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Abstract. In this paper, compliant mechanism design with non-linear materials using topology optimization is presented.

A general displacement functional with non-linear material model is used in the topology optimization formulation.

Sensitivity analysis of this displacement functional is derived from the adjoint method. Optimal compliant mechanism

examples for maximizing the mechanical advantage are presented and the effect of non-linear material on the optimal

design are considered.
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1. Introduction

Traditional mechanism design is accomplished by using many rigid components and kinematics

joints. As the manufacturing and assembly cost increases with the number of components used,

a special class of single component mechanism called compliant mechanism that can perform the

similar functionalities by utilizing the elastic deformation has drawn much attention in recent

years (Howell and Midha, 1993; Ananthasuresh et al., 1994; Ananthasuresh and Kota, 1996;

Sigmund, 1997; Larsen et al., 1997; Pedersen Yin and Ananthasuresh, 2002). Design of com-

pliant mechanism using topology optimization was first introduced by Ananthasuresh et al.

(1994). Later, research on compliant mechanism with topology optimization was extended to

various optimization formulations considering the structural compliance (the maximization of

the mutual strain energy) and the structural rigidity (the minimization of the strain energy). A

multi-criteria formulation of maximizing the mutual strain energy and minimizing the strain

energy was studied by Frecker et al. (1997). A weighted sum formulation of these energy terms

was proposed by Nishiwaki et al. (1998). A power ratio formulation of the mutual strain energy

and the strain energy was used by Saxena and Ananthasuresh (2000).

Although many successful examples of compliant mechanism design by the topology

optimization formulation were reported, most of the designs were based on the linear material

model with geometrical non-linearity only. The use of linear material model may not be valid

in practice because materials with large compliance often exhibit non-linear behavior (Jog,

1996; Buhl et al., 2000; Bruns and Tortorelli, 2001; Bruns et al., 2002; Pedersen et al., 2001;

Sigmund, 2001a, b). Material non-linearity is due to the non-linear elastic or plastic behavior

of the structural material. Despite the maturity of non-linear material analysis, the main

challenge of implementing non-linear material model in the topology optimization is in the

computational efficiency of the sensitivity analysis. Comparing with vast publications on
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topology optimization with linear materials, very limited research works can be found on non-

linear materials. Song (1986) used a simplified non-linear spring to model non-linear elastic–

plastic problems. Design sensitivity of the global plate thickness of an elastic–plastic structural

optimization was studied by Vander Lugt et al. (1987). Bendsøe et al. (1996) developed a non-

linear softening material for structural topology optimization. Pedersen (1998) developed a

power law non-linear material model for rigidity based topology optimization. An elastic-

perfectly-plastic material model was studied by Swan and Kosaka (1997), and Swan and

Arora (1997); an elastoplastic material model with linear work-hardening were considered by

Yuge and Kikuchi (1995), and by Maute et al. (1998). However, a more general non-linear

material model for compliant mechanism design using topology optimization has not yet, to

our knowledge, been reported.

In this paper, compliant mechanism design with non-linear materials using topology

optimization is presented. A general displacement functional with non-linear material model

is used in the topology optimization formulation. Sensitivity analysis of this displacement

functional is derived from the adjoint method and the optimization problem is solved

iteratively by the generalized convex approximation (GCA) (Chickermane and Gea 1996). In

order to consider material non-linearity, a power law non-linear material model and an

elastomer like material model are used. However, the derivations presented here can be

extended to other non-linear material models without much alteration. In Section 2, a brief

discussion on non-linear material models will be given. Then, sensitivity analysis of a general

displacement functional will be derived. Optimal compliant mechanism examples, for max-

imizing the mechanical advantage which is a special form of displacement functional are

presented before the concluding remarks.

2. Analysis with material non-linearity

Most engineering materials exhibit non-linear behavior when the deformation is sufficiently

large. The design of a compliant mechanism should take into account the material non-linearity

into account because the functionalities of the compliant mechanism are accomplished from its

large deformation. Many material models have been proposed to describe the material non-

linearity; a complete references can be found in the monograph by Chen (1994). In this section,

we will briefly discuss the role of non-linear material model in finite element analysis. Non-linear

material model will be reviewed in the first part and then linearized incremental analysis will be

discussed. For more complete discussion on this subject, please refer to the book by Belytschko

et al. (2000).

