
Periodica Mathematica Hungarica (2024) 88:359–383
https://doi.org/10.1007/s10998-023-00570-1

The ascending chain condition on principal right ideals for
semigroup constructions

Craig Miller1

Accepted: 4 July 2023 / Published online: 14 December 2023
© The Author(s) 2023

Abstract
We call a semigroup R-noetherian if it satisfies the ascending chain condition on principal
right ideals, or, equivalently, the ascending chain condition on R-classes. We investi-
gate the behaviour of the property of being R-noetherian under the following standard
semigroup-theoretic constructions: semidirect products, Schützenberger products, free prod-
ucts, Rees matrix semigroups, Brandt extensions, Bruck–Reilly extensions and semilattices
of semigroups.
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1 Introduction

A finiteness condition for a class of universal algebras is a property that is satisfied by at
least all finite members of that class. The study of finiteness properties was pioneered by
Noether in the early 20th century in the context of ascending chain conditions on rings [14],
and has become an established theme in many algebraic disciplines. The main motivation is
to develop a better insight into the structure of the objects of study, and, in particular, to get
a sense of how different they are to finite objects.

This article is concerned with the class of semigroups and the finiteness condition of satis-
fying the ascending chain condition on principal right ideals. We call semigroups satisfying
this condition R-noetherian,1 owing to the fact that it is equivalent to the ascending chain
condition on R-classes (R is one of the five Green’s relations on a semigroup).

The property of being R-noetherian has a natural analogue in ring theory: the ascending
chain condition on principal right ideals of rings. Indeed, the study of R-noetherian semi-
groups was initiated in a paper [8] investigating the ascending chain condition on principal
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1 R-noetherian semigroups are also known in the literature as ‘ACCPR-semigroups’ or ‘semigroups satisfying
ACCPR’.
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ideals of rings of generalised power series. The article [10] built on this work by characteris-
ing the ascending chain on principal right (and left) ideals for the more general class of skew
generalised power series rings R[[S, ω]] (with coefficients in a ring R and exponents in a
strictly totally ordered monoid S), and here again the property of S being R-noetherian is
crucial [10, Theorem 3.3]. This workmotivated the paper [18], which considers the ascending
chain conditions on principal right and left ideals of semidirect product of semigroups and
makes a connection with the corresponding properties for rings of skew generalised power
series.

A stronger condition than that of being R-noetherian is the property of satisfying the
ascending chain condition on all right ideals; we call semigroups satisfying this condi-
tion weakly right noetherian.2 Such semigroups have received significant attention; see for
instance [1, 5, 7, 11]. The property of being weakly right noetherian can be characterised
in terms of principal right ideals: a semigroup S is weakly right noetherian if and only if it
is R-noetherian and contains no infinite antichain of principal right ideals (or, equivalently,
S contains no infinite strictly ascending chain or infinite antichain of R-classes) [11, The-
orem 3.2]. Both the properties of being R-noetherian and being weakly right noetherian
were considered in the author’s recent article [12], of which the main purpose was to study
the relationship between a semigroup and its one-sided ideals with respect to each of these
properties.

The purpose of the present paper is to investigate the behaviour of the property of
being R-noetherian under various semigroup-theoretic contructions. (Of course, our results
will also have left-right duals for the property of being L-noetherian.) After introduc-
ing the necessary preliminary material in Sect. 2, we consider semidirect products in
Sect. 3, Schützenberger products in Sect. 4, free products in Sect. 5, Rees matrix semigroups
and Brandt extensions in Sect. 6, Bruck–Reilly extensions in Sect. 7, and semilattices of
semigroups in Sect. 8.

2 Preliminaries

Throughout this section, S will denote a semigroup. We denote by S1 the monoid obtained
from S by adjoining an identity if necessary (if S is already a monoid, then S1 = S), and we
denote by S0 the semigroup with zero obtained by adjoining a zero if necessary.

A subset I ⊆ S is said to be a right ideal of S if I S ⊆ I . Left ideals are defined dually,
and an ideal of S is a subset that is both a right ideal and a left ideal.

A right (resp. left) ideal I of S is said to be generated by X ⊆ I if I = XS1 (resp.
I = S1X ). A right (resp. left) ideal is said to be finitely generated if it can be generated by a
finite set, and principal if it can be generated by a single element.

Principal (one-sided) ideals determine the five Green’s relations on a semigroup: R, L,
H, D and J . In this paper we are only concerned with the relation R. Green’s preorder ≤R
on S is given by

a ≤R b ⇐⇒ aS1 ⊆ bS1,

and this leads to the relation R:

aR b ⇐⇒ [a ≤R b and b ≤R a] ⇐⇒ aS1 = bS1.

2 In the literature, ‘right noetherian’ is the standard name given to semigroups that satisfy the ascending chain
condition on right congruences. However, weakly right noetherian semigroups have occasionally been termed
‘right noetherian’, while right noetherian semigroups have been called ‘strongly right noetherian’.
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When we need to distinguish between Green’s relation R on different semigroups, we
will write the semigroup as a subscript, i.e. RS for R on S. For convenience, we will write
≤S rather than ≤RS , and a <S b if a ≤S b but (a, b) /∈ RS .

Green’s pre-order ≤R induces a partial order on the set of R-classes of S. We note that
the poset of R-classes of S is isomorphic to the poset of principal right ideals of S (under
containment).

A poset P is said to satisfy the ascending chain condition if every ascending chain

a1 ≤ a2 ≤ · · ·
of elements of P eventually stabilises. We say that S isR-noetherian if its poset of principal
right ideals satisfies the ascending chain condition. The following result provides a number
of equivalent formulations for a semigroup to be R-noetherian.

Proposition 2.1 ([12, Proposition 2.3]) The following are equivalent for a semigroup S:

(1) S is R-noetherian;
(2) every non-empty set of principal right ideals of S contains a maximal element;
(3) the poset of R-classes of S satisfies the ascending chain condition;
(4) every non-empty set of R-classes of S contains a maximal element;
(5) S contains no infinite strictly ascending chain of elements under the R-preorder.

Corollary 2.2 ([12, Corollary 2.10]) Any semigroup S (with zero) that is a union of (0-
)minimal right ideals is R-noetherian. In particular, all completely (0-)simple semigroups
and all null semigroups are R-noetherian.

For any non-empty set X , recall that the free semigroup on X , denoted by X+, is the set of
all words over X , and the free monoid on X , denoted by X∗, is X+ with an identity adjoined.
Clearly, for any u, v ∈ X+, we have uX∗ ⊆ vX∗ if and only if v is a subword of u. We
deduce that:

Proposition 2.3 For any non-empty set X, both X+ and X∗ are R-noetherian.

Since every semigroup is the quotient of a free semigroup, and there certainly exist semi-
groups that are not R-noetherian, the property of being R-noetherian is not closed under
quotients. It turns out, however, that this property is closed under Rees quotients:

Lemma 2.4 ([12, Corollary 3.4]) Let S be a semigroup and let I be an ideal of S. If S is
R-noetherian then so is S/I .

The property of being R-noetherian is also inherited by one-sided ideals:

Proposition 2.5 ([12, Corollary 3.2]) Let S be a semigroup and let I be a right/left/two-sided
ideal of S. If S is R-noetherian then so is I .

Let T be a subsemigroup of S. We say that T is R-preserving (in S) if the RT -preorder
is the restriction of the RS-preorder to T ; that is,

≤T = ≤S ∩ (T × T ).

The property of being R-noetherian is inherited by R-preserving subsemigroups:

Proposition 2.6 Let S be a semigroup and let T be anR-preserving subsemigroup of S. If S
is R-noetherian then so is T .
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Proof Consider an ascending chain

a1 ≤T a2 ≤T · · ·
in T . Then clearly we have an ascending chain

a1 ≤S a2 ≤S · · ·
in S. Since S is R-noetherian, there exists N ∈ N such that an RS aN for all n ≥ N . Then,
since T isR-preserving in S, we have an RT aN for all n ≥ N . Hence T isR-noetherian. 
�

A semigroup T is called regular if for every a ∈ T there exists b ∈ T such that aba = a.
It is well known that regular subsemigroups are R-preserving; see [11, paragraph before
Corollary 4.7] for a proof. Thus we have:

Corollary 2.7 Let S be a semigroup with a regular subsemigroup T . If S isR-noetherian then
so is T .

A subsemigroup T of S is called right unitary (in S) if it satisfies the following condition:
for all a ∈ T and b ∈ S, if ab ∈ T then b ∈ T .

Clearly a right unitary subsemigroup is R-preserving, so by Proposition 2.6 we have:

Corollary 2.8 Let S be a semigroup and let T be a right unitary subsemigroup of S. If S is
R-noetherian then so is T .

