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Abstract
In this paper we establish sufficient conditions for the oscillation of all solutions of equation

Δ4x(n) + p(n)Δx(n + 1) + q(n)x(n − τ) = 0

via comparison with some first order delay difference equations whose oscillatory characters
are known. The presented criterion is easily verifiable. Examples are also given to illustrate
the main result.
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Nonoscillation · Quasidifferences
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1 Introduction

In this paper we assume that p and q are sequences of positive real numbers, τ ∈ N =
{0, 1, 2, . . . , }. We consider the linear fourth-order difference equation of the form

Δ4x(n) + p(n)Δx(n + 1) + q(n)x(n − τ) = 0, (E)
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where n ∈ Nn0 = {n0, n0 + 1, . . . } and n0 ∈ N, Δ is the forward difference operator defined
by Δx(n) = x(n + 1) − x(n). By a solution of equation (E) we understand a sequence x of
real numbers, that is defined for n ≥ n0 − τ and satisfies the equation for sufficiently large
n. A solution is nonoscillatory if it is eventually positive or eventually negative. Otherwise,
the solution is said to be oscillatory. We call equation (E) oscillatory if all its solutions are
oscillatory.

The background of difference equations and discrete oscillation theory can be found in the
monographs ofAgarwal [1] andAgarwal, Bohner,Grace andO’Regan [2]. In recent years, the
study of oscillatory and asymptotic behavior of solutions of second order difference equations
has received great attention. Compared to this, the study of higher-order difference equations
receives considerably less attention in literature. Some recent results for the oscillation of
third-order difference equations can be found in [3, 6, 7, 9, 12, 13, 24, 25], and for fourth-
order in [4, 10, 16, 18, 23]. In particular, in [7] and [13], the authors studied oscillation and
asymptotic properties of solutions of the three-term difference equation

Δ3x(n) + p(n)Δx(n + 1) − q(n) f (x(n − τ)) = 0,

by assuming the coefficient of the damping term is nonnegative. In [12], the difference
equation

Δ3x(n) + p(n)Δx(n + 1) + q(n)x(n − τ) = 0

with positive coefficient p was investigated. In these papers the comparison theorems with
suitable first-order difference equations were used. It seemed to be natural to continue the
research in the case of higher-order equations especially since fourth-order differential and
difference equations often occur as models in mathematical biology, economics and engi-
neering (for example see [4, 5, 8, 26]).

In [15], the authors investigated the oscillatory behavior of solutions of the fourth order
difference equations with damping

Δ4u(n) + p(n)Δu(n + 1) + q(n)u(s(n)) = 0,

under the assumption that the auxiliary third order difference equation

Δ3z(n) + p(n)z(n + 1) = 0

is nonoscillatory.
The purpose of this paper is to study the oscillation of equation (E). Since for three-terms

equations it is difficult to introduce the classification of nonoscillatory solutions, firstwe prove
two lemmas that allow us to rewrite equation (E) in equivalent form as a two-terms equation
with quasidifferences. Then, in ourmain result we give sufficient conditions for the oscillation
of all solutions of equation (E) in terms of the two associated first order delay difference
equations. Applying the appropriate criteria to these delay difference equations allows us
to obtain new, easily verifiable oscillation results for equation (E) (see Theorem 2.10). It is
worth noticing, that in this criterion the explicit form of solutions of the auxiliary equations
is not needed. Numerical methods are frequently used in the investigation of the properties
of the solutions of differential and difference equations. However, such methods are difficult
to apply when investigating the oscillation of solutions. Our results may be helpful in the
interpretation of numerical solutions, see Examples 3.1 and 3.2.

Let us recall some results that will be used in the sequel.
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Lemma 1.1 [14, Corollary 7.6.1] Let a be a sequence of non-negative real numbers and let
k be a positive integer such that

n−1∑

i=n−k

a(i) > 0

for large n. Then the difference inequality

Δx(n) + a(n)x(n − k) ≤ 0,

has an eventually positive solution if and only if the difference equation

Δx(n) + a(n)x(n − k) = 0,

has an eventually positive solution.

