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Abstract
Let K be a cubic number field. In this paper, we study the Ramanujan sums cJ (I), where
I and J are integral ideals in OK. The asymptotic behaviour of sums of cJ (I) over both I
and J is investigated.

Keywords Ramanujan sum · Cubic field · Exponential sum

1 Introduction

1.1 Ramanujan sums over the rationals

For positive integers m and n, the Ramanujan sum cm(n) is defined as

cm(n) :=
∑

1≤ j≤m
gcd( j,m)=1

e
( jn

m

)
=

∑

d|gcd(m,n)

dμ
(m
d

)
, (1.1)

where e(z) = e2π i z andμ(·) is the Möbius function. In 2012, Chan and Kumchev [1] studied
the average order of cm(n) with respect to both m and n. They proved that

S1(X , Y ) =
∑

1≤m≤X

∑

1≤n≤Y

cm(n)

= Y − 3

2π2 X
2 + O(XY 1/3 log X) + O(X3Y−1),

(1.2)
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216 J. Ma et al.

for large real numbers Y ≥ X ≥ 3, and

S1(X , Y ) :=
{
Y , if δ > 2,

− 3
2π2 X

2, if 1 < δ < 2,
(1.3)

if Y � X δ .
Let s be an arbitrary fixed positive integer. For any positive integers m, n and s ≥ 2, the

sum c(s)
m (n) denotes a generalization of the Ramanujan sum defined by

c(s)
m (n) :=

∑

d|m
ds |n

dsμ
(m
d

)
. (1.4)

This sum is said to be Cohen sum or Cohen-Ramanujan sum. In the case s = 1, the function
c(s)
m (n) is equal to the Ramanujan sum cm(n). Some interesting properties of (1.4) were given
in detail by Kühn and Robles [11], Robles and Roy [16] and others.

More generally, for any positive integers m, n, s and any arithmetic functions f and g,
define

s(s)
m (n) :=

∑

d|m
ds |n

f (d)g
(m
d

)
.

Kiuchi [9] considered some asymptotic formulas for weighted averages of s(s)
m (n).

In 2021, Kiuchi, Pillichshammer and Eddin [10] proposed a further generalization of
s(s)
m (n) which is defined by

s(s)
f ,g,h(m, n) :=

∑

d|m
ds |n

f (d)g
(m
d

)
h

( n

ds

)
,

where s,m, n ∈ N and f , g, h are arithmetic functions. They derived various identities for the
weighted average of the product of generalized sums s(s)

f ,g,h(m, n) with weights concerning
some functions.

1.2 Ramanujan sums in fields

LetK be a number field andOK denote its ring of algebraic integers. For any nonzero integral
ideal I in OK, the Möbius function is defined as follows: μ(I) = 0 if there exists a prime
ideal P such that P2 divides I, and μ(I) = (−1)r if I is a product of r distinct prime ideals.
For any ideal I, the norm of I is denoted by N(I). For nonzero integral ideals I and J , the
Ramanujan sum in fields is defined by

cJ (I) :=
∑

M∈OKM|I,M|J

N(M)μ
( J
M

)
, (1.5)

which is an analogue of (1.1).
For each n ≥ 1, let aK(n) denote the number of integral ideals in OK of norm n. Then

∑

n≤x

aK(n) = ρKx + PK(x), PK(x) = O(x
d−1
d+1 ), (1.6)
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The average size of Ramanujan sums over cubic number fields 217

where ρK is a constant depending only on the fieldK and d is the degree of the field extension
K/Q. This is a classical result of Landau (see [12]).

Let X ≥ 3 and Y ≥ 3 be two large real numbers. Define

SK(X , Y ) :=
∑

1≤N(J )≤X

∑

1≤N(I)≤Y

cJ (I), (1.7)

which is an analogue of (1.2).
When K is a quadratic number field, some authors studied the asymptotic behaviour of

SK(X , Y ) (see [14, 18, 19]). In [14], Nowak proved

SK(X , Y ) ∼ ρKY (1.8)

provided that Y > X δ for some δ > 1973
820 . In [18], Zhai improved Nowak’ results and proved

that (1.8) holds provided that Y > X δ for some δ > 79
34 . Recently Zhai [19] proved that (1.8)

holds for Y > X2+ε .
In this paper, we consider the asymptotic behaviour of SK(X , Y ) for a cubic field K. We

shall prove the following results.

Theorem 1.1 Let K be a cubic number field. Suppose that Y ≥ X ≥ 3 are large real numbers.
Then

SK(X , Y ) = ρKY + O(X
8
5 Y

2
5+ε + X

11
8 Y

1
2+ε), (1.9)

provided that Y > X11/4.