2.1. CONSTITUTIVE EQUATION FOR NON-LINEAR MATERIAL MODEL

In order to construct the constitutive equation, the stress and strain tensors are transformed into

the effective stress and strain as follows:

r2e ¼ rij C
0 �1
ijkl rkl; (1)

e2e ¼ eij C
0
ijkl ekl; (2)
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where re and ee denote the effective stress and strain; rij and eij represent the stress and strain

tensors and C0
ijkl is a positive definite and dimensionless matrix. The relation between the

effective stress and the effective strain is defined as follows:

re ¼ KfðeeÞ; (3)

where function fðeeÞ is a function representing the material characteristics and K is a constant

reference modulus of material. This material model is very flexible. Based on the selection of

fðeeÞ linear materials, power-law materials or even elastomer like materials can be modeled.

Because the strain energy density must be consistent regardless of the strain and stress used, we

have the following relation:

u ¼
Zeij
0

rij deij ¼
Zee
0

re dee; (4)

where u denotes the strain energy density. By taking the derivative of Eq. (2), we have

ee dee ¼ eijC0
ijkl dekl: Substituting the result into Eq. (4) and replacing re with KfðeeÞ from Eq. (3),

we have the constitutive equation in the form of

rij ¼ KðfðeeÞ=eeÞC0
ijkl ekl

¼ KgðeeÞC0
ijkl ekl;

(5)

where gðeeÞ ¼ fðeeÞ=ee. Since the stress at ep from Eq. (5) is equal with that from linear elastic

constitutive relation at ep; reference modulus of material (K ) can be obtained as K ¼ E=gðepÞ in
which E is a Young’s modulus and ep is the strain at which non-linear behavior is initiated.

2.2. LINEARIZED INCREMENTAL ANALYSIS

When the response of a structure subjected to body forces, f B
i ; surface tractions, f s

i on the

surface Sfi and displacement boundary conditions, Su is considered, its behavior is obtained by

solving equilibrium equation, the strain-displacement relation, and the constitutive equation.

Equation (5) will be used as the constitutive equation for the non-linear material model. And a

principle of virtual displacements will be used as an equilibrium equation in a weak form.Z
v

rij deij dV ¼
Z
v

fBi dui dVþ
Z
S

f Si du
S
i dS: (6)

The strain–displacement relation is assumed to be linear such that:

eij ¼
1

2

oui
oxj

þ ouj
oxi

� �
: (7)

The equilibrium equation cannot be solved directly due to the non-linearity in constitutive

equation. It is solved iteratively by using incrementally linearized equations. In the incre-

mental analysis, the responses of structure are calculated by adding linear responses occurred

during the incremental configuration change to that of the current state (Bathe, 1996). The

responses at current configuration state can be obtained by incrementally accumulating the

responses from the initial state to the current state. When the change in displacement under
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incremental forces is Dui; increments in strain are obtained by replacing ui with ui þ Dui in
Eq. (7).

Deij ¼
1

2

oDui
oxj

þ oDuj
oxi

� �
: (8)

The stress, rij; at the incremented state is obtained by adding the incremental stress ðDrijÞ
occurred during strain increment ðDeklÞ to the stress ðrijÞ at current state.

rtþDt
ij ¼ rtij þ Drij

¼ rtij þ
orij
oekl

Dekl

¼ rtij þ Ctan
ijkl Dekl;

(9)

where the Ctan
ijkl is the tangent modulus tensor at the current strain ðeklÞ and it can be obtained by

taking the derivative of the constitutive equation of the non-linear material, Eq. (5), about

strain, ekl; as follows:

Ctan
ijkl ¼ KgðeeÞC0

ijkl þ K
1

ee

ogðeeÞ
oee

C0
ijklekl

oee
oekl

¼ KgðeeÞC0
ijkl þ K

1

ee

ogðeeÞ
oee

C0
ijpqepqersC

0
rskl:

(10)

After obtaining the tangent modulus tensor at any given state, the incremental stress state can

then be calculated from Eq. (9) as Drij ¼ Ctan
ijklDekl:

Now the linearized equilibrium equation is obtained by replacing rij with Eq. (9) and deij with
dDeij because strain at current state is a reference state for the incremental analysis.