The next result follows from [19, Theorem 1].

Lemma 1.2 Consider the equation

Δ(c(n)Δv(n)) + b(n)v(n + 1) = 0, (1.1)

where c, b are eventually positive sequences. If

∞∑

n=1

b(n)

n−1∑

j=1

1

c( j)
< ∞,

then for any real constant β there exists a solution v of equation (1.1) which converges to β

at infinity.

Lemma 1.3 [18] Consider the difference equation

Δ(a(n)Δ(b(n)Δ(c(n)Δx(n)))) + f (n, x(n)) = 0, (1.2)

where a, b, c are sequences of positive real numbers and f : N × R → R.
Assume that

∞∑

i=1

1

a(i)
=

∞∑

i=1

1

b(i)
=

∞∑

i=1

1

c(i)
= ∞

and u f (n, u) > 0 for all u �= 0, n ∈ N hold. Let x be an eventually positive solution of (1.2).
Then exactly one of the following statements holds for all sufficiently large n:

(i) x(n) > 0, Δx(n) > 0, Δ(c(n)Δx(n)) > 0 and Δ(b(n)(Δ(c(n)Δx(n)))) > 0;
(ii) x(n) > 0, Δx(n) > 0, Δ(c(n)Δx(n)) < 0 and Δ(b(n)(Δ(c(n)Δx(n)))) > 0.

2 Main results

We start this section with two lemmas, which allow us to rewrite equation (E) in equivalent
binomial form in terms of solutions of two auxiliary linear equations. Because the proofs of
these lemmas are technically complicated, they are presented in Sect. 4.
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Lemma 2.1 If z is an eventually positive solution of equation

Δ3z(n) + p(n)z(n + 1) = 0, (2.1)

then the equality

Δ4x(n) + p(n)Δx(n + 1)

= Δ

[
1

z(n + 1)
Δ

(
z(n + 1)z(n)Δ

(
Δx(n)

z(n)

))]
+ Δ2z(n + 1)Δ

(
Δx(n + 1)

z(n + 1)

)

(2.2)

holds for any sequence x and for large n.

Lemma 2.2 If z is an eventually positive solution of equation (2.1) and equation

Δ

(
1

z(n + 1)
Δv(n)

)
+ Δ2z(n + 1)

z(n + 1)z(n + 2)
v(n + 1) = 0, (2.3)

has an eventually positive solution v, then the equality

Δ4x(n) + p(n)Δx(n + 1)

= 1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)

))
(2.4)

holds for any sequence x and for large n .

Applying (2.4) to equation (E) we get

1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)

))
+ q(n)x(n − τ) = 0.

Therefore, if z and v are eventually positive solutions of the equations (2.1) and (2.3) respec-
tively, then, by Lemmas 2.1 and 2.2, equation (E) can be written in the form

Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)

))
+v(n+1)q(n)x(n−τ)=0. (E′)

The question arises whether equations (2.1) and (2.3) have eventually positive solutions. The
lemma below presents a possible criterion.

Lemma 2.3 Assume β, γ ∈ (0,∞) and

∞∑

n=n0

n2 p(n) < ∞. (2.5)

Then there exist an eventually positive solution z of (2.1) and an eventually positive solution
v of (2.3) such that

lim
n→∞ z(n) = γ and lim

n→∞ v(n) = β.

Proof By [22, Theorem 1] there exists a solution z of (2.1) such that limn→∞ z(n) = γ .
That means, that there exists an index n1 > n0 such that z(n) > 0 and satisfies equality (2.1)
for any n ≥ n1. Hence, by (2.1), we have Δ3z(n) < 0 for n ≥ n1. The convergence of z(n)

implies

lim
n→∞ Δz(n) = 0 and lim

n→∞ Δ2z(n) = 0.
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Since Δ3z(n) < 0 for n ≥ n1, we get Δ2z(n) > 0 for n ≥ n1. Analogously Δz(n) < 0
eventually.