Theorem 1.2 Let K be a cubic number field. Suppose that T ≥ X ≥ 3 are two large real
numbers such that T ≥ 10X. Then

∫ 2T

T
|RK(X , Y )|2 dY = c(X)

∫ 2T

T
Y

2
3 dY + O(X

31
9 T

14
9 +ε + X

26
9 T

29
18+ε),

where

RK(X , Y ) := SK(X , Y ) − ρKY

and c(X) is defined by (4.7).

Remark From (4.10)we can see that c(X) � X
7
3+ε . From this estimatewe get fromTheorem

2 that the asymptotic formula (1.8) holds on average provided that Y > X
7
3+ε .

Notation Let [x] denote the greatest integer less or equal to x . The notation U � V means
that there exists a constant C > 0 such that |U | ≤ CV , which is equivalent to U = O(V ).
The notationsU � V (which impliesU ≥ 0 and V ≥ 0),U � V (whichmeans that we have
bothU � V andU � V ) are defined similarly. Let ζ(s) denote the Riemann zeta-function
and τr (n) the number of ways n factorized into r factors. In particular, τ2(n) = τ(n) is the
Dirichlet divisor function. At last, let zn (n ≥ 1) denote a series of complex numbers. We
set

∣∣∣
∑

N<n≤2N

zn
∣∣∣
∗ := max

N≤N1<N2≤2N

∣∣∣
∑

N1<n≤N2

zn
∣∣∣. (1.10)

Whenwe revised ourmanuscript, we noted that Sneha and Shivani [17] established asymp-
totic formulas for the second moment of averages of Ramanujan sums over quadratic and
cubic number fields and obtained second moment results for Ramanujan sums over some
other number fields.

123



218 J. Ma et al.

2 Some lemmas

In this section, we will make preparation for the proof of our theorems. From now on, we
always suppose that K is a cubic number field. The Dedekind zeta-function of K is defined
by

ζK(s) :=
∑

I∈OKI 
=0

1

Ns(I)
(�s > 1). (2.1)

Then

ζK(s) =
∞∑

n=1

aK(n)

ns
(�s > 1), (2.2)

where aK(n) is the number of integral ideals in OK of norm n.
The function μK(n) is defined by

1

ζK(s)
:=

∞∑

n=1

μK(n)

ns
(�s > 1).

Define

MK(x) :=
∑

n≤x

μK(n).

Then there is a trivial bound

MK(x) � x . (2.3)

We collect the algebraic properties of cubic number fields in the following lemma.

Lemma 2.1 (Lemma 1 in [13]) Let K be a cubic number field over Q and D = d f 2 (d
squarefree) its discriminant; then

(a) K/Q is a normal extension if and only if D = f 2. In this case

ζK(s) = ζ(s)L(s, χ1)L(s, χ1),

where ζ(s) is the Riemann zeta-function and L(s, χ1) is an ordinary Dirichlet series
(over Q) corresponding to a primitive character χ1 modulo f .

(b) If K/Q is not a normal extension, then d 
= 1 and

ζK(s) = ζ(s)L(s, χ2),

where L(s, χ2) is a Dirichlet L-function over the quadratic field F = Q(
√
d):

L(s, χ2) =
∑

	

χ2(	)NF (	)−s , (�s > 1).

Here the summation is taken over all ideals 	 
= 0 in F and NF denotes the (absolute)
ideal norm in F.
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The average size of Ramanujan sums over cubic number fields 219

Remark 2.2 To describe the character χ2, let H be the ideal group in F according to which
the normal extension K(

√
d) is the class field. Then H divides the set A f of all ideals 	 ⊆ F

with (	, f ) = 1 into three classes A f = H ∪ C ∪ C
′
, and (ω = e2π i/3)

χ2(	) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 	 ∈ H ,

ω, 	 ∈ C,

ω, 	 ∈ C
′
,

0, (	, f ) 
= 1.

The substitution γ = (
√
d �→ −√

d) in F maps C onto C
′
.

Remark 2.3 The factorization of ζK(s) in Lemma 2.1 gives

aK(n) =
∑

m|n
b(m), (2.4)

where in the case of a normal extension b(m) = ∑
xy=m χ1(x)χ1(y) (χ1 is the primitive

charactermodulo f ).Otherwiseb(m) is equal to the number of ideals	 ∈ H with NF (	) = m
minus two times the number of ideals 	 ∈ C with NF (	) = m. In both cases, |b(m)| � mε.

Lemma 2.4 ((68) in [2]) Let K be an algebraic number field of degree d. Then

aK(n) � (τ (n))d−1, (2.5)

where τ(n) is the Dirichlet divisor function and d = [K : Q].