Z
V

Ctan
ijklDeij dDekl dV ¼ R�

Z
V

rijdeij dV; (11)

where R is the virtual work of all external forces. The right hand-side of the above equation

represents ‘‘out-of-balance virtual work’’ after analysis for the current structure. This ‘‘out of

balance’’ arises from the linearization and the analysis should be repeated until the difference is

less than the satisfactory level. When the above equation is written in the discretized form of

FEM, the first term can be described as same as that of linear analysis with replacing constit-

utive matrix with tangent modulus matrix.

3. Design sensitivity analysis

One of the most commonly used functionals in structural optimization is the displacement

functional. Some examples of displacement functional are the mean compliance for stiffness

design, the regional strain energy for energy absorption design, and the geometric advantage

(GA)/the mechanical advantage (MA) for compliant mechanism design. In this section, sensi-

tivity analysis of a general displacement functional will be derived using the adjoint method.
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Consider a general displacement functional, H, as

H ¼
Z
V

hðui; pÞ dV; (12)

where ui denotes the displacement field and p represents the design variable. To derive the

sensitivity of the displacement functional, we introduce a new functional, H* by adding

the strain-displacement relation, the constitutive equation of the non-linear material model, and

the equilibrium equation of the structure to the displacement functional, H, as

H� ¼ Hþ
Z
V

raij eij �
1

2

oui
oxj

þ ouj
oxi

� �� �
dV

þ
Z
V

eaijðrij � KgðeeÞC0
ijkl eklÞ dV;

þ
Z
V

fBi du
a
i dVþ

Z
S

fSi du
a
i dS� 1

2

Z
V

rij
ouai
oxj

þ
ouaj
oxi

� �
dV;

(13)

where raij; e
a
ij and uai are the various states of the adjoint structure to be determined; fBi and f S

i

denote the body forces and surface loadings, respectively. It is obvious that both the original

functional,H and the new functional,H*, are identical. By taking the derivative of Eq. (13) with

respect to the design variable p, we have

dH

dp
¼
Z
V

oh

op
dVþ

Z
V

oh

oui

oui
op

dV

þ
Z
V

raij
oeij
op

� 1

2

o

oxj

oui
op

� �
þ o

oxi

ouj
op

� �� �� �
dV

þ
Z
V

eaij
orij
op

oðKgðeeÞC0
ijklÞ

op
ekl � KgðeeÞC0

ijkl

oee
op

 !
dV

� 1

2

Z
V

orij
op

ouai
oxj

þ
ouaj
oxi

� �
dV:

(14)

In Eq. (14), the term, ðoðKgðeeÞC0
ijklÞ=opÞekl; can be further expanded by applying the chain

rule and the derivative relation of Eq. (2) as

oðKgðeeÞC0
ijklÞ

op
ekl ¼

oK

op
gðeeÞC0

ijklekl þ KC0
ijklekl

ogðeeÞ
oee

oee
oepq

oepq
op

¼ oK

op
gðeeÞC0

ijklekl þ K
1

ee

ogðeeÞ
oee

C0
ijkleklersC

0
rspq

oepq
op

:

(15)

Re-assigning indices of Eq. (15), substituting the result back into Eq. (14), we can collect the

terms with ðorij=opÞ and ðoeij=opÞ in the form of
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dH

dp
¼
Z
V

oh

op
dVþ

Z
V

oh

oui

oui
op

dV

þ
Z
V

orij
op

eaij �
1

2

ouai
oxj

þ
ouaj
oxi

� �� �
dV

þ
Z
V

oeij
op

�
raij � KfgðeeÞC0

ijkl þ
1

ee

ogðeeÞ
oee

C0
ijpqepqersC

0
rsklgeakl

�
dV

�
Z
V

1

2
raij

�
o

oxj

�
oui
op

�
þ o

oxi

�
ouj
op

��
dV�

Z
V

oK

op
gðeeÞeaijC0

ijklekl dV:

(16)

In Eq. (16), two integral terms leading with ðorij=opÞ and ðoeij=opÞ can be eliminated by

defining the adjoint structure as the followings:

eaij ¼
1

2

ouai
oxj

þ
ouaj
oxi

� �
; (17)

raij ¼ K gðeeÞC0
ijkl þ

1

ee

ogðeeÞ
oee

C0
ijpqepqersC

0
rskl

� �
eakl; (18)

Z
V

oh

oui

oui
op

dV ¼
Z
V

1

2
raij

o

oxj

oui
op

� �
þ o

oxi

ouj
op

� �� �
dV: (19)

One can find the first two terms of the right-hand side of Eq. (18) is the same as Ctan
ijkl in Eq. (10).