By [20, Lemma 6] the series
∑∞

k=1
∑∞

n=k Δ2z(n + 1) is convergent. Using [20, Lemma
3] we get

∞∑

n=n1

nΔ2z(n + 1) < ∞. (2.6)

Let, for n ≥ n1,

b(n) = Δ2z(n + 1)

z(n + 1)z(n + 2)
, c(n) = 1

z(n + 1)
.

Then, by (2.6), we have

∞∑

n=n1

b(n)

n−1∑

j=n1

1

c( j)
=

∞∑

n=n1

Δ2z(n + 1)

z(n + 1)z(n + 2)

n−1∑

j=n1

z( j + 1)

≤ L
∞∑

n=n1

nΔ2z(n + 1) < ∞,

where L = γ 2z(n1 + 1). Hence, from Lemma 1.2, we get the existence of a solution v of
(2.3) such that lim

n→∞ v(n) = β. 	


Based on Trench [27], we say that a linear difference operator

Lmx(n) = rm−1(n)ΔLm−1x(n), L0x(n) = x(n)

is in canonical form if
∑∞

n=n0
1

r j (n)
= ∞ for j = 1, . . . ,m − 1, where r j are eventually

positive real sequences. The sequences Li x are called quasidifferences of x .
The quasidifferences in equation (E′) have the form

L0x(n) = x(n), L1x(n) = 1

z(n)
ΔL0x(n), L2x(n) = z(n)z(n + 1)

v(n)
ΔL1x(n),

L3x(n) = v(n)v(n + 1)

z(n + 1)
ΔL2x(n), L4x(n) = ΔL3x(n).

Note, that if z and v are solutions of the equations (2.1) and (2.3) respectively, and both
converge to positive constants, then

∞∑

n=n0

z(n) = ∞,

∞∑

n=n0

v(n)

z(n)z(n + 1)
= ∞,

∞∑

n=n0

z(n + 1)

v(n)v(n + 1)
= ∞,

and then the linear operator

L4x(n) = Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)

))

in (E′) is in canonical form, which means equation (E′) is in canonical form.
Hence, by Lemma 1.3, we get the following classification of the nonoscillatory solutions

of (E′).
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Lemma 2.4 Assume that condition (2.5) is satisfied. Let x be an eventually positive solution
of equation (E′). Then there exists n2 ≥ n0 such that for all n ≥ n2

L4x(n) < 0, (2.7)

and either

L1x(n) > 0, L2x(n) < 0, L3x(n) > 0,

or

L1x(n) > 0, L2x(n) > 0, L3x(n) > 0, .

In summary, we get the following remark.

Remark 2.5 If condition (2.5) holds, then the three-term difference equation (E) can be rewrit-
ten as a two-terms equation of the form (E′), which is in the canonical form.

Our goal is to present an easily verifiable oscillation criterion for equation (E). In our inves-
tigationwe utilize the form (E′). Using the comparison theoremwewill deduce the oscillation
of (E) from the oscillation of certain first-order difference equations whose properties are
well-explored.

Let z be a solution to equation (2.1)which tends to a positive constant and let v be a solution
to equation (2.3) which tends to a positive constant. Then there exist positive constants z∗,
z∗∗, v∗, v∗∗ and n3 ∈ N such that

0 < z∗ ≤ z(n) ≤ z∗∗ and 0 < v∗ ≤ v(n) ≤ v∗∗ (2.8)

for n ≥ n3.
Assuming

∞∑

n=1

∞∑

k=n

q(k) < ∞ (2.9)

we define sequences K1, K2 by

K1(n) =
(

v∗

v∗∗

)2 (
z∗

z∗∗

)2

(n − τ − n4)
∞∑

s=n

∞∑

k=s

q(k)

K2(n) =
(

v∗

v∗∗

)2 (
z∗

z∗∗

)2

q(n)

n−τ−1∑

k=n4

k−1∑

m=n4

m−1∑

s=n4

1

where n4 = max{n2, n3} + τ + 3 and n2 as in Lemma 2.4. It is easy to see that condition
(2.9) is equivalent to

∞∑

n=1

nq(k) < ∞. (2.10)

Theorem 2.6 Assume that conditions (2.5) and (2.10) hold. If the following delayed equations
with unknown sequence u

Δu(n) + K1(n)u(n − τ) = 0 (2.11)

and
Δu(n) + K2(n)u(n − τ) = 0 (2.12)

are oscillatory, then equation (E) is also oscillatory.
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Proof Assume to the contrary that there exists an eventually positive solution x to (E). Let
x be such a solution. Notice that x is also an eventually positive solution to (E′). Let z be a
positive decreasing solution of (2.1). According to Lemma 2.4 we consider two cases.