Corollary 2.5 Let K be a cubic field. Then

aK(n) � τ 2(n). (2.6)

Lemma 2.6 Suppose 1 � N � Y . Then

PK(Y ) = Y 1/3

√
3π

∑

n≤N

aK(n)

n2/3
cos(6π(nY )1/3) + O(Y 2/3+εN−1/3), (2.7)

where the O-constant depends on ε.

Proof This is a special case of Proposition 3.2 of Friedlander and Iwaniec [4]. ��

Lemma 2.7 Let T ≥ 10 be a large parameter and y a real number such that T ε � y � T .
For any T ≤ Y ≤ 2T define

P1(Y ) = P1(Y ; y) := Y 1/3

√
3π

∑

n≤y

aK(n)

n2/3
cos(6π(nY )1/3),

P2(Y ) = P2(Y ; y) := PK(Y ) − P1(Y ).

Then we have
∫ 2T

T
|P2(Y )|2 dY � T 5/3+ε y−1/3 (y � T 1/3). (2.8)

123



220 J. Ma et al.

Proof We prove that the estimate
∫ T

1
|ζK(7/12 + i t)|2 dt � T 1+ε (2.9)

holds.
IfK/Q is a normal extension, then by Lemma 2.1 we have ζK(s) = ζ(s)L(s, χ1)L(s, χ1).

From Theorem 8.4 in [7] we get that
∫ T

1
|ζ(7/12 + i t)|6 dt � T 1+ε. (2.10)

The proof of Theorem 8.4 in [7] can be applied directly to L(s, χ1) to derive
∫ T

1
|L(7/12 + i t, χ1)|6 dt � T 1+ε. (2.11)

From (2.10), (2.11) and Hölder’s inequality we get
∫ T

1
|ζK(7/12 + i t)|2 dt

=
∫ T

1
|ζ(7/12 + i t)|2|L(7/12 + i t, χ1)|4 dt

�
( ∫ T

1
|ζ(7/12 + i t)|6 dt

)1/3( ∫ T

1
|L(7/12 + i t, χ1)|6 dt

)2/3

� T 1+ε.

Now suppose thatK/Q is not a normal extension, then ζK(s) = ζ(s)L(s, χ2) fromLemma
2.1. We know that L(s, χ2) is an automorphic L-function of degree 2 corresponding to a
cusp form F over SL2(Z) (see, for example, Fomenko [5]). So from [3, Lemma 12], which
is originally proved in [8], we have

∫ T

1
|L(7/12 + i t, χ2)|3 dt � T 1+ε. (2.12)

By (2.10), (2.12) and Hölder’s inequality we get
∫ T

1
|ζK(7/12 + i t)|2 dt

=
∫ T

1
|ζ(7/12 + i t)|2|L(7/12 + i t, χ2)|2 dt

�
( ∫ T

1
|ζ(7/12 + i t)|6 dt

)1/3( ∫ T

1
|L(7/12 + i t, χ2)|3 dt

)2/3

� T 1+ε.

Now we give a short proof of (2.8). For simplicity, we follow the proof of Theorem 1
in [3]. Take d = 3, a(n) = aK(n), N = [T 5−ε] and M = [T 2/3]. From (2.9) we can take
σ ∗ = 7/12. As in the proof of Theorem 1 in [3], we can write

P2(Y ) = R∗
1(Y ; y) +

7∑

j=2

R j (Y ),
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The average size of Ramanujan sums over cubic number fields 221

where

R∗
1(Y ; y) := Y 1/3

√
3π

∑

y<n≤M

d3(n)

n2/3
cos(6π(nY )1/3)

and R j (Y ) (j = 2, 3, 4, 5, 6, 7) were defined in p. 2129 of [3]. Similar to (8.11) of [3], we
have the estimate (noting that y � T 1/3)

∫ 2T

T
(R∗

1(x; y) + R2(x))
2dx

�
∑

y<n≤M

d23 (n)

n4/3

∫ 2T

T
x2/3dx + T 5/3+εM−1/6 + T 4/3+εM1/3

� T 5/3+ε y−1/3 + T 14/9+ε � T 5/3+ε y−1/3,

which, combining (8.17) of [3], gives (2.8). ��
Next, we consider the following exponential sums:

S0 =
∑

H<h≤2H

∑

N<n≤2N

a(h, n)
∑

M<m≤2M

b(m)e
(
U

hβnγmα

HβN γ Mα

)
(2.13)

and

S1 =
∑

H<h≤2H

∑

N<n≤2N

a(h, n)

∣∣∣
∑

M<m≤2M

e
(
U

hβnγmα

HβN γ Mα

)∣∣∣
∗
, (2.14)

where H , N , M are positive integers, U is a real number greater than one, a(h, n) and b(m)

are a complex number of modulus at most one; moreover, α, β, γ are fixed real numbers such
that α(α − 1)βγ 
= 0.

