinetic energy of the shot was dissipated in plastic

work, while the remainder was used in elastic

rebound. Figure 25b shows that the maximum

Fig. 23 (a) Composite image of the photoelastic maximum shear stress contours and FE predictions and (b) normalised maximum

shear stress along the bottom contact region
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contact force is reached when the shot begins its

rebound trip.

Figure 26a shows the variation of the normalized

unloading residual stress rr
r/r0, beneath the centre

line of the shot for the three selected impact speeds.

The results show that a 100% increase in the shot

velocity results in: (i) a significant increase in the

depth of the compressed layer, and (ii) an insignif-

icant change in the position and the magnitude of the

maximum residual stress rr
r. It is interesting to note

that the change in the residual stress from compres-

sion to tension coincides with the depth of the plastic

zone.

Figure 26b shows the residual stress variation

along the depth of the target for the three values of

hardening coefficient and the shot velocity of 75 m/

s. The results show that increasing the hardening

coefficient of the material results in an increase in

the depth of the compressed layer, little change in

the magnitude of the maximum subsurface residual

stress rr
r, and a decrease in the surface residual

stress.

7 Conclusions

In this paper, a new incremental variational inequal-

ity-based (VI) formulation is developed in an updated

Lagrangian framework for the analysis of elasto-

plastic dynamic frictional contact problems involving

large deformation. The kinematic contact conditions

are developed in a consistent manner based on the use

of spline interpolation to represent contact surface.

The developed finite element procedures are based on

dividing the physical problem into sub-problems.

These sub-problems are solved iteratively using

Lagrange multipliers and/or mathematical program-

ming in order to identify the candidate contact

surface and contact stresses. In order to solve the

dynamic expressions, we employ the generalized-a

Fig. 25 Time history of: (a) the shot velocity, and (b) the total contact force

Fig. 24 Shot-peening problem: (a) geometry and (b) discretized model
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time integration scheme thus ensuring a convergent

and accurate results. The newly developed

approaches guarantee the accurate imposition of the

active kinematic contact constraints.
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