Case I.Assume conditions (2.7) and (2.8) hold. Summation of the both sides of (E′) from
s ≥ n4 to infinity, leads to equality

∞∑

i=s

Δ

(
v(i)v(i + 1)

z(i + 1)
Δ

(
z(i)z(i + 1)

v(i)
Δ

Δx(i)

z(i)

))
= −

∞∑

i=s

v(i + 1)q(i)x(i − τ).

From the above, by properties of the sequence L3x , we get

v(s)v(s + 1)

z(s + 1)
Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
≥

∞∑

i=s

v(i + 1)q(i)x(i − τ).

Since the sequence L1x is a positive sequence, x is increasing,

v(s)v(s + 1)

z(s + 1)
Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
> x(s − τ)

∞∑

i=s

v(i + 1)q(i),

and consequently

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
>

z(s + 1)

v(s)v(s + 1)
x(s − τ)

∞∑

i=s

v(i + 1)q(i).

Summing the above inequality from n to infinity, we obtain

∞∑

s=n

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
>

∞∑

s=n

z(s + 1)

v(s)v(s + 1)
x(s − τ)

∞∑

i=s

v(i + 1)q(i).

Again by (2.8),

∞∑

s=n

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
> x(n − τ)

∞∑

s=n

z(s + 1)

v(s)v(s + 1)

∞∑

i=s

v(i + 1)q(i).

By properties of the sequence L2x , we have

∞∑

s=n

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
≤ − z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)
.

Combining the above two inequalities, we obtain

− z(n)z(n + 1)

v(n)
Δ

Δx(n)

z(n)
≥ x(n − τ)

∞∑

s=n

z(s + 1)

v(s)v(s + 1)

∞∑

i=s

v(i + 1)q(i),

that is

−Δ
Δx(n)

z(n)
≥ x(n − τ)

v(n)

z(n)z(n + 1)

∞∑

s=n

z(s + 1)

v(s)v(s + 1)

∞∑

i=s

v(i + 1)q(i).

Hence, using (2.8) we get

− Δ
Δx(n)

z(n)
≥ x(n − τ)

(
v∗

v∗∗

)2 z∗

(z∗∗)2
∞∑

s=n

∞∑

i=s

q(i). (2.13)
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Based on the sequence L1x properties, we have

x(n) >

n−1∑

i=n4

Δx(i) =
n−1∑

i=n4

z(i)
Δx(i)

z(i)
>

Δx(n − 1)

z(n − 1)

n−1∑

i=n4

z(i) >
Δx(n)

z(n)

n−1∑

i=n4

z(i)

for n > n4. Therefore

x(n − τ) >
Δx(n − τ)

z(n − τ)

n−τ−1∑

i=n4

z(i) for n ≥ n4 + τ. (2.14)

Combining (2.13) with (2.14), we get

−Δ
Δx(n)

z(n)
>

Δx(n − τ)

z(n − τ)

(
v∗

v∗∗

)2 (
z∗

z∗∗

)2

(n − τ − n4)
∞∑

s=n

∞∑

k=s

q(k),

that is

0 > Δ
Δx(n)

z(n)
+

(
v∗

v∗∗

)2 (
z∗

z∗∗

)2

(n − τ − n4)
∞∑

s=n

∞∑

k=s

q(k)
Δx(n − τ)

z(n − τ)

for n ≥ n4 + τ . Using the definition of K1, this leads to inequality

0 > Δ
Δx(n)

z(n)
+ K1(n)

Δx(n − τ)

z(n − τ)
for n ≥ n4 + τ. (2.15)

By assumption, the sequence x is an eventually positive solution of inequality (2.15).Byvirtue
of Lemma 1.1, it is also an eventually positive solution of equation (2.11). This contradicts
that all solutions of (2.11) are oscillatory.