Lemma 2.8 ([15])We have

S0 � (HNM)1+ε
(( U

HNM2

)1/4 + 1

(HN )1/4
+ 1

M1/2 + 1

U 1/2

)
, (2.15)

and

S1 � (HNM)1+ε
(( U

HNM2

)1/4 + 1

M1/2 + 1

U

)
. (2.16)

Lemma 2.9 (see Lemma 2.4 in [6]) Suppose that

L(H) =
m∑

i=1

Ai H
ai +

n∑

j=1

Bj H
−b j ,

where Ai , Bj , ai , and b j are positive. Assume that H1 ≤ H2. Then there is some H with
H1 ≤ H ≤ H2 and

L(H) �
m∑

i=1

n∑

j=1

(A
bj
i Bai

j )1/(ai+b j ) +
m∑

i=1

Ai H
ai
1 +

n∑

j=1

Bj H
−b j
2 .

The implied constants depend only on m and n.
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222 J. Ma et al.

Lemma 2.10 (see Lemma 2.4 in [18]) Let l ≥ 2 and q ≥ 1 be two fixed integers. Then we
have

∑

n≤x

τ
q
l (n) � x(log x)l

q−1. (2.17)

Lemma 2.11 Let T ≥ 2 be a real number. Then we have

∑

m,n≤T
m 
=n

τ 24 (m)τ 24 (n)

(mn)
2
3 | 3

√
m − 3

√
n|

� T
1
3+ε. (2.18)

Proof First, we write

∑

m,n≤T
m 
=n

τ 24 (m)τ 24 (n)

(mn)
2
3 | 3

√
m − 3

√
n|

= S1 + S2,

where

S1 =
∑

m,n≤T
| 3√m− 3√n|≥(mn)1/6/10

τ 24 (m)τ 24 (n)

(mn)
2
3 | 3

√
m − 3

√
n|

,

S2 =
∑

m,n≤T
0<| 3√m− 3√n|<(mn)1/6/10

τ 24 (m)τ 24 (n)

(mn)
2
3 | 3

√
m − 3

√
n|

.

Applying Lemma 2.10 with l = 4 and q = 2, we have

S1 �
∑

m,n≤T

τ 24 (m)τ 24 (n)

(mn)
5
6

� T
1
3+ε,

where we used a summation by parts.
Second, 0 < | 3

√
m − 3

√
n| < (mn)1/6/10 implies that m � n. And from the Lagrange

theorem we have | 3
√
m − 3

√
n| � (mn)−1/3|m − n|. By the formula ab ≤ (a2 + b2)/2 and

Lemma 2.10 with l = 4 and q = 4 we get that

S2 �
∑

m�n≤T

τ 24 (m)τ 24 (n)

(mn)1/3|m − n|

�
∑

m�n≤T

(τ 44 (m)

m2/3 + τ 44 (n)

n2/3

) 1

|m − n|

�
∑

m≤T

τ 44 (m)

m2/3

∑

m�n

1

|m − n| � T
1
3+ε.

��
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The average size of Ramanujan sums over cubic number fields 223

3 Proof of Theorem 1.1

We begin the proof with formula (2.3) in [14], which reads

SK(X , Y ) = ρKY +
∑

M,L∈OK
1≤N (ML)≤X

N (M)μ(L)PK
( Y

N (M)

)

= ρKY +
∑

M,L∈OK
1≤N (M)N (L)≤X

N (M)μ(L)PK
( Y

N (M)

)
.

(3.1)

Let R = RK(X , Y ) denote the last sum in (3.1). We have

R =
∑

1≤ml≤X

maK(m)μK (l)PK
( Y

m

)

=
∑

1≤l≤X

μK (l)
∑

1≤m≤X/l

maK(m)PK
( Y

m

)

= R†
1 + R†

2,

(3.2)

where

R†
1 :=

∑

1≤l≤X1−ε

μK (l)
∑

1≤m≤X/l

maK(m)PK
( Y

m

)
,

R†
2 :=

∑

X1−ε<l≤X

μK (l)
∑

1≤m≤X/l

maK(m)PK
( Y

m

)
.

First, we boundR†
2. Müller [13] proved that PK(x) = O(x

43
96+ε). So we can easily derived

that

R†
2 � XY 43/96+ε. (3.3)

Second, we consider R†
1. We can write

R†
1 :=

∑

1≤l≤X1−ε

μK (l)R1(Xl , Y ), (3.4)

where

R1(Xl , Y ) =
∑

1≤m≤Xl

maK(m)PK
( Y

m

)
, Xl = X/l. (3.5)

Using (2.4), we can write

R1(Xl , Y ) =
∑

1≤m1m2≤Xl

m1m2b(m2)PK
( Y

m1m2

)
. (3.6)

By a splitting argument, R1(Xl , Y ) can be written as a sum of the following terms

R(M1, M2) :=
∑

1≤m1m2≤Xl
M j<m j≤2Mj ( j=1,2)

m1m2b(m2)PK
( Y

m1m2

)
. (3.7)
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Suppose that y � Y/M1M2 is a parameter to be determined. By Lemma 2.6, we have

R(M1, M2) = Y
1
3√
3π

∑

1≤m1m2≤Xl
M j<m j≤2Mj ( j=1,2)

(m1m2)
2
3 b(m2)

∑

n≤y

aK(n)

n2/3
cos

(
6π 3

√
nY

m1m2

)

+ O((M1M2)
4/3Y 2/3+ε y−1/3).