If the complement of a subsemigroup is a left ideal, then the subsemigroup is right unitary,
so we have:

Corollary 2.9 Let S be a semigroup with a subsemigroup T such that S\T is a left ideal of
S. If S is R-noetherian then so is T .

We now a introduce a key notion for this paper.

Definition 2.10 Let S be a semigroup and let a ∈ S. We say that b ∈ S is a local right identity
of a if a = ab.

Clearly in a monoid or regular semigroup, every element has a local right identity. On the
other hand, any left cancellative, idempotent-free semigroup (e.g. a free semigroup) has no
element with a local right identity. Note that a semigroup in which no element has a local
right identity is R-trivial, i.e. R is the identity relation.

Proposition 2.11 Let S and T be semigroupswith amap θ : S → T such that (aS)θ ⊆ (aθ)T
for each a ∈ S. If T is R-noetherian and has no element with a local right identity, then S
is R-noetherian and has no element with a local right identity.

Proof It is clear if S had an element with a local right identity then so would T , so S has
no element with a local right identity. By Proposition 2.1, to prove that S is R-noetherian
it suffices to show that it contains no infinite strictly ascending chain of elements under the
R-preorder. So, consider an ascending chain

a1 ≤S a2 ≤S · · ·
in S. Then, for each i ∈ N, we have ai ∈ ai+1S1. Therefore, by assumption, we have
aiθ ∈ (ai+1S1)θ ⊆ (ai+1θ)T 1. Thus, we have an ascending chain

a1θ ≤T a2θ ≤T · · ·
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in T . Since T isR-noetherian andR-trivial, there exists N ∈ N such that anθ = aN θ for all
n ≥ N . For each n ≥ N , we cannot have aN ∈ anS, for then we would have

aN θ ∈ (anS)θ ⊆ (anθ)T = (aN θ)T ,

contradicting the fact that T has no element with a local right identity. Thus an = aN for all
n ≥ N . Hence S is R-noetherian. 
�
Corollary 2.12 Let S and T be semigroups with a homomorphism θ : S → T . If T is
R-noetherian and has no element with a local right identity, then S is R-noetherian and
has no element with a local right identity.

Proposition 2.13 [[12, Proposition 3.9]] Let S be a semigroup, let I be an ideal of S, and
suppose that every element of I has a local right identity in I . Then S isR-noetherian if and
only if both I and S/I are R-noetherian.

3 Semidirect products

Let S and T be semigroups, and let ϕ : T → End(S) be a homomorphism, where End(S)

denotes the monoid of all endomorphisms of S. The image of an element t ∈ T under ϕ will
be denoted by ϕt . We write ϕt on the left of its argument; i.e. ϕt (s) for s ∈ S. The semidirect
product of S and T with respect to ϕ, denoted by S �ϕ T , is the semigroup with underlying
set S × T and multiplication given by

(s, t)(s′, t ′) = (sϕt (s
′), t t ′).

Note that the direct product S × T is the semidirect product S �ϕ T where ϕt = idS for all
t ∈ T .

The property of being R-noetherian was considered for semidirect products in [18].
Several partial characterisations were obtained for a semidirect product S �ϕ T to be
R-noetherian. For instance, if both S and T contain at least one idempotent and ϕt is surjec-
tive for every t ∈ T , then S �ϕ T is R-noetherian if and only if S and T are R-noetherian
[18, Theorem 3.13].

The purpose of this section is to provide necessary and sufficient conditions for a semidirect
product to be R-noetherian. To this end, we first prove a few lemmas.

Lemma 3.1 If S �ϕ T is R-noetherian, then at least one of S and T is R-noetherian.

Proof Suppose for a contradiction that neither S nor T are R-noetherian. Then there exist
infinite strictly ascending chains

a1 <S a2 <S · · · and b1 <T b2 <T · · ·
in S and T , respectively. Then, for each i ∈ N, there exist si ∈ S and ti ∈ T such that
ai = ai+1si and bi = bi+1ti . Observe that b1 = bi+1ti . . . t1 for each i ∈ N. We have

ϕb1(ai ) = ϕb1(ai+1si ) = ϕb1(ai+1)ϕb1(si ) = ϕb1(ai+1)ϕbi+1ti ...t1(si )

= ϕb1(ai+1)ϕbi+1(ϕti ...t1(si )).

Therefore, we have

(ϕb1(ai ), bi ) = (ϕb1(ai+1), bi+1)(ϕti ...t1(si ), ti ).
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Thus, letting U = S �ϕ T , we have an ascending chain

(ϕb1(a1), b1) ≤U (ϕb1(a2), b2) ≤U · · ·
inU . SinceU isR-noetherian, there exists N ∈ N such that (ϕb1(an), bn)RU (ϕb1(aN ), bN )

for all n ≥ N . In particular, there exists (s, t) ∈ U such that (ϕb1(aN+1), bN+1) =
(ϕb1(aN ), bN )(s, t). But then bN+1 = bN t , contradicting that bN <T bN+1. 
�
Lemma 3.2 Suppose that S has an element with a local right identity. If S �ϕ T is
R-noetherian, then T is R-noetherian.

Proof Suppose for a contradiction that T is not R-noetherian. Then there exists an infinite
strictly ascending chain

b1 <T b2 <T · · ·
in T . Then, for each i ∈ N, there exists ti ∈ T such that bi = bi+1ti . Let a ∈ S have a local
right identity s ∈ S, so that a = as. We have

ϕb1(a) = ϕb1(as) = ϕb1(a)ϕb1(s) = ϕb1(a)ϕbi+1(ϕti ...t1(s)),

and hence

(ϕb1(a), bi ) = (ϕb1(a), bi+1)(ϕti ...t1(s), ti ).

The final part of the proof is essentially the same as that of Lemma 3.1. 
�
Lemma 3.3 If either S or T is R-noetherian and has no element with a local right identity,
then S �ϕ T is R-noetherian.

Proof Weclaim that the projectionmapπS : S�ϕT → S satisfies the conditionofProposition
2.11. Indeed, for any (a, b), (s, t) ∈ S �ϕ T , we have

(
(a, b)(s, t)

)
πS = (aϕb(s), bt)πS = aϕb(s) = (

(a, b)πS
)
ϕb(s) ∈ (

(a, b)πS
)
S,

as required. It is clear that the projection map πT : S�ϕ T → T is a homomorphism. Hence,
the result follows from Proposition 2.11 and Corollary 2.12. 
�
Lemma 3.4 If a, a′ ∈ S and b, b′ ∈ T with b ∈ b′T , then a

(
ϕb(S)

)1 ⊆ a′(ϕb′(S)
)1

if and

only if a ∈ a′(ϕb′(S)
)1
. Moreover, if bRT b′ then ϕb(S) = ϕb′(S).

Proof If a
(
ϕb(S)

)1 ⊆ a′(ϕb′(S)
)1, then clearly a ∈ a′(ϕb′(S)

)1. Conversely, suppose that

a ∈ a′(ϕb′(S)
)1. There exists t ∈ T such that b = b′t . Thus, we have

ϕb(S) = ϕb′t (S) ⊆ ϕb′(ϕt (S)) ⊆ ϕb′(S),

and hence a(ϕb(S))1 ⊆ a′(ϕb′(S))1.
Now, if bRT b′, a similar argument as above proves that ϕb′(S) ⊆ ϕb(S), and hence

ϕb(S) = ϕb′(S). 
�
Before stating the main result of this section, we first introduce the following definition.

Definition 3.5 Let S and T be semigroups, and let ϕ : T → End(S) be a homomorphism. A
ϕ-chain in S is an ascending chain of the form

a1
(
ϕb1(S)

)1 ⊆ a2
(
ϕb2(S)

)1 ⊆ a3
(
ϕb3(S)

)1 ⊆ · · ·
where ai ∈ S, bi ∈ T and bi ∈ bi+1T for all i ≥ 1.
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Theorem 3.6 Let S and T be semigroups, and let ϕ : T → End(S) be a homomorphism.
Then S �ϕ T is R-noetherian if and only if either:

(1) S is R-noetherian and has no element with a local right identity; or
(2) every ϕ-chain in S eventually stabilises and T is R-noetherian.

Proof Let U = S �ϕ T .

(⇒) Suppose that (1) does not hold. Then either S is notR-noetherian or S has an element
with a local right identity. In the former case, T is R-noetherian by Lemma 3.1, and in the
latter case, T is R-noetherian by Lemma 3.2.

Now suppose for a contradiction that there exists an infinite ϕ-chain

a1
(
ϕb1(S)

)1
� a2

(
ϕb2(S)

)1
� · · ·

in S. Then, for each i ∈ N, there exists ti ∈ T such that bi = bi+1ti . Thus, we have an
ascending chain

b1 ≤T b2 ≤T · · ·
in T . Since T is R-noetherian, there exists N ∈ N such that bn RT bN for all n ≥ N . Then,
by Lemma 3.4, we have ϕbn (S) = ϕbN (S) for all n ≥ N . Therefore, we have an infinite
ϕ-chain

aN
(
ϕbN (S)

)1
� aN+1

(
ϕbN (S)

)1
� · · · .