Case II. Set u(n) : = L3x(n). Let conditions (2.7) and (2.8) hold. Thus the the sequence
L2x is positive for n ≥ n4. Hence, the following estimation holds

m−1∑

s=n4

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
≤ z(m)z(m + 1)

v(m)
Δ

Δx(m)

z(m)
for n ≥ n4.

From the properties of the sequence L3x , we have

m−1∑

s=n4

Δ

(
z(s)z(s + 1)

v(s)
Δ

Δx(s)

z(s)

)
≥ u(m − 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Combining the above two inequalities, we get

v(m)

z(m)z(m + 1)
u(m − 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
≤ Δ

Δx(m)

z(m)
.

Summing both sides of the above inequality from n4 to k − 1, we obtain

k−1∑

m=n4

v(m)u(m − 1)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
≤

k−1∑

m=n4

Δ
Δx(m)

z(m)
. (2.16)

Since the sequence L1x is positive for n ≥ n4, we have

k−1∑

m=n4

Δ

(
Δx(m)

z(m)

)
= Δx(k)

z(k)
− Δx(n4)

z(n4)
≤ Δx(k)

z(k)
. (2.17)
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On the other hand, again by (2.8), we get

k−1∑

m=n4

v(m)u(m − 1)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)

≥ u(k − 2)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

The above and inequalities (2.16), (2.17) imply

Δx(k) ≥ z(k)u(k − 2)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

By summation of both sides of the above inequality from n4 to n − 1, we obtain

n−1∑

k=n4

Δx(k) ≥
n−1∑

k=n4

z(k)u(k − 2)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Sequence x is positive for n ≥ n4 hence
∑n−1

k=n4 Δx(k) = x(n)−x(n4) ≤ x(n). Consequently

x(n) ≥
n−1∑

k=n4

z(k)u(k − 2)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Since the sequence L3x is decreasing,

x(n) ≥ u(n − 2)
n−1∑

k=n4

z(k)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Hence,

v(n + 1)q(n)x(n − τ)

≥ v(n + 1)q(n)u(n − τ − 2)
n−τ−1∑

k=n4

z(k)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Using the definition of u, equation (E′) takes the form

−Δu(n) = v(n + 1)q(n)x(n − τ).

We get

−Δu(n) ≥ v(n + 1)q(n)u(n − τ − 2)
n−τ−1∑

k=n4

z(k)
k−1∑

m=n4

v(m)

z(m)z(m + 1)

m−1∑

s=n4

z(s + 1)

v(s)v(s + 1)
.

Hence, using (2.8) we get

−Δu(n) ≥ u(n − τ − 2)

(
v∗

v∗∗

)2 (
v∗

v∗∗

)2

q(n)

n−τ−1∑

k=n4

k−1∑

m=n4

m−1∑

s=n4

1.

Finally, using the definition of K2, we obtain

Δu(n) + u(n − τ − 2)K2(n) ≤ 0 for n ≥ n4.
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Since u is an eventually positive solution of the above inequality, by Lemma 1.1 it is also
an eventually positive solution of equation (2.12). In that way there is contradiction with the
assumption that all solutions of equation (2.12) are oscillatory. 	


Applyingwell-known oscillation criteria for first-order delay difference equations to equa-
tions (2.11) and (2.12) (see [11] and [17]), we obtain the following oscillation criteria for
equation (E).

Corollary 2.7 Assume (2.5) and (2.10) are satisfied. If for j = 1, 2

lim sup
n→∞

n∑

i=n−τ

K j (i) > 1,

then equation (E) is oscillatory.

If τ > 0, then we can also use the following criterion.

Corollary 2.8 Assume (2.5) and (2.9) are satisfied. If for j = 1, 2

lim inf
n→∞

(
1

τ

n−1∑

i=n−τ

K j (i)

)
>

ττ

(τ + 1)τ+1 ,

then equation (E) is oscillatory.