By a splitting argument to the sum over n we get

R(M1, M2) � Y
1
3 (M1M2)

2
3+εN− 2

3+ε|R∗(M1, M2, N )|
+ O((M1M2)

4/3Y 2/3+ε y−1/3)
(3.8)

for some 1 � N � y, where

R∗(M1, M2, N ) =
∑

1≤m1m2≤Xl
M j<m j≤2Mj ( j=1,2)

(m1

M1

) 2
3
(m2

M2

) 2
3 b(m2)

Mε
2

∑

N<n≤2N

c(n)e
(
6π 3

√
nY

m1m2

)

with

c(n) = aK(n)

N ε

(N

n

) 2
3
.

Now, we give our first estimate for the sum R∗(M1, M2, N ). Obviously, we have

R∗(M1, M2, N ) � R†(M1, M2, N ), (3.9)

where

R†(M1, M2, N ) =
∑

M2<m2≤2M2

∑

N<n≤2N

∣∣∣
∑

M1<m1≤2M1

e
(
6π 3

√
nY

m1m2

)∣∣∣
∗
.

By taking (H , N , M) = (M2, N , M1) andU = 3
√
NY/ 3

√
M1M2 in Lemma 2.8, we get that

R†(M1, M2, N )Y−ε � N
5
6 Y

1
12 M1

5
12 M

2
3
2 + NM1

1
2 M2 + N

2
3 Y− 1

3 (M1M2)
4
3 ,

which combining (3.9) gives

R∗(M1, M2, N )Y−ε

� N
5
6 Y

1
12 M1

5
12 M

2
3
2 + NM1

1
2 M2 + N

2
3 Y− 1

3 (M1M2)
4
3 ,

= N
5
6 Y

1
12 (M1M2)

5
12 M

1
4
2 + N (M1M2)

1
2 M

1
2
2 + N

2
3 Y− 1

3 (M1M2)
4
3 .

(3.10)

Next, we give another estimate for R∗(M1, M2, N ). Clearly we have

R∗(M1, M2, N ) � R‡(M1, M2, N ), (3.11)

where

R‡(M1, M2, N ) =
∑

M1<m1≤2M1

∑

N<n≤2N

∑

M2<m2≤2M2

e
(
6π 3

√
nY

m1m2

)
.
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The average size of Ramanujan sums over cubic number fields 225

By taking (H , N , M) = (M1, N , M2) andU = 3
√
NY/ 3

√
M1M2 in Lemma 2.8, we get that

R‡(M1, M2, N )Y−ε � N
5
6 Y

1
12 (M1M2)

5
12 M

1
4
1 + N

3
4 (M1M2)

3
4 M

1
4
2

+ N (M1M2)
1
2 M

1
2
1 + N

5
6 Y− 1

6 (M1M2)
7
6

� N
5
6 Y

1
12 (M1M2)

5
12 M

1
4
1 + N

3
4 (M1M2)

3
4 (M1M2)

1
4

+ N (M1M2)
1
2 M

1
2
1 + N

5
6 Y− 1

6 (M1M2)
7
6

� N
5
6 Y

1
12 (M1M2)

5
12 M

1
4
1 + N

3
4 (M1M2)

+ N (M1M2)
1
2 M

1
2
1 + N

5
6 Y− 1

6 (M1M2)
7
6 .

So

R∗(M1, M2, N )Y−ε � N
5
6 Y

1
12 (M1M2)

5
12 M

1
4
1 + N (M1M2)

1
2 M

1
2
1

+ N
3
4 (M1M2) + N

5
6 Y− 1

6 (M1M2)
7
6 .

(3.12)

From (3.10) and (3.12), we get

R∗(M1, M2, N )Y−ε � J1 + J2 + J3 + J4 + N
5
6 Y− 1

6 (M1M2)
7
6

+ N
3
4 (M1M2) + N

2
3 Y− 1

3 (M1M2)
4
3 ,

where

J1 = min
(
N (M1M2)

1
2 M

1
2
2 , N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
1

)
,

J2 = min
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
2 , N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
1

)
,

J3 = min
(
N (M1M2)

1
2 M

1
2
2 , N (M1M2)

1
2 M

1
2
1

)
,

J4 = min
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
2 , N (M1M2)

1
2 M

1
2
1

)
.