It follows that for each n ≥ N there exists sn ∈ S such that an = an+1ϕbN (sn). Also, since
bN RT bN+1 and bN ∈ bN+1T , there exists t ∈ T such that bN = bN t . Hence, we have
(an, bN ) = (an+1, bN )(sn, t) for each n ≥ N . Thus, we have an ascending chain

(aN , bN ) ≤U (aN+1, bN ) ≤U · · ·
in U . Since U is R-noetherian, there exists N ′ ≥ N such that (an, bN )RU (aN ′ , bN ) for all
n ≥ N ′. In particular, there exists (s, t ′) ∈ U such that (aN ′+1, bN ) = (aN ′ , bN )(s, t ′). Then
aN ′+1 = aN ′ϕbN (s). But then

aN ′
(
ϕbN ′ (S)

)1 = aN ′
(
ϕbN (S)

)1 = aN ′+1
(
ϕbN (S)

)1 = aN ′+1
(
ϕbN ′+1

(S)
)1

,

and we have a contradiction.
(⇐) If (1) holds, then U is R-noetherian by Lemma 3.3. Assume then that (2) holds.

Consider an ascending chain

(a1, b1) ≤U (a2, b2) ≤U · · ·
inU . Wemay assume without loss of generality that (ai , bi ) ∈ (ai+1, bi+1)U for each i ∈ N.
Then, for each i ∈ N, there exists (si , ti ) ∈ U such that (ai , bi ) = (ai+1, bi+1)(si , ti ). Then
ai = ai+1ϕbi+1(si ) and bi = bi+1ti . Therefore, we have a ϕ-chain

a1
(
ϕb1(S)

)1 ⊆ a2
(
ϕb2(S)

)1 ⊆ · · ·
in S, and an ascending chain

b1 ≤T b2 ≤T · · ·
in T . Since everyϕ-chain eventually stabilises and T isR-noetherian, there exists N ∈ N such
that an

(
ϕbn (S)

)1 = aN
(
ϕbN (S)

)1 and bn RT bN for all n ≥ N . Therefore, by Lemma 3.4, for
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each n ≥ N we have an ∈ aN
(
ϕbN (S)

)1 and ϕbn (S) = ϕbN (S). Since aN = aN+1ϕbN+1(sN ),
we have

an ∈ aN+1ϕbN+1(S)
(
ϕbN (S)

)1 = aN+1ϕbN+1(S)
(
ϕbN+1(S)

)1 = aN+1ϕbN+1(S).

Thus, for each n ≥ N + 1, there exist un ∈ S and vn ∈ T such that an = aN+1ϕbN+1(un)
and bn = bN+1vn . It follows that (an, bn) = (aN+1, bN+1)(un, vn), and hence we have
(an, bn)RU (aN+1, bN+1). This completes the proof. 
�
Corollary 3.7 Let S be an R-noetherian semigroup whose R-classes are all finite, let T be
a semigroup, and let ϕ : T → End(S) be a homomorphism. Then S �ϕ T isR-noetherian if
and only if either S has no element with a local right identity or T is R-noetherian.

Proof By Theorem 3.6, it suffices to prove that if T is R-noetherian then every ϕ-chain in
S eventually stablises. So, let T be R-noetherian and suppose for a contradiction that there
exists an infinite ϕ-chain

a1
(
ϕb1(S)

)1
� a2

(
ϕb2(S)

)1
� · · ·

in S. Then we have ascending chains

a1 ≤S a2 ≤S · · · and b1 ≤T b2 ≤T · · ·
in S and T , respectively. Since S and T are R-noetherian, there exists N ∈ N such that
an RS aN and bn RT bN for all n ≥ N . Then, by Lemma 3.4, we have ϕbn (S) = ϕbN (S) for
all n ≥ N . Therefore, we have an infinite ϕ-chain

aN
(
ϕbN (S)

)1
� aN+1

(
ϕbN (S)

)1
� · · · .

But then am �= an for all m, n ≥ N with m �= n, contradicting the fact that the RS-class of
aN is finite. 
�

Certainly every finite semigroup has an element with a local right identity, so we deduce:

Corollary 3.8 Let S be a finite semigroup, let T be a semigroup, and let ϕ : T → End(S) be
a homomorphism. Then S �ϕ T is R-noetherian if and only if T is R-noetherian.

The following example demonstrates that for a semidirect product S �ϕ T to be
R-noetherian, the semigroup S need not be R-noetherian, even in the case that T is trivial.

Example 3.9 Let S be anymonoid with identity 1, let T = {e} be the trivial semigroup, and let
ϕ : T → End(S) be given by defining ϕe to be the constant map c1 on 1. Then (a, e)(a′, e) =
(a, e) for all a, a′ ∈ S, so that S �ϕ T is a left zero semigroup, and is hence R-noetherian

by Corollary 2.2. (Alternatively, for any a, a′ ∈ S, we clearly have a ∈ a′(ϕe(S)
)1 if and

only if a = a′, so certainly every ϕ-chain in S eventually stabilises. Since T is trivially
R-noetherian, it then follows from Theorem 3.6 that S �ϕ T is R-noetherian.)

We now show that a semidirect productmay not beR-noetherian even if both its semidirect
factors are R-noetherian.

Example 3.10 Let S be the disjoint union of (a copy of) the free monogenic monoid {x}∗ and
a set {ai : i ∈ Z}. Define a multiplication on S, extending that on {x}∗, by

ai x
n = ai−n and xna j = aia j = a j
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The ascending chain condition on principal… 367

for all n ∈ N0 and i, j ∈ Z. It is straightforward to show that S is a monoid under this
multiplication. Clearly I = {ai : i ∈ Z} is an ideal of S and a right zero semigroup; in
particular, every element of I has a local right identity in I . Since I and S/I ∼= N

0 are R-
noetherian, we have that S is R-noetherian by Proposition 2.13. Hence S0 is R-noetherian.
Now let T = {e} be the trivial semigroup, and let ϕ : T → End(S0) be given by

ϕe(s) =
{
s if s ∈ {xn : n ∈ N0},
0 if s ∈ {ai : i ∈ Z} ∪ {0}.

For each i ≥ 0, we have ai = ai+1x = ai+1ϕe(x), so that ai
(
ϕe(S)

)1 ⊆ ai+1
(
ϕe(S)

)1. For
any s ∈ S0 we have

aiϕe(s) ∈ ai ({xn : n ∈ N0} ∪ {0}) ⊆ {ak : k ≤ i} ∪ {0}.
Thus, we have an infinite ϕ-chain

a1
(
ϕe(S)

)1
� a2

(
ϕe(S)

)1
� · · · .

Hence, by Theorem 3.6, S0 �ϕ T is not R-noetherian.

For a semigroup S, we denote by SEnd(S) the monoid of all surjective endomorphisms of
S. We shall use Theorem 3.6 to deduce necessary and sufficient conditions for S �ϕ T to be
R-noetherian in the case that ϕt ∈ SEnd(S) for every t ∈ T . First we prove another lemma.

Lemma 3.11 Suppose that there exists an element b ∈ T such that b has a local right identity
and ϕb ∈ SEnd(S). If S �ϕ T is R-noetherian, then S is R-noetherian.

Proof Suppose for a contradiction that S is not R-noetherian. Then there exists an infinite
strictly ascending chain

a1 <S a2 <S · · ·
in S. Then, for each i ∈ N, there exists si ∈ S such that ai = ai+1si . Since ϕb is surjective,
for each i ∈ N there exists s′

i ∈ S such that ϕb(s′
i ) = si . Let t ′ be a local right identity of

b, so that b = bt ′. Then (ai , b) = (ai+1, b)(s′
i , t

′). Thus, letting U = S �ϕ T , we have an
ascending chain

(a1, b) ≤U (a2, b) ≤U · · ·
in U . Since U is R-noetherian, there exists N ∈ N such that (an, b)RU (aN , b) for all
n ≥ N . In particular, there exists (s, t) ∈ U such that (aN+1, b) = (aN , b)(s, t). But then
aN+1 = aNϕb(s), contradicting that aN <T aN+1. 
�
Theorem 3.12 Let S and T be semigroups, and let ϕ : T → SEnd(S) be a homomorphism.
Then S �ϕ T is R-noetherian if and only if one of the following holds:

(1) both S and T are R-noetherian;
(2) S is R-noetherian and has no element with a local right identity;
(3) T is R-noetherian and has no element with a local right identity.