By replacing them with Ctan
ijkl and assigning the sensitivity of ðoui=opÞ as dui, Eqs. (18) and (19)

can be re-written as,

raij ¼ Ctan
ijkle

a
kl; (20)

Z
V

oh

oui
oui dV ¼

Z
Ctan

ijkle
a
kldeij dV: (21Þ

Combining Eqs. (17), (20) and (21), the adjoint system is formally defined. The stiffness

matrix of the adjoint structure is found to be the tangent modulus matrix of the deformed

structure under the original loading, and the adjoint loading is in the form of oh=oui. Finally,

the sensitivity of the general displacement functional, H, can be expressed as the following

form:

dH

dp
¼
Z
V

oh

op
dV�

Z
V

oK

op
gðeeÞeaijC0

ijklekl dV; (22)

where eaij is the only unkown and can be obtained from the strain field of adjoint structure. Once

the sensitivity analysis is completed, the topology optimization is solved by a convex approxi-

mation method developed by Chickermane and Gea (1996) iteratively till the optimal layout is

generated.
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3.1. OPTIMIZATION FORMULATION

Compliant mechanism can be used in many different applications. Some applications are de-

signed for repeated motion that small deformation and small strain would be desired. Others

may elect the GA as the design objective, where large deformation of compliant structures

should be considered. In this paper, we choose maximizing the MA as our objective function for

compliant mechanism design. Therefore, compliant design with small deformation and linear/

non-linear strain is used here.

To evaluate the MA of a mechanism, we attached a linear spring to the point s0 in the

direction ni at which we plan to measure the output force. The choice of spring constant of the

linear spring will affect the final design. Because the MA is our design objective, a stiff spring

(large spring constant) is used here. The maximization of the MA becomes the maximization of

the displacement of the linear spring given the applied load is a constant. This displacement field

at the location s0 can be written as,

us0 ¼
Z
V

dðs� s0Þuini dV: (23)

Comparing with the general displacement functional, Eq. (12), we found that the displacement

kernel k(u, p) is in the form of dðs� s0Þ uini. Therefore, the applied load of the adjoint field,

oh=ou, is a unit load at the point s0 in the direction ni, and the first term of the right-hand side of

Eq. (22) is removed because of oh=op ¼ 0. The sensitivity of displacement field at the location s0
is reduced to

ous0
op

¼ �
Z
V

eaij
oK

op
gðeeÞC0

ijklekl dV: (24)

Using the MA as the objective function, the optimization problem is formulated as

maximize us0 ¼
Z
V

dðs� s0Þuini dV

subject to

Z
V

q dV�W � 0;

where q is the density of material and W is the maximum allowable weight of the structure. In

Section 4, examples of compliant mechanism design considering material non-linearity will be

presented using the maximal MA formulation.

4. Numerical examples

A force inverter design is studied in this section. A rectangular area 40 cm · 40 cm · 1 cm is

considered as the design domain as shown in Figure 1. The top and bottom corners of the left

side are fixed with pin joints and force is applied at the center of left edge. The small black region
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where the input force applied at is considered as a nondesignable region. The output dis-

placement ðDoutÞ is measured at the center of right edge where a spring is attached to. As we

stated previously, when MA is used as design objective the spring constant should be very stiff.

In these examples, the spring stiffness is 1000 times of the structural material. Three material

models are considered. Figure 2 shows the stress-strain relation of these material models: (1)

represents linear stress-strain relation, gðeeÞ ¼ 1; (2) denotes an elastomer like material where

gðeeÞ ¼ 1� 105ee þ 4000e2e ; and (3) is a power law material model in which gðeeÞ is e0:5e : Other

Figure 2. Stress–strain curves for (1) linear material, (2) elastomer like material model, and (3) power-law

material.