Noticing the fact thatmin(X1, . . . , Xk) ≤ Xa1
1 . . . Xak

k ,where X1, . . . , Xk > 0,a1, . . . , ak ≥
0 satisfies a1 + · · · + ak = 1, we have

J1 ≤
(
N (M1M2)

1
2 M

1
2
2

) 1
3
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
1

) 2
3 ≤ N

8
9 Y

1
18 (M1M2)

11
18 ,

J2 ≤
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
2

) 1
2
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
1

) 1
2 ≤ N

5
6 Y

1
12 (M1M2)

13
24 ,

J3 ≤
(
N (M1M2)

1
2 M

1
2
2

) 1
2
(
N (M1M2)

1
2 M

1
2
1

) 1
2 ≤ N (M1M2)

3
4 ,

J4 ≤
(
N

5
6 Y

1
12 (M1M2)

5
12 M

1
4
2

) 2
3
(
N (M1M2)

1
2 M

1
2
1

) 1
3 ≤ N

8
9 Y

1
18 (M1M2)

11
18 .

It now follows that

R∗(M1, M2, N )Y−ε

� N
8
9 Y

1
18 (M1M2)

11
18 + N (M1M2)

3
4 + N

5
6 Y

1
12 (M1M2)

13
24

+ N
5
6 Y− 1

6 (M1M2)
7
6 + N

3
4 (M1M2) + N

2
3 Y− 1

3 (M1M2)
4
3 .

(3.13)
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Combining (3.8) with (3.13), we get (recalling N � y)

R(M1, M2)Y
−ε

� N
2
9 Y

7
18 (M1M2)

23
18 + N

1
3 Y

1
3 (M1M2)

17
12 + N

1
6 Y

5
12 (M1M2)

29
24

+ N
1
6 Y

1
6 (M1M2)

11
6 + N

1
12 Y

1
3 (M1M2)

5
3 + Y

2
3 (M1M2)

4
3 y− 1

3 + (M1M2)
2

� Y
7
18 y

2
9 (M1M2)

23
18 + Y

1
3 y

1
3 (M1M2)

17
12 + Y

5
12 y

1
6 (M1M2)

29
24

+ Y
1
6 y

1
6 (M1M2)

11
6 + Y

1
3 y

1
12 (M1M2)

5
3 + Y

2
3 (M1M2)

4
3 y− 1

3 + (M1M2)
2.

(3.14)

By choosing a best y with Lemma 2.6 (recalling that Xl = X/l), we get that

R(M1, M2)Y
−ε � Y

1
2 (M1M2)

13
10 + Y

1
2 (M1M2)

11
8 + Y

1
2 (M1M2)

5
4

+ Y
1
3 (M1M2)

5
3 + Y

2
5 (M1M2)

8
5 + (M1M2)

2

� Y
1
2 Xl

13
10 + Y

1
2 Xl

11
8 + Y

1
2 Xl

5
4 + Y

1
3 Xl

5
3 + Y

2
5 Xl

8
5 + Xl

2.

(3.15)

From (3.4)-(3.7) and (3.15), we get

R†
1Y

−ε � X
13
10 Y

1
2 + X

11
8 Y

1
2 + X

5
4 Y

1
2 + X

5
3 Y

1
3 + X

8
5 Y

2
5 + X2

� X
11
8 Y

1
2 + X

8
5 Y

2
5

by noting that Y ≥ X . This together with (3.2) and (3.3) yields

RY−ε � X
11
8 Y

1
2 + X

8
5 Y

2
5 + XY

43
96 � X

11
8 Y

1
2 + X

8
5 Y

2
5 .

This completes the proof of Theorem 1.

4 The proof of Theorem 1.2

We begin with the first expression ofR in (3.2)

R =
∑

1≤ml≤X

maK(m)μK (l)PK
( Y

m

)

=
∑

1≤m≤X

maK(m)MK

( X

m

)
PK

( Y

m

)

= R1 + R2,

(4.1)

where

R1 = Y 1/3

√
3π

∑

m≤X

m2/3aK(m)MK

( X

m

)∑

n≤y

aK(n)

n2/3
cos

(
6π 3

√
nY

m

)
,

R2 =
∑

1≤m≤X

maK(m)MK

( X

m

)
P2

( Y

m

)
.
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A. Evaluation of
∫ 2T
T R2