Proof (⇒) Assume that (2) and (3) do not hold. Then T has an element, say b, with a local
right identity. Since ϕb ∈ SEnd(S), we have that S isR-noetherian by Lemma 3.11. Also, it
follows from Theorem 3.6 that T is R-noetherian. Thus (1) holds.

(⇐) If (2) or (3) holds, then S �ϕ T isR-noetherian by Lemma 3.3. Assume then that (1)
holds. Since ϕb(S) = S for all b ∈ T , every ϕ-chain in S is an ascending chain of principal
right ideals of S, and hence must eventually stabilise as S is R-noetherian. Therefore, since
T is R-noetherian, we have that S �ϕ T is R-noetherian by Theorem 3.6. 
�
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Corollary 3.13 [18, Theorem 3.13] Let S and T be semigroups with idempotents, and let
ϕ : T → SEnd(S) be a homomorphism. Then S �ϕ T is R-noetherian if and only if S and
T are R-noetherian.

Corollary 3.14 Let S and T be semigroups. Then the direct product S × T is R-noetherian
if and only if one of the following holds:

(1) both S and T are R-noetherian;
(2) S is R-noetherian and has no element with a local right identity;
(3) T is R-noetherian and has no element with a local right identity.

4 Schützenberger products

The Schützenberger product of semigroups was introduced by Schützenberger in [17] in rela-
tion to the study of finite aperiodicmonoids. It has since foundmany other useful applications
in semigroup theory; see [9, 15] for instance.

For any set X , letP f (X) denote the set of all finite subsets of X . Let S and T be semigroups.
For s ∈ S, t ∈ T and P ∈ P f (S × T ), we define

sP = {(sp, q) : (p, q) ∈ P} and Pt = {(p, qt) : (p, q) ∈ P}.
The Schützenberger product of S and T , denoted by S ♦ T , is the semigroup with universe
S × P f (S × T ) × T and multiplication given by

(s1, P1, t1)(s2, P2, t2) = (s1s2, s1P2 ∪ P1t2, t1t2).

Observe that the direct product S×T embeds into S♦T via (s, t) �→ (s,∅, t).Unlike for S×T ,
the multiplication in S ♦ T is asymmetrical, and hence S ♦ T is not in general isomorphic to
T ♦ S. The main theme of this section is the relationship between the Schützenberger product
and the direct productwith regard to beingR-noetherian.We beginwith the following lemma.

Lemma 4.1 Let S and T be semigroups. If S♦T isR-noetherian, then so is the direct product
S × T .

Proof Notice that S × {∅} × T ∼= S × T and that S × {∅} × T is a subsemigroup of S ♦ T
such that (S ♦ T ) \ (S × {∅} × T ) is an ideal of S ♦ T . Therefore, by Corollary 2.9, if S ♦ T
is R-noetherian then is S × T . 
�

Letting {1} denote the trivial group, it is clear that {1} ♦ T is isomorphic to the semigroup
P f (T ) × T with multiplication given by

(P1, t1)(P2, t2) = (P1t2 ∪ P2, t1t2),

where Pt = {pt : p ∈ P} for P ∈ P f (T ) and t ∈ T .

Lemma 4.2 Let S and T be semigroups, and suppose that there exists an element a ∈ S that
has a local right identity in S. If S ♦ T is R-noetherian, then {1} ♦ T is R-noetherian.

Proof We prove the contrapositive. Let U = P f (T ) × T ∼= {1} ♦ T and let V = S ♦ T .
Assume that U is not R-noetherian. Then there exists an infinite strictly ascending chain

(P1, b1) <U (P2, b2) <U · · ·
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inU . Then, for each i ∈ N, there exists (Qi , ti ) ∈ U such that (Pi , bi ) = (Pi+1, bi+1)(Qi , ti ).
Let s be a local right identity of a (so as = a), and for each i ∈ N let P ′

i = {a} × Pi and
Q′

i = {s} × Qi . We then have

(a, P ′
i , bi ) = (a, P ′

i+1, bi+1)(s, Q
′
i , ti ).

Suppose for a contradiction that there exists i ∈ N such that (a, P ′
i+1, bi+1) ∈ (a, P ′

i , bi )V
1.

Then, either (a, P ′
i+1, bi+1) = (a, P ′

i , bi ) or there exists (s′, Q, t ′) ∈ V such that

(a, P ′
i+1, bi+1) = (a, P ′

i , bi )(s
′, Q, t ′) = (as′, P ′

i t
′ ∪ aQ, bi t

′).

But then either (Pi+1, bi+1) = (Pi , bi ) or, letting πT denote the projection map S×T → T ,
we have

(Pi+1, bi+1) = (Pi , bi )(QπT , t ′)

so that (Pi+1, bi+1) ∈ (Pi , bi )U 1, a contradiction. Thus,we have an infinite strictly ascending
chain

(a, P ′
1, b1) <V (a, P ′

2, b2) <V · · ·
in V . Hence V is not R-noetherian. 
�

We now provide an example of an R-noetherian semigroup T such that {1} ♦ T is not
R-noetherian. In particular, the converse of Lemma 4.1 does not hold (since {1} × T ∼= T ).

Example 4.3 Let T be the monoid S from Example 3.10; that is,

T = {xn : n ∈ N0} � {ai : i ∈ Z}
with product given by

xmxn = xm+n, ai x
n = ai−n and xna j = aia j = a j .

As shown in Example 3.10, T is R-noetherian. We prove that U = P f (T ) × T ∼= {1} ♦ T
is not R-noetherian.

Consider i ∈ N. We have ({ai }, ai+1) = ({ai+1}, ai+2)(∅, x). Suppose for a contradiction
that ({ai+1}, ai+2) = ({ai }, ai+1)(P, t) for some (P, t) ∈ U . Then ai+1 = ai t and ai+2 =
ai+1t . We cannot have t ∈ {x}∗, for then we would have ai t ∈ {a j : j ≤ i}, and we cannot
have t ∈ {a j : j ∈ Z}, for then we would have ai t = ai+1t = t . Thus, no such t exists, and
we have the desired contradiction. It follows that we have an infinite ascending chain

({a1}, a2) <U ({a2}, a3) <U · · ·
in U , so U is not R-noetherian.

In the remainder of this section, we explore situations in which S♦ T beingR-noetherian
is equivalent to S × T being R-noetherian. This turns out to be the case when T is finite or
cancellative.

Since S and T are homomorphic images of S ♦ T , by Proposition 2.11 we have:

Lemma 4.4 Let S and T be semigroups. If either of S and T is R-noetherian and has no
element with a local right identity, then S ♦ T is R-noetherian.

Lemmas 4.1 and 4.4 and Corollary 3.14 yield:
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Proposition 4.5 Let S and T be semigroups where S (resp. T) is notR-noetherian. Then the
following are equivalent:

(1) S ♦ T is R-noetherian;
(2) S × T is R-noetherian;
(3) T (resp. S) is R-noetherian and has no element with a local right identity.

Theorem 4.6 Let S and T be semigroups where T is finite. Then the following are equivalent:

(1) S ♦ T is R-noetherian;
(2) S × T is R-noetherian;
(3) S is R-noetherian.

Proof (1)⇒(2) is Lemma 4.1, and (2)⇒(3) follows from Corollary 3.14.
(3)⇒(1). Let U = S ♦ T , and suppose for a contradiction that U is not R-noetherian.

Then there exists an infinite strictly ascending chain

(a1, P1, b1) <U (a2, P2, b2) <U · · ·
in U . For each i ∈ N, there exists (si , Qi , ti ) ∈ U such that

(ai , Pi , bi ) = (ai+1, Pi+1, bi+1)(si , Qi , ti ) = (ai+1si , Pi+1ti ∪ ai+1Qi , bi+1ti ),

so ai = ai+1si , Pi = Pi+1ti ∪ ai+1Qi and bi = bi+1ti . Thus, we have an ascending chain

a1 ≤S a2 ≤S · · ·
in S. Observe that for each i ∈ N we have

PiπS = Pi+1πS ∪ ai+1QiπS .

It follows that

P1πS ⊇ P2πS ⊇ · · · .

Since S is R-noetherian, and there does not exist any infinite strictly descending chain of
finite subsets of S, there exists N ∈ N such that an RS aN and PnπS = PNπS for all n ≥ N .
Then, for each n ≥ N , we have Pn ⊆ PNπS × T . Since PN and T are finite (and hence
PNπS × T is finite), it follows that there exist m, n ≥ N with m ≤ n − 2 such that Pm = Pn
and bm = bn . Since am RS an and am ∈ anS, there exists s′ ∈ S such that an = ams′. Then
we have

(am+1, Pm+1, bm+1)(sms
′, Qm, tm) = (am+1sms

′, Pm+1tm ∪ am+1Qm, bm+1tm)

= (ams
′, Pm, bm)

= (an, Pn, bn).