Fin out

Figure 1. Design domain and boundary conditions for a force inverter design.
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non-linear material models can also be implemented similarly. Linear stress–strain relation is

assumed when the effective strain is less than 0.0025. The material properties of rectangular

plate are: Young’s modulus E0=300 MPa, Poisson’s ratio v=0.3. This design is subjected to a

20% volume constraint.

Figure 3. The optimal designs of a force inverter with elastomer like material under four different magnitudes of

loads.
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4.1. EXAMPLE 1: FORCE INVERTER WITH DIFFERENT EXTENT OF NON-LINEARITY

Since the elastomer like material model has the most nonlinear effects, we will study the optimal

design with this material model in the first example under different applied forces. Four dif-

ferent magnitudes of loadings are applied in order to compare different material non-linearities.

Figure 4. The optimal design of the force inverter for three different material models (Fin ¼ 0.3 N).
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These applied forces are 0.2, 0.3, 0.5, and 1 N. The optimal design (100th iteration) for each

applied load are shown in the left column of Figure 3. As shown in the figure, the optimum

designs are different with each applied load. The images at the right column of Figure 3

represent the magnitude of the effective strain. The grey scales correspond to strain level in the

Figure 5. Deformed shapes and output displacements of optimal designs under linear analysis and power-law non-linear

analysis.

Compliant mechanism design with non-linear materials 167



Figure 2. The darker regions represent the zone II and the zone III in Figure 2 and the light

grey regions are for the linear region with the effective strain less than 0.0025. These images

show that the non-linear regions start from the joint sections under 0.2 N and gradually expand

to other parts under larger forces. They also showed that the optimal designs are changing

from lumped compliant joints to distributed compliant structures as material non-linearity

increased.

Figure 6. Optimal designs of the force inverter for three different material models (Fin ¼ 0.5 N).
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4.2. EXAMPLE 2: FORCE INVERTER UNDER SMALL LOADING

The second example is to design the force inverter. We will apply all three different material

models discussed above. The applied force is 0.3 N. The optimized designs from each

Figure 7. Deformed shapes and output displacements of optimal designs under linear analysis and power law nonlinear

analysis.
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material model are shown in Figure 4. Since the structural reactions are mainly in the linear

range, the optimal designs are very similar even with different material model. To cross

examine these solutions, we applied both linear material model (curve 1) and power-law

material model (curve 3) to these designs and conducted finite element analyses. The de-

formed shapes and output displacements are shown in Figure 5. When the linear analysis is

used, the optimal design from topology optimization with linear material model shows the

best displacement as shown in the left column. However, if we replace the material model

from linear material to power-law material, the second design outperforms the first one by

18%. These results confirm that material models in the topology optimization play a crucial

role in determining the optimal configurations.

4.3. EXAMPLE 3: FORCE INVERTER UNDER LARGE LOADING

In the third example, the applied force is increased to 0.5 N in order to examine the non-

linear behaviors of materials. Figure 6 shows the optimal designs for three material models.

The optimal design of the linear material is exactly same as that of the second example. But,

the optimal designs of the power-law material and elastomer like material show additional

structural members to prevent the weak members from large deformations. We also applied

linear material model and power-law material model to these optimal solutions to verify

their optimalities as we did in the second example and the results are shown in Figure 7.

The same conclusion is found here: material models will change the optimal configurations.

5. Conclusion

In this paper, the sensitivity analysis of a general displacement functional for non-linear material

models using the adjoint method has been derived. Since we are focusing on the MA of com-

pliant mechanisms, different nonlinear material models are studied here. Three different

material models are used to compare the optimal topology. From the numerical examples, we

found that the compliant designs are changing from ‘‘lumped compliance’’ to ‘‘distributed

compliance’’ as the structures experience more non-linear behaviors. This finding will provide

engineers insight on designing compliant mechanism with MA applications. We also showed

that different material models will produce different optimal designs. This functionality will also

give engineers flexibility on selecting materials for compliant mechanisms. To further extend this

work, study on combining material and geometrical nonlinearities has been initiated.
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