2 dY

Suppose that 0 < y <
( T
X

)1/3, it is not hard to find that

R2 �
∑

m∼M

maK(m)MK

( X

m

)
P2

( Y

m

)
log X

� X
∑

m∼M

aK(m)P2
( Y

m

)
log X

for some 1 � M � X and MK(t) � t . By Cauchy’s inequality we get

R2
2 � X2

∑

m∼M

aK(m)
∑

m∼M

aK(m)P2
2

( Y

m

)
log2 X

� X2M
∑

m∼M

aK(m)P2
2

( Y

m

)
log2 X ,

which together with Xy3 � T implies that

∫ 2T

T
R2

2 dY � X2M
∑

m∼M

aK(m) log2 X
∫ 2T

T
P2
2

( Y

m

)
dY

� X2M
∑

m∼M

aK(m)m log2 X
∫ 2T

T
P2
2

( Y

m

)
d
( Y

m

)

� X2M
∑

m∼M

aK(m)m
( T

m

) 5
3+ε

y− 1
3 log2 X

� X2M
4
3 T

5
3+ε y− 1

3

� X
10
3 T

5
3+ε y− 1

3 .

(4.2)

B. Evaluation of
∫ 2T
T R2

1 dY

Noting that

R2
1 = Y

2
3

3π2

∑

1≤m1,m2≤X

(m1m2)
2
3 aK(m1)aK(m2)MK

( X

m1

)
MK

( X

m2

)

×
∑

n1,n2≤y

aK(n1)

n2/31

aK(n2)

n2/32

cos
(
6π 3

√
n1Y

m1

)
cos

(
6π 3

√
n2Y

m2

)

and using the elementary formula cosα cosβ = 1
2

(
cos(α − β) + cos(α + β)

)
, we get

R2
1 = Q1(Y ) + Q2(Y ) + Q3(Y ), (4.3)
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where

Q1(Y ) := Y
2
3

6π2

∑

m1,m2≤X;n1,n2≤y
n1m2=n2m1

(m1m2)
2
3 aK(m1)aK(m2)

× MK

( X

m1

)
MK

( X

m2

)aK(n1)

n2/31

aK(n2)

n2/32

,

Q2(Y ) := Y
2
3

6π2

∑

m1,m2≤X;n1,n2≤y
n1m2 
=n2m1

(m1m2)
2
3 aK(m1)aK(m2)MK

( X

m1

)
MK

( X

m2

)

× aK(n1)

n2/31

aK(n2)

n2/32

cos
(
6π 3

√
Y

(
3

√
n1
m1

− 3

√
n2
m2

))
,

Q3(Y ) := Y
2
3

6π2

∑

m1,m2≤X
n1,n2≤y

(m1m2)
2
3 aK(m1)aK(m2)MK

( X

m1

)
MK

( X

m2

)

× aK(n1)

n2/31

aK(n2)

n2/32

cos
(
6π 3

√
Y

(
3

√
n1
m1

+ 3

√
n2
m2

))
.

Firstly, we consider Q3(Y ). By using the first derivative test, (2.3) and the elementary
formula a + b ≥ 2

√
ab (a > 0, b > 0), we get

∫ 2T

T
Q3(Y ) dY � T

4
3

∑

m1,m2≤X
n1,n2≤y

(m1m2)
2
3 aK(m1)aK(m2)

∣∣∣MK

( X

m1

)
MK

( X

m2

)∣∣∣

× aK(n1)

n2/31

aK(n2)

n2/32

× 1

3
√

n1
m1

+ 3
√

n2
m2

� X2T
4
3

∑

m1,m2≤X

aK(m1)aK(m2)

(m1m2)1/6

∑

n1,n2≤y

aK(m)

n5/61

aK(m)

n5/62

� X
11
3 T

4
3 y

1
3 ,

(4.4)

where in the last step we used (1.6) and a summation by parts.
Secondly, we consider Q2(Y ). By the first derivative test and (2.3) again we get with the

help of Lemma 2.11 that
∫ 2T

T
Q2(Y ) dY

� T
4
3

∑

m1,m2≤X;n1,n2≤y
n1m2 
=n2m1

(m1m2)
2
3 aK(m1)aK(m2)

∣∣∣MK

( X

m1

)
MK

( X

m2

)∣∣∣

× aK(n1)

n2/31

aK(n2)

n2/32

× 1∣∣∣ 3
√

n1
m1

− 3
√

n2
m2

∣∣∣

� X2T
4
3

∑

m1,m2≤X;n1,n2≤y
n1m2 
=n2m1

aK(m1)aK(m2)aK(n1)aK(n2)

(n1n2)2/3| 3
√
n1m2 − 3

√
n2m1|

123



The average size of Ramanujan sums over cubic number fields 229

� X
10
3 T

4
3

∑

m1,m2≤X;n1,n2≤y
n1m2 
=n2m1

aK(m1)aK(m2)aK(n1)aK(n2)