But this contradicts that (am+1, Pm+1, bm+1) <U (an, Pn, bn). Hence U isR-noetherian. 
�
Theorem 4.7 Let S and T be semigroups where T is cancellative. Then S♦T isR-noetherian
if and only if S × T is R-noetherian.

Proof (⇒). This follows immediately from Lemma 4.1.
(⇐) LetU = S♦T , and suppose for a contradiction thatU is notR-noetherian. Then, by

Lemma 4.4 and Corollary 3.14, both S and T areR-noetherian and have elements with local
right identities. It is straightforward to show that a cancellative semigroup has an element
with a local right identity if and only it is a monoid; thus T is a monoid.
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Now, there exists an infinite strictly ascending chain

(a1, P1, b1) <U (a2, P2, b2) <U · · ·
in U . For each i ∈ N, there exists (si , Qi , ti ) ∈ U such that

(ai , Pi , bi ) = (ai+1, Pi+1, bi+1)(si , Qi , ti ) = (ai+1si , Pi+1ti ∪ ai+1Qi , bi+1ti ),

so ai = ai+1si , Pi = Pi+1ti ∪ ai+1Qi and bi = bi+1ti . Thus, we have ascending chains

a1 ≤S a2 ≤S · · · and b1 ≤T b2 ≤T · · ·
in S and T , respectively. Since S isR-noetherian, there exists some N ∈ N such that an RS aN
for all n ≥ N .

Now, it follows from the cancellativity of T that the maps

Pi+1 → Pi+1ti , (x, y) �→ (x, yti ) (i ∈ N)

are bijections. Using the fact that Pi+1ti ⊆ Pi , we deduce that we have a chain

|P1| ≥ |P2| ≥ · · ·
of non-negative integers. This chain must eventually stabilise; we may assume without loss
of generality that |Pn | = |PN | for all n ≥ N . Then Pn = Pn+1tn for all n ≥ N . In particular,
we have

PNπS = PN+1πS = · · · .

Let |PN | = m, and for all n ≥ N let

Pn = {(u1, vn,1), . . . , (um, vn,m)}
such that vn, j = vn+1, j tn for each j ∈ {1, . . . ,m}. Then we have ascending chains

bN ≤T bN+1 ≤T · · ·
vN ,1 ≤T vN+1,1 ≤T · · ·
vN ,2 ≤T vN+1,2 ≤T · · ·

...

vN ,m ≤T vN+1,m ≤T · · ·
Since T is R-noetherian, the above chains must all eventually stabilise. So, there exists
N ′ ≥ N such that, for all n ≥ N ′, we have bn RT bN ′ and vn, j RT vN ′, j for each j ∈
{1, . . . ,m}. Consider n ≥ N ′. There exists s′

n ∈ S such that an+1 = ans′
n . Also, there exists

xn ∈ T such that bn+1 = bnxn , and for each j ∈ {1, . . . ,m} there exists xn, j ∈ T such
that vn+1, j = vn, j xn, j . Then bn = bnxntn , and vn, j = vn, j xn, j tn for each j ∈ {1, . . . ,m}.
Since T is cancellative, it follows that xntn = 1 and xn, j tn = 1 for each j ∈ {1, . . . ,m}. By
cancellativity again we have

xn = xn,1 = · · · = xn,m .

It follows that (un, j , vn+1, j ) = (un, j , vn, j xn) for each j ∈ {1, . . . ,m}, and hence Pn+1 =
Pnxn . Thus, we have

(an+1, Pn+1, bn+1) = (an, Pn, bn)(s
′
n,∅, xn).

But this contradicts the assumption that (an, Pn, bn) <U (an+1, Pn+1, bn+1). Hence U is
R-noetherian. 
�
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By Theorem 4.7 and Corollary 3.14, we have:

Corollary 4.8 Let S be a semigroup and let G be a group. Then the following are equivalent:

(1) S ♦ G is R-noetherian;
(2) S × G is R-noetherian;
(3) S is R-noetherian.

5 Free products

Let Si (i ∈ I ) be a collection of pairwise disjoint semigroups. Let S be the set of all finite
non-empty sequences (a1, . . . , am) where a j ∈ ⋃

i∈I Si (1 ≤ j ≤ m) and each ak belongs
to a different Si to that of ak+1 (1 ≤ k ≤ m − 1). Define a multiplication on S as follows:

(a1, . . . , am)(b1, . . . , bn) =
{

(a1, . . . , am, b1, . . . , bn) if am ∈ Si , b1 ∈ S j where i �= j,

(a1, . . . , amb1, . . . , bn) if am, b1 ∈ Si for some i ∈ I .

It is straightforward to verify that this multiplication is associative. The semigroup S under
this multiplication is called the semigroup free product of Si (i ∈ I ) and is denoted by∏∗{Si : i ∈ I }.

Now suppose that the semigroups Si (i ∈ I ) are monoids with identities 1i , respectively.
Let ρ be the congruence on

∏∗{Si : i ∈ I } generated by

{(1i , 1 j ) : i, j ∈ I , i �= j},
and denote the ρ-class {1i : i ∈ I } by 1. The monoid free product of Si (i ∈ I ), denoted by∏∗1{Si : i ∈ I }, is the monoid

∏∗{Si : i ∈ I }/ρ with identity 1.
We note that the monoid free product of groups coincides with the group free product [6,

p. 266].
The following result provides necessary and sufficient conditions for a semigroup free

product to be R-noetherian.

Theorem 5.1 Let Si (i ∈ I ) be a collection of pairwise disjoint semigroups. Then the semi-
group free product

∏∗{Si : i ∈ I } is R-noetherian if and only if each Si (i ∈ I ) is
R-noetherian.

Proof Let S = ∏∗{Si : i ∈ I }. Notice that each Si embeds into S via a �→ (a); we
shall identify Si with its image under this mapping. We denote the ‘length’ of u ∈ S by
|u|, i.e. if u = (a1, . . . , am) then |u| = m. Oberve that for any u, v ∈ S we have |uv| ∈
{|u| + |v| − 1, |u| + |v|}.

(⇒) We claim that each Si is an R-preserving subsemigroup of S, and is hence
R-noetherian by Proposition 2.6. Indeed, let a ≤S b where a, b ∈ Si . Either a = b
or a = bs for some s ∈ S. In the latter case, we must have s ∈ Si , for otherwise
|bs| = |b| + |s| > 1 = |a|. Thus a ≤Si b, as required.

(⇐) Consider an ascending chain

u1 ≤S u2 ≤S · · ·
in S. Then, for each n ∈ N, there exists vn ∈ S1 such that un = un+1vn . Then

|u1| ≥ |u2| ≥ · · · .
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Hence, there exists N ∈ N such that |un | = |uN | for all n ≥ N . Let m = |UN |. It follows
from the definition of the multiplication in S that the un (n ≥ N ) have the same first m − 1
terms, and that there exists i ∈ I such that the m-th term of each un belongs to Si and
vn ∈ S1i (n ≥ N ). Thus, for each n ≥ N , we let un = (a1 . . . , am−1, bn) where bn ∈ Si .
Then bn = bn+1vn ∈ bn+1S1i . Thus, we have an ascending chain

bN ≤Si bN+1 ≤Si · · ·
in Si . Since Si is R-noetherian, there exists N ′ ≥ N such that bn RSi bN ′ for all n ≥ N ′.
Therefore, for each n ≥ N there exists sn ∈ S1i such that bn = bN ′sn . If sn = 1, then
bn = bN ′ and hence un = uN ′ . Otherwise, if sn ∈ Si , we have

un = (a1 . . . , am−1, bN ′sn) = (a1 . . . , am−1, bN ′)(sn) = uN ′(sn).

Thus, we have un RS uN ′ for all n ≥ N ′. Hence S is R-noetherian. 
�
We now turn our attention to the monoid free product. First, we make some observations

regarding this construction.
Consider a monoid free product

∏∗1{Si : i ∈ I }. We may view the non-identity elements
of

∏∗1{Si : i ∈ I } as sequences (a1, . . . , an) ∈ ∏∗{Si : i ∈ I } where each ai belongs to
some Si\{1i } [6, p. 266]. More precisely, with ρ as given above, in each non-identity ρ-class
there exists a unique sequence that contains no elements from {1i : i ∈ I }; we call this
sequence reduced. Thus, we identify the non-identity elements of S with their corresponding
reduced sequences.

Now, consider a reduced squence u = (a1, · · · , an) ∈ S. Letting an ∈ Si , observe that if
an is not right invertible in Si , then for any v ∈ S\{1}we have |uv| ∈ {|u|+|v|−1, |u|+|v|}.
It follows that, if an is not right invertible in Si , u is of minimal length in its R-class (i.e.
|u| = min{|w| : uRw}). In fact, the converse also holds. Indeed, if an is right invertible,
then there exists s ∈ Si such that ans = 1i . Then us = (a1, . . . , an−1), and of course
(a1, . . . , an−1)(an) = u, so an R (a1, . . . , an−1). Hence, u is not of minimal length in its
R-class.