Note, that in the above results the explicit form of the eventually positive solutions of (2.1)
and (2.3) are needed. But, it is well known, that it is difficult to find the explicit form of
solutions of second and third order linear difference equations with variable coefficients.
Therefore, we present a criterion in which the assumptions depend only on the coefficients
p and q of the equation (E). First we prove a simple lemma.

Lemma 2.9 Assume (2.5), (2.10), and

lim
n→∞ n3q(n) = ∞. (2.18)

Then limn→∞ K j (i) = ∞ for j = 1, 2.

Proof Let j = 1. Define a sequence Q by

Q(n) =
∞∑

s=n

∞∑

k=s

q(k).

Using discrete L’Hospital’s rule we obtain

lim
n→∞ nQ(n) = lim

n→∞
Q(n)

n−1 = lim
n→∞

ΔQ(n)

Δ(n−1)
= lim

n→∞
−∑∞

k=n q(k)

−(n(n + 1))−1

= lim
n→∞

−Δ
(∑∞

k=n q(k)
)

−Δ
(
(n(n + 1))−1

) = lim
n→∞

q(n)

2(n(n + 1)(n + 2))−1 .

Since limn→∞ n3q(n) = ∞ we get limn→∞ nQ(n) = ∞. Hence

lim
n→∞ K1(n) = ∞.
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Let j = 2. It is easy to verify that

n−τ−1∑

k=n4

k−1∑

m=n4

m−1∑

s=n4

1 =
n−τ−1∑

k=n4

k−1∑

m=n4

(m − n4) =
n−τ−1∑

k=n4

k−1−n4∑

j=0

j

=
n−τ−1∑

k=n4

(k − n4)(k − n4 − 1)

2
= 1

2

n−τ−n4−1∑

i=0

i(i − 1)

= 1

6
(n − τ − n4)(n − τ − n4 − 1)(n − τ − n4 − 2)

≥ 1

6
(n − τ − n4 − 2)3.

Since limn→∞ n3q(n) = ∞ we get lim
n→∞ K2(n) = ∞. 	


Combining Lemma 2.9 and Corollary 2.7 we get the following oscillation criterion.

Theorem 2.10 Assume (2.5), (2.10), and (2.18). Then equation (E) is oscillatory.

Toverify conditions (2.5) and (2.10) the tests presented in [21]may be useful. For example,
applying [21, Lemma 4.4] or [21, Lemma 4.5] we get the following results

Corollary 2.11 Assume (2.18) and

lim sup
n→∞

log q(n)

log n
< −2, lim sup

n→∞
log p(n)

log n
< −3.

Then equation (E) is oscillatory.

Corollary 2.12 Assume (2.18) and

lim inf
n→∞ n

(
qn
qn+1

− 1

)
> 2, lim inf

n→∞ n

(
pn
pn+1

− 1

)
> 3.

Then equation (E) is oscillatory.

3 Examples

Byusing computer algebra systems there is always possible to find recursively an approximate
solution of the considered equation, but sometimes it is very difficult to determine whether
the approximate solution is oscillatory or not. In many cases, it is rather easy to use our last
criterion to verify that the considered equation is oscillatory. Such cases are shown in the
following examples.

Example 3.1 Consider the following equation of type (E):

Δ4x(n)+ 12

n2(n + 1) ln2(n + 1)
Δx(n + 1)+ (0.01 + sin2 n) 10

√
n

n3
x(n−1)=0, (3.1)

where n ≥ 2,

p(n) = 12

n2(n + 1) ln2(n + 1)
, q(n) = (0.01 + sin2 n) 10

√
n

n3
, τ = 1.
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Table 1 Numerical result of Example 3.1 for initial conditions x(0) = 1.0, x(1) = 0.2, x(2) = 1.0, x(3) =
0.3, x(4) = 4.0

n x(n) n x(n) n x(n)