(m1m2)2/3(n1n2)2/3| 3
√
n1m2 − 3

√
n2m1|

� X
10
3 T

4
3

∑

l1,l2≤Xy
l1 
=l2

τ 24 (l1)τ 24 (l2)

l2/31 l2/32 | 3
√
l1 − 3

√
l2|

� T
4
3 X

10
3 (Xy)

1
3+ε

� X
11
3 T

4
3+ε y

1
3 , (4.5)

where we used the estimate aK(m)aK(n) ≤ τ 2(m)τ 2(n) ≤ τ 24 (mn).
Finally, we consider Q1(Y ). Let m = (m1,m2). Write m1 = mm∗

1, m2 = mm∗
2 such that

(m∗
1, m∗

2) = 1. If n1m2 = n2m1, we immediately get that n1 = nm∗
1, n2 = nm∗

2 for some
positive integer n. It follows that

Q1(Y ) = Y
2
3

6π2

∑

mm1,mm2≤X
gcd(m1,m2)=1

m4/3aK(mm1)aK(mm2)MK

( X

mm1

)
MK

( X

mm2

)

×
∑

n≤min( y
m1

,
y
m2

)

aK(nm1)aK(nm2)

n4/3

= c(X)Y
2
3 + E(Y ),

(4.6)

where

c(X) = 1

6π2

∑

mm1,mm2≤X
gcd(m1,m2)=1

m4/3aK(mm1)aK(mm2)MK

( X

mm1

)
MK

( X

mm2

)

×
∞∑

n=1

aK(nm1)aK(nm2)

n4/3
,

E(Y ) = Y
2
3

6π2

∑

mm1,mm2≤X
gcd(m1,m2)=1

m4/3aK(mm1)aK(mm2)MK

( X

mm1

)
MK

( X

mm2

)

×
∑

n>min( y
m1

,
y
m2

)

aK(nm1)aK(nm2)

n4/3
.

(4.7)

Noting that aK(mn) ≤ τ 2(mn) ≤ τ 2(m)τ 2(n), we get that

E(Y ) � Y
2
3

∑

mm1,mm2≤X
gcd(m1,m2)=1

m4/3aK(mm1)aK(mm2)MK

( X

mm1

)
MK

( X

mm2

)

×
∑

n>min( y
m1

,
y
m2

)

aK(nm1)aK(nm2)

n4/3

� X2Y
2
3

∑

m≤X

τ 4(m)

m2/3

∑

m1≤ X
m ,m2≤ X

m
gcd(m1,m2)=1

τ 4(m1)τ
4(m2)

m1m2

∑

n>min( y
m1

,
y
m2

)

τ 4(n)

n4/3
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� X2Y
2
3

∑

m≤X

τ 4(m)

m2/3

∑

m1≤m2≤ X
m

τ 4(m1)τ
4(m2)

m1m2
×

(m2

y

)1/3−ε

� X2Y
2
3 yε− 1

3
∑

m≤X

τ 4(m)

m2/3

∑

m2≤ X
m

τ 4(m2)

m2/3+ε
2

∑

m1≤m2

τ 4(m1)

m1

� X
7
3 T

2
3+ε y− 1

3 . (4.8)

This together with (4.6) yields
∫ 2T

T
Q1(Y ) dY = c(X)

∫ 2T

T
Y

2
3 dY + O(X

7
3 T

5
3+ε y− 1

3 ). (4.9)

Similar to (4.8), we obtain the estimate

c(X) � X
7
3+ε. (4.10)

From (4.3)-(4.5) and (4.9), we get
∫ 2T

T
R2

1 dY = c(X)

∫ 2T

T
Y

2
3 dY + O(X

7
3 T

5
3+ε y− 1

3 + X
11
3 T

4
3+ε y

1
3 ). (4.11)

C. Evaluation of
∫ 2T
T R2 dY

From (4.2), (4.10), (4.11) and Cauchy’s inequality, we get
∫ 2T

T
R1R2 dY � X

17
6 T

5
3+ε y− 1

6 + X
7
2 T

3
2+ε. (4.12)

Combining (4.1), (4.2) and (4.11), we finally get
∫ 2T

T
R2 dY = c(X)

∫ 2T

T
Y

2
3 dY + O(X

11
3 T

4
3+ε y

1
3 + X

10
3 T

5
3+ε y− 1

3

+ X
17
6 T

5
3+ε y− 1

6 + X
7
2 T

3
2+ε).

(4.13)

By choosing a best y ∈ (1, (T /X)1/3) via Lemma 2.9, we get
∫ 2T

T
|RK(X , Y )|2 dY = c(X)

∫ 2T

T
Y

2
3 dY + O(X

31
9 T

14
9 +ε + X

26
9 T

29
18+ε),

where c(X) is defined by (4.7). This completes the proof of Theorem 2.
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