Theorem 5.2 Let Si (i ∈ I ) be a collection of pairwise disjoint monoids. Then the monoid
free product

∏∗1{Si : i ∈ I } isR-noetherian if and only if each Si (i ∈ I ) isR-noetherian.

Proof The proof is essentially the same as that of Theorem 5.1. The only difference is that,
in (⇐), we stipulate that each ui is of minimal length in its R-class, and it then follows that
|u1| ≥ |u2| ≥ · · · . 
�

6 Reesmatrix semigroups

Let S be a semigroup, let I and J be non-empty index sets, and let P = (p ji ) be a J × I
matrix with entries from S. The set I × S× J becomes a semigroup under the multiplication
given by

(i, s, j)(k, t, l) = (i, sp jk t, l),

and is called the Rees matrix semigroup over S with respect to P . We denote this semigroup
by M(S; I , J ; P).

We note that Rees matrix semigroups over groups are precisely the completely simple
semigroups (i.e. semigroups with no proper ideals that possess minimal left and right ideals)
[6, Theorem 3.3.1].
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We now state the main result of this section, providing necessary and sufficient conditions
for a Rees matrix semigroup to be R-noetherian.

Theorem 6.1 Let T = M(S; I , J ; P) be a Rees matrix semigroup. Let U denote the right
ideal {p j,i : j ∈ J , i ∈ I }S of S. Then T is R-noetherian if and only if every ascending
chain

a1U
1 ⊆ a2U

1 ⊆ · · · ,

where ai ∈ S, eventually stabilises.

Proof We prove the contrapositive for both directions.
(⇒) Suppose that there exists an infinite strictly ascending chain

a1U
1

� a2U
1

� · · · ,

where ai ∈ S. Fix i ∈ I and j1 ∈ J . For each n ∈ N there exists in+1 ∈ I , jn+1 ∈ J and
sn ∈ S such that an = an+1 p jn+1,in+1sn . Then

(i, an, jn) = (i, an+1, jn+1)(in+1, sn, jn),

so (i, an, jn) ≤T (i, an+1, jn+1). Suppose for a contradiction that
(i, an, jn)RT (i, an+1, jn+1). We cannot have (i, an, jn) = (i, an+1, jn+1), for then
an = an+1. Therefore, there exist some k ∈ I and s ∈ S such that (i, an+1, jn+1) =
(i, an, jn)(k, s, jn+1). But then an+1 = an(p jn ,ks) ∈ anU , so that anU 1 = an+1U 1, a
contradiction. Thus, we have an infinite strictly ascending chain

(i, a1, j1) <T (i, a2, j2) <T · · ·
in T , and hence T is not R-noetherian.

(⇐) Suppose that T is not R-noetherian. Then there exists an infinite strictly ascending
chain

(i1, a1, j1) <T (i2, a2, j2) <T · · ·
in T . Letting i = i1, we have

i = i1 = i2 = · · · .

For each n ∈ N there exist kn ∈ I and sn ∈ S such that

(i, an, jn) = (i, an+1, jn+1)(kn, sn, jn).

Thus an = an+1 p jn+1,kn sn ∈ an+1U , so anU 1 ⊆ an+1U 1. We cannot have anU 1 = an+2U 1.
Indeed, if we did, then there would exist u ∈ U 1 such that an+2 = anu, and hence an+2 =
an+1(p jn+1,kn snu). But then

(i, an+2, jn+2) = (i, an+1, jn+1)(kn, snu, jn+2) ∈ (i, an+1, jn+1)T ,

contradicting the fact that (i, an+1, jn+1) <T (i, an+2, jn+2). Thus, we have an infinite
strictly ascending chain

a1U
1

� a3U
1

� a5U
1

� · · · ,

as desired. 
�
Corollary 6.2 Let T = M(S; I , J ; P) be a Rees matrix semigroup. If S isR-noetherian then
so is T .
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Proof Let U be as given in the statement of Theorem 6.1. Suppose for a contradiction that
there exists an infinite strictly ascending chain

a1U
1

� a2U
1

� · · ·
where ai ∈ S. Then clearly we have an ascending chain

a1 ≤S a2 ≤S · · · .

Since S isR-noetherian, there exists N ∈ N such that anS1 = aN S1 for all n ≥ N . But then

aN+2 ∈ aN S ⊆ aN+1US ⊆ aN+1U ,

contradicting the fact that aN+1U 1
� aN+2U 1. Hence, by Theorem 6.1, T is

R-noetherian. 
�
The converse of Corollary 6.2 does not hold, as demonstrated by the following example.

Example 6.3 Let S be a semigroup with 0 that is not R-noetherian. Let P be the 1 × 1
matrix whose entry is 0, and let T = M(S; {1}, {1}; P). For any s, s′ ∈ S we have
(1, s, 1)(1, s′, 1) = (1, s0s′, 1) = (1, 0, 1), and clearly (1, 0, 1) is a zero element in T ,
so T is a null semigroup. Hence, by Corollary 2.2, T is R-noetherian.

Corollary 6.4 Let T = M(S; I , J ; P) be a Rees matrix semigroup such that every element
of S has a local right identity in U = {p j,i : j ∈ J , i ∈ I }S. Then T is R-noetherian if and
only if S is R-noetherian.

Proof Consider any a ∈ S. By assumption, we have a ∈ aU , so aS1 ⊆ aUS1 ⊆ aU 1.

Clearly aU 1 ⊆ aS1, so aS1 = aU 1. The result now follows readily from Theorem 6.1. 
�
Corollary 6.5 Let T = M(S; I , J ; P) be a Rees matrix semigroup where S is a monoid,
and suppose that there exist i ∈ I and j ∈ J such that p j,i is right invertible. Then T is
R-noetherian if and only if S is R-noetherian.

Proof We have 1S ∈ p j,i S, and 1S is obviously a local right identity of every element of S.
Hence, by Corollary 6.4, S is R-noetherian. 
�

We now consider a variant of the Rees matrix construction. Let S be a semigroup with
zero 0, let I and J be non-empty index sets, and let P = (p ji ) be a J × I matrix with entries
from S. Let T ′ = M(S; I , J ; P), and let T denote the Rees quotient T ′/Q, where Q is the
ideal I ×{0}× J of T ′. The semigroup T is called the Rees matrix semigroup with zero over
S with respect to P , and is denoted by M0(S; I , J ; P).

Rees matrix semigroups with zero over groups are precisely the completely 0-simple
semigroups [6, Theorem 3.2.3].

Corollary 6.6 Let T = M0(S; I , J ; P) be a Rees matrix semigroup with zero. Let U denote
the right ideal {p j,i : j ∈ J , i ∈ I }S of S. Then the following are equivalent:

(1) T is R-noetherian;
(2) M(S; I , J ; P) is R-noetherian;
(3) every ascending chain

a1U
1 ⊆ a2U

1 ⊆ · · · ,

where ai ∈ S, eventually stabilises.
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Proof (1)⇔(2). Let T ′ = M(S; I , J ; P) and Q = I × {0} × J , so that T = T ′/Q. Since
Q is R-noetherian and every element of Q has a local right identity in Q, it follows from
Proposition 2.13 that T is R-noetherian if and only if T ′ is R-noetherian.

(2) and (3) are equivalent by Theorem 6.1. 
�
Related to the Rees matrix with zero construction is that of the Brandt extension, defined

as follows. Let S be a semigroup and let I be a non-empty set. The Brandt extension of S by
I , denote by B(S, I ), is the semigroup with universe (I × S × I ) ∪ {0} and multiplication
given by

(i, s, j)(k, t, l) =
{

(i, st, l) if j = k

0 otherwise,

and 0x = x0 = 0 for all x ∈ (I × S × I ) ∪ {0}. Notice that if S is a monoid, then B(S, I )
is isomorphic to M0(S; I , I ; P) where P is the I × I identity matrix. Brandt extensions of
groups are precisely the completely 0-simple inverse semigroups [6, Theorem 5.1.8].

Theorem 6.7 Let S be a semigroupand let I be a non-empty set. ThenB(S, I ) isR-noetherian
if and only if S is R-noetherian.

Proof (⇒) It is straightforward to show that, for any i ∈ I , S is isomorphic the subsemigroup
Si = {i}× S×{i} of B(S, I ), and that Si is right unitary in B(S, I ). Hence, S isR-noetherian
by Corollary 2.8.