0 1 344 −986118 1750 −71573972460

1 0.2 345 −449098 1895 −913282896

10 433 346 100032 1896 −137139238

20 4894 347 661396 1897 643565756

50 59463 600 753284063 1898 1428844567

65 83149 750 1356273762 2800 3277178712650

87 11738 898 31203849 3200 4025222148557

88 3203 899 8838057 3504 29162711322

89 −5930 900 −13762530 3505 4686183595

90 −15678 901 −36599045 3506 −19880176643

200 −7636989 1300 −36883721193 3507 −44536524503

280 −15600305 1650 −83700172358 4000 −26091472292638

Using the iterative scheme

x(n + 4) = 4x(n + 3) − (
p(n) + 6

)
x(n + 2) + (

p(n) + 4
)
x(n + 1) − x(n) − q(n)x(n − 1),

we solve (3.1) with the following initial conditions

x(0) = 1.0, x(1) = 0.2, x(2) = 1.0, x(3) = 0.3, x(4) = 4.0.

Except for the initial conditions all computed values of x are rounded to the nearest integer
number. As we see in Table 1, the obtained terms of this solution are positive until the 88th
term, then negative. The next sign change of terms is on 346th term, next on 900th term
and so on. Since the length of intervals with one sign are increasing, the oscillations of the
solutions are not easily visible.

On the other hand, it is easy to verified that

∞∑

n=1

n2
12

n2(n + 1) ln2(n + 1)
< ∞,

∞∑

n=1

n
sin2 n

n3
< ∞,

lim
n→∞ n3

(0.01 + sin2 n) 10
√
n

n3
= ∞.

Hence, by Theorem 2.10 all solutions of equation (3.1) are oscillatory.

Example 3.2 Consider fourth-order trinomial difference equations of the form

Δ4x(n) + a

nα
Δx(n + 1) + b

nβ
x(n − τ) = 0, n ≥ 2, (3.2)

where a, b, α, β > 0, τ ∈ N. It is easy to see that if α > 3 and 2 < β < 3, then conditions
(2.5), (2.9) and (2.18) are satisfied. Hence, by Theorem 2.10 all solutions of equation (3.2)
are oscillatory.
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Fig. 1 Solution plot of Eq. (3.2) from Ex. 2

Fig. 2 The graph from Fig. 1 divided into four parts

For a numerical solution of (3.2), we set a = 10, b = 5, τ = 2, α = 5, β = 2, 5. The
recurrence formula for the equation takes the form

x(n + 4)=4x(n + 3)−6x(n + 2) + 4x(n + 1)−x(n)− 10

n5
(
x(n + 2)−x(n + 1)

)

− 5

n2.5
x(n − 2).

Taking the initial values

x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4, x(4) = 5, x(5) = 6

we get a solution x whose trajectory from n = 1 to n = 150 is shown in Fig. 1. To show
the oscillatory nature of this solution, we present its graph divided into four parts with
increasingly larger scales.

4 Proofs of Lemmas

Proof of Lemma 2.1 Let z be an eventually positive solution of equation (2.1). From the left
hand side of (2.2), using (2.1), we obtain

Δ4x(n) + p(n)Δx(n + 1) = Δ4x(n) − Δ3z(n)

z(n + 1)
Δx(n + 1)
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=
(

Δ4x(n) − Δ2z(n + 1)Δ
Δx(n + 1)

z(n + 1)
− Δ3z(n)

Δx(n + 1)

z(n + 1)

)
+ Δ2z(n + 1)Δ

Δx(n + 1)

z(n + 1)

= Δ

(
Δ3x(n) − Δ2z(n)

Δx(n + 1)

z(n + 1)

)
+ Δ2z(n + 1)Δ

Δx(n + 1)

z(n + 1)
)

= Δ

(
1

z(n + 1)

(
z(n + 1)Δ3x(n) − Δx(n + 1)Δ2z(n)

)) + Δ2z(n + 1)Δ
Δx(n + 1)

z(n + 1)

= Δ

(
1

z(n + 1)

(
z(n + 1)Δ2x(n + 1) − z(n + 1)Δ2x(n)

))

+ Δ

(
1

z(n + 1)

( − Δx(n + 1)Δz(n + 1) + Δx(n + 1)Δz(n)
))

+ Δ2z(n + 1)Δ
Δx(n + 1)

z(n + 1)