(⇐) Letting T = B(S1, I ), we have T ∼= M0(S1; I , I ; P) where P is the I × I identity
matrix. Since S isR-noetherian, we have thatM(S1; I , I ; P) isR-noetherian by Corollary
6.2. Hence, by Corollary 6.6, T is R-noetherian. Since B(S, I ) is an ideal of T , it is also
R-noetherian by Proposition 2.5. 
�

7 Bruck–Reilly extensions

Let M be a monoid with identity 1M , and let θ : M → M be an endomorphism. We define a
binary operation on the set N0 × M × N0 by

(i, a, j)(p, b, q) = (i − j + t, (aθ t− j )(bθ t−p), q − p + t),

where t = max( j, p) and θ0 denotes the identity map on M . With this operation the set
N0 × M × N0 is a monoid with identity (0, 1M , 0). It is denoted by BR(M, θ) and called
the Bruck–Reilly extension of M determined by θ .

Special instances of this construction were introduced by Bruck [2] and Reilly [16], after
whom it is named, and it was given in its general form by Munn in [13].

Theorem 7.1 Let M be a monoid and let θ : M → M be a monoid homomorphism. Then
BR(M, θ) is R-noetherian if and only if M is R-noetherian.

Proof (⇒) Let N = BR(M, θ). It is straightforward to show that M is isomorphic to the
submonoid {0} × M × {0} of N , and that this submonoid is right unitary in N . Hence, M is
R-noetherian by Corollary 2.8.

(⇐) Consider an ascending chain

u1 ≤N u2 ≤N · · ·
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in N , where uk = (ik, ak, jk). Then for each k ∈ N there exists (pk,mk, qk) such that
uk = uk+1(pk,mk, qk). Letting tk = max( jk+1, pk), we have

ik = ik+1 − jk+1 + tk .

Since tk ≥ jk+1, it follows that ik ≥ ik+1. Thus we have

i1 ≥ i2 ≥ · · · ,

and hence there exists N ∈ N such that iN = iN+1 = · · · . Let i = iN . Then for k ≥ N we
have i = i − jk+1 + tk , so tk = jk+1. It follows that, for each k ≥ N , we have

ak = ak+1(mkθ
jk+1−pk ) ∈ ak+1M .

Hence, we have an ascending chain

aN ≤M aN+1 ≤M · · ·
in M . Since M is R-noetherian, there exists N ′ ≥ N such that ap RM aN ′ for all p ≥ N ′.
Therefore, for each p ≥ n there exists m′

p ∈ M such that ap = aN ′m′
p . Then

u p = (i, ap, jp) = (i, aN ′ , jN ′)( jN ′ ,m′
p, jp) = uN ′( jN ′ ,m′

p, jp) ∈ uN ′N .

We conclude that u p RN uN ′ for all p ≥ N ′. This completes the proof. 
�
Corollary 7.2 Every semigroup S that is R-noetherian embeds into a simple semigroup that
is R-noetherian.

Proof Let θ : S1 → S1 be the endomorphism given by sθ = 1 for all s ∈ S1, and let M =
BR(S1, θ). Then M is simple by [6, Proposition 5.6.6(1)]. The monoid S1 is R-noetherian
since S is, and hence M isR-noetherian by Theorem 7.1. We have already observed that S1

is isomorphic to {0} × S1 × {0} ⊆ M , and clearly S embeds into S1, so we conclude that S
embeds into M . 
�

8 Semilattices of semigroups

Let Y be a semilattice and let (Sα)α∈Y be a family of disjoint semigroups, indexed by Y .

If S = ⋃
α∈Y Sα is a semigroup such that SαSβ ⊆ Sαβ for all α, β ∈ Y , then S is called a

semilattice of semigroups, and we denote it by S = S(Y , Sα). If, additionally, each Sα is a
monoid, we call S a semilattice of monoids.

Now let S = ⋃
α∈Y Sα , and suppose that for each α, β ∈ Y with α ≥ β there exists a

homomorphism φα,β : Sα → Sβ . Furthermore, assume that:

• for each α ∈ Y , the homomorphism φα,α is the identity map on Sα;
• for each α, β, γ ∈ Y with α ≥ β ≥ γ , we have φα,β φβ,γ = φα,γ .

For a ∈ Sα and b ∈ Sβ , we define

ab = (aφα,αβ)(bφβ,αβ).

With this multiplication, S is a semilattice of semigroups. In this case we call S a strong
semilattice of semigroups and denote it by S = S(Y , Sα, φα,β).

We begin by investigating the behaviour of the property of being R-noetherian in the
general setting of semilattices of semigroups. Note that a semilattice is R-noetherian if and
only if it satisfies the ascending chain condition on elements under its partial order.
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Definition 8.1 Let S = S(Y , Sα). We say that a chain

α1 ≤ α2 ≤ · · ·
in Y is R-witnessed (with respect to S) if there exist ai ∈ Sαi (i ∈ N) such that

a1 ≤S a2 ≤S · · · .

We note that if S = S(Y , Sα) and Y is R-noetherian, then certainly every R-witnessed
chain in Y with respect to S eventually stabilises. It turns out, however, that the converse
does not hold in general.

Lemma 8.2 Let S = S(Y , Sα). If S is R-noetherian, then every R-witnessed chain in Y
eventually stabilises and each Sα is R-noetherian.

Proof Consider an R-witnessed chain

α1 ≤ α2 ≤ · · ·
in Y . Then there exist ai ∈ Sαi (i ∈ N) such that

a1 ≤S a2 ≤S · · · .

Since S is R-noetherian, there exists n ∈ N such that an RS aN for all n ≥ N . This implies
that αn = αN for all n ≥ N , as required.

Now let α ∈ Y , and let I = ⋃
β≤α Sβ . Then I is an ideal of S, so it is R-noetherian

by Proposition 2.5. Since I \ Sα is an ideal of I , it follows from Corollary 2.9 that Sα is
R-noetherian. 
�

The following example shows that S(Y , Sα) may not be R-noetherian even if Y is finite
and each Sα is R-noetherian. In particular, the converse of Lemma 8.2 does not hold.

Example 8.3 Let S be the disjoint union of (a copy of) the free monogenic semigroup {x}+
and a set N = {ai : i ∈ Z} ∪ {0}. Define a multiplication on S, extending that on {x}+, by

xia j = a j x
i = a j−i and xi0 = 0xi = uv = 0 (i ∈ N, j ∈ Z , u, v ∈ N ).

This multiplication turns N into a null semigroup. It is straightforward to show that, under
this multiplication, S is a semilattice of semigroups with structure semilattice Y = {1 > 0}
and corresponding components {x}+ and N . Certainly {x}+ and N areR-noetherian. On the
other hand, it is easy to see that we have an infinite strictly ascending chain

a0 <S a1 <S · · ·
in S, so that S is not R-noetherian.

The following result provides a condition under which the converse of Lemma 8.2 does
hold. For this, recall that a semigroup is weakly right noetherian if it satisfies the ascending
chain condition on right ideals.

Proposition 8.4 Let S = S(Y , Sα), and suppose that for each α ∈ Y the semigroup Sα

contains no infinite antichain of RSα -classes. Then the following are equivalent:

(1) S is R-noetherian;
(2) every R-witnessed chain in Y eventually stabilises and each Sα is R-noetherian;
(3) everyR-witnessed chain inY eventually stabilises and each Sα isweakly right noetherian.
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Proof (1)⇒(2) follows from Lemma 8.2.
(2)⇒(1). Suppose that every R-witnessed chain in Y eventually stabilises but that S is

not R-noetherian. We need to prove that some Sα is not R-noetherian.
Since S is not R-noetherian, there exists an infinite strictly ascending chain

a1 <S a2 <S · · ·
in S. Let ai ∈ Sαi , and for i < j let bi, j ∈ Sβi, j be such that ai = a jbi, j ; then αi = α jβi, j .
Now, we have an R-witnessed chain

α1 ≤Y α2 ≤Y · · ·
in Y . By assumption, there exists N ∈ N such that αn = αN for all n ≥ N . Then, letting
α = αN , we have αβi, j = α for all i, j ∈ N with N ≤ i < j .

Consider the set {an : n ≥ N } of elements of Sα . By assumption, this set cannot form
an infinite antichain under the R-preorder on Sα . Also, we cannot have a j ≤Sα ai for any
N ≤ i < j , since this would contradict the fact that ai <S a j . It follows that there exist
i1, j1 ≥ N with i1 < j1 such that ai1 <Sα a j1 . Now, either i1 = N or

aN = ai1bN ,i1 ∈ a j1(SαbN ,i1) ⊆ a j1 Sα,

so aN <Sα a j1 . Now consider the infinite set {an : n ≥ j1}. By the same argument as above,
there exists j2 > j1 such that a j1 <Sα a j2 . Continuing in this way, we obtain an infinite
strictly ascending chain

aN <Sα a j1 <Sα a j2 <Sα · · ·
in Sα , as required.

(2)⇔(3) follows from the fact that a semigroup is weakly right noetherian if and only if
it is R-noetherian and contains no infinite antichain of R-classes [11, Theorem 3.2]. 
�

The converse of Lemma 8.2 also holds in the case that each Sα is R-preserving in S.

Theorem 8.5 Let S = S(Y , Sα)where each Sα isR-preserving in S. Then S isR-noetherian
if and only if everyR-witnessed chain in Y eventually stabilises and each Sα isR-noetherian.

Proof The forward implication follows immediately from Lemma 8.2 For the converse,
consider an ascending chain

a1 ≤S a2 ≤S · · ·
in S. Let ai ∈ Sαi . Then

α1 ≤Y α2 ≤Y · · ·
is an R-witnessed chain in Y . By assumption, there exists N ∈ N such that αn = αN for all
n ≥ N . Let α = αN . Then an ∈ Sα for all n ≥ N . Since Sα is R-preserving in S, we have

aN ≤Sα aN+1 ≤Sα · · · .

Since Sα is R-noetherian, there exists N ′ ≥ N such that an RSα aN ′ for all n ≥ N ′. Then
an RS aN ′ for all n ≥ N ′. This completes the proof. 
�

In what follows we consider certain situations where we have S = S(Y , Sα) with all the
Sα being R-preserving in S. The first such situation is where every Sα has the property that
each element has a local right identity (in Sα). Recall that this holds if each Sα is a monoid
or regular semigroup.
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Proposition 8.6 Let S = S(Y , Sα) where, for each α ∈ Y , every element of Sα has a local
right identity in Sα . Then S is R-noetherian if and only if every R-witnessed chain in Y
eventually stabilises and each Sα is R-noetherian.

Proof We show that each Sα isR-preserving, and the result then follows from Theorem 8.5.
So, let α ∈ Y , and let a, b ∈ Sα be such that a ≤S b. Then a = bs for some s ∈ S1. If s = 1
then a = b. Suppose that s ∈ S. Then s ∈ Sβ for some β ∈ Y , and we have αβ = α. Let
c ∈ Sα be a local right identity of b, so that b = bc. Then we have

a = bs = (bc)s = b(cs) ∈ bSα,

so a ≤Sα b, as required. 
�
A semigroup is called completely regular if it is a union of groups. A semigroup is

completely regular if and only if it is a semilattice of completely simple semigroups [6,
Theorem 4.1.3]. Completely simple semigroups are certainlyR-noetherian by Corollary 2.2.
Thus, by Proposition 8.6, we have:

Corollary 8.7 Let S be a completely regular semigroup, and let S = S(Y , Sα) be its decom-
position into a semilattice of completely simple semigroups. Then S is R-noetherian if and
only if every R-witnessed chain in Y eventually stabilises.

The free semilattice on a non-empty set X , which we denote by FX , is defined as the set of
all finite non-empty subsets of X under the operation of union. Clearly, for any U , V ∈ FX ,
we have U ≤FX V if and only if V ⊆ U . It follows that FX is R-noetherian. Both the free
band on X and free completely regular semigroup on X are semilattices of semigroups where
the structure semilattice is FX ; see [6, p. 120] and [3, Corollary 4.3], respectively. Therefore,
by Corollary 8.7, we have:

Corollary 8.8 Let X be a non-empty set. Then the following semigroups are R-noetherian:
the free semilattice on X, the free band on X, and the free completely regular semigroup on
X .

Corollary 8.9 Let S = S(Y , Sα) be a semilattice of monoids such that 1α1β = 1αβ for all
α, β ∈ Y (where 1α denotes the identity of Sα). Then S is R-noetherian if and only if Y and
all Sα are R-noetherian.

Proof Given Proposition 8.6, it suffices to show that every ascending chain of elements of Y
is R-witnessed with respect to S. This follows from the fact that if α ≤ β then 1α = 1βα =
1β1α , and hence 1α ≤ 1β .

A Clifford semigroup is an inverse completely regular semigroup, or, equivalently, a
(strong) semilattice of groups. By Corollary 8.9 we have:

Corollary 8.10 Let S be a Clifford semigroup, and let S = S(Y ,Gα) be its decompostion
into a semilattice of groups. Then S is R-noetherian if and only if Y is R-noetherian.

We now turn our attention to strong semilattices of semigroups.

Proposition 8.11 Let S = S(Y , Sα, φα,β). Then S is R-noetherian if and only if every R-
witnessed chain in Y eventually stabilises and each Sα is R-noetherian.
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Proof We show that each Sα isR-preserving, and the result then follows from Theorem 8.5.
So, let α ∈ Y , and let a, b ∈ Sα be such that a ≤S b. Then a = bs for some s ∈ S1. If s = 1
then a = b. Suppose that s ∈ S. Then s ∈ Sβ for some β ∈ Y , and we have αβ = α. Thus,
we have a = b(sφβ,α) ∈ bSα , and hence a ≤Sα b, as required. 
�
Corollary 8.12 Let S = S(Y , Sα, φα,β) where, for each α ∈ Y , Sα has no element with a
local right identity. Then S is R-noetherian if and only if each Sα is R-noetherian.

Proof Given Proposition 8.11, it suffices to prove that if each Sα isR-noetherian then every
R-witnessed chain in Y eventually stabilises. So, consider an R-witnessed chain

α1 ≤Y α2 ≤Y · · · .

Then there exist ai ∈ Sαi (i ∈ N) such that

a1 ≤S a2 ≤S · · · .

By the definition of the product in S, for each i ∈ N we have either ai = ai+1 or ai =
(ai+1φαi+1,αi )si for some si ∈ Sαi . If ai = ai+1 then aiφαi ,α1 = ai+1φαi+1,α1 , and if
ai = (ai+1φαi+1,αi )si then

aiφαi ,α1 = (ai+1φαi+1,α1)(siφαi ,α1).

Thus, letting T = Sα1 , we have an ascending chain

a1 = a1φα1,α1 ≤T a2φα2,α1 ≤T · · ·
in T . Since T isR-trivial (as it has no element with a local right identity) andR-noetherian,
there exists N ∈ N such that anφαn ,α1 = aNφαN ,α1 for all n ≥ N . We claim that αn = αN

for all n ≥ N . Indeed, suppose not. Then there exists n ≥ N such that αn �= αn+1, and hence
an �= an+1. Then we have

anφαn ,α1 = (an+1φαn+1,α1)(snφαn ,α1).

But then

aNφαN ,α1 = (aNφαN ,α1)(snφαn ,α1) ∈ (aNφαN ,α1)T ,

contradicting the fact that T has no element with a local right identity. This completes the
proof. 
�

We conclude this section with an example of a strong semilattice of semigroups that is
R-noetherian but whose structure semilattice is not R-noetherian.

Example 8.13 Let Y be the semilattice (N,min). Then Y is notR-noetherian. For each i ∈ N,
let Si be the semilattice {i} × N with multiplication

(i, j)(i, k) = (
i,max( j, k)

)
for all j, k ∈ N.

Then each Si is isomorphic to (N,max), which is certainlyR-noetherian. For each i, j ∈ N

with i ≥ j , define a map

φi, j : Si → S j , (i, n) �→ ( j, n + i − j).

For any m, n ∈ N, we have
(
(i,m)(i, n)

)
φi, j = (

i,max(m, n)
)
φi, j = (

j,max(m, n) + i − j
)
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= (
j,max(m + i − j, n + i − j)

) = ( j,m + i − j)( j, n + i − j)

= (
( j,m)φi, j

)(
( j, n)φi, j

)
,

so φi, j is a homomorphism. Let S be the strong semilattice of semilattices S(Y , Si , φi, j ).
Then S = N × N, and for any (i,m), ( j, n) ∈ S we have

(i,m)( j, n) = (
(i,m)φi,min(i, j)

)(
( j, n)φ j,min(i, j)

)

= (
min(i, j),m + i − min(i, j)

)(
min(i, j), n + j − min(i, j)

)

= (
min(i, j),max(m + i − min(i, j), n + j − min(i, j))

)
.

It is easy to see that this product is commutative. Therefore, since each element of S is an
idempotent, we have that S is a semilattice. We claim that S is R-noetherian. So, consider
an ascending chain

(i1, n1) ≤S (i2, n2) ≤S · · ·
in S. Since S is a semilattice, for each j ∈ N we have (i j , n j ) = (i j+1, n j+1)(i j , n j ). Thus,
we have i j = min(i j+1, i j ) and n j = max(i j+1 + n j+1 − i j , n j ). It follows that

i1 ≤ i2 ≤ · · · and n1 ≥ n2 ≥ · · · ,

and if i j < i j+1 then n j > n j+1. We conclude that there exists N ∈ N such that im = iN
and nm = nN for all m ≥ N , and hence (im, nm) = (iN , nN ) for all m ≥ N , as required.
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