= Δ

(
1

z(n + 1)
Δ

(
z(n)Δx(n + 1) − z(n + 1)Δx(n)

)) + Δ2z(n + 1)Δ
Δx(n + 1)

z(n + 1)

= Δ

(
1

z(n + 1)
Δ

(
z(n + 1)z(n)

(
Δx(n + 1)

z(n + 1)
− Δx(n)

z(n)

)))
+ Δ2z(n + 1)Δ

Δx(n + 1)

z(n + 1)

= Δ

(
1

z(n + 1)
Δ

(
z(n + 1)z(n)Δ

Δx(n)

z(n)

))
+ Δ2z(n + 1)Δ

Δx(n + 1)

z(n + 1)
.

Proof of Lemma 2.2 We start from the right hand side of (2.4):

1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
1

v(n)
z(n)z(n + 1)Δ

Δx(n)

z(n)

))

= 1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)

(
1

v(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

+
(

Δ
1

v(n)

)
z(n)z(n + 1)Δ

Δx(n)

z(n)

))
= 1

v(n + 1)
Δ

(
v(n)

z(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

+ v(n)v(n + 1)

z(n + 1)

(
Δ

1

v(n)

)
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

= 1

v(n + 1)
Δ

(
v(n)

z(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)
− Δv(n)

z(n + 1)
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

= 1

v(n + 1)

(
v(n + 1)Δ

(
1

z(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

))

+ Δv(n)

z(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)
− Δv(n + 1)

z(n + 2)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

−Δ

(
Δv(n)

z(n + 1)

)
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

= Δ

(
1

z(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

))

+ Δv(n)

z(n + 1)v(n + 1)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

− Δv(n + 1)

v(n + 1)z(n + 2)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)
− Δ

(
Δv(n)

z(n + 1)

)
z(n)z(n + 1)

v(n + 1)
Δ

Δx(n)

z(n)
.
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Applying (2.2) to the first term of the last equality and combining together the second and
third term we obtain

1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
1

v(n)
z(n)z(n + 1)Δ

Δx(n)

z(n)

))

= Δ4x(n) + p(n)Δx(n + 1) − Δ2z(n + 1)Δ
Δx(n + 1)

z(n + 1)

− 1

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)

− Δ

(
Δv(n)

z(n + 1)

)
z(n)z(n + 1)

v(n + 1)
Δ

Δx(n)

z(n)
.

Now we transform separately the third term of the above expression

− 1

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
z(n)z(n + 1)Δ

Δx(n)

z(n)

)
= − 1

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)

×
(

Δ

(
Δx(n + 1)

z(n + 1)

)
Δ(z(n)z(n + 1)) + z(n)z(n + 1)Δ2 Δx(n)

z(n)

)

= − 1

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)(
(z(n + 1)z(n + 2) − z(n)z(n + 1))Δ

Δx(n + 1)

z(n + 1)

+z(n)z(n + 1)Δ2 Δx(n)

z(n)

)

= − z(n + 1)z(n + 2)

v(n + 1)
Δ

Δv(n)

z(n + 1)
Δ

Δx(n + 1)

z(n + 1)

+ z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ2

(
Δx(n)

z(n)

)
.

Hence, we obtain

Δ4x(n) + p(n)Δx(n + 1) − Δ2z(n + 1)Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n + 1)z(n + 2)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ2

(
Δx(n)

z(n)

)

+
(
z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

−Δ

(
Δv(n)

z(n + 1)

)
z(n)z(n + 1)

v(n + 1)
Δ

(
Δx(n)

z(n)

))

= Δ4x(n) + p(n)Δx(n + 1) − Δ2z(n + 1)Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n + 1)z(n + 2)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ2

(
Δx(n)

z(n)

)
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+ z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

) [
Δ

(
Δx(n + 1)

z(n + 1)

)

−Δ

(
Δx(n)

z(n)

)]

= Δ4x(n) + p(n)Δx(n + 1) − Δ2z(n + 1)Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n + 1)z(n + 2)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ2

(
Δx(n)

z(n)

)

+ z(n)z(n + 1)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ2

(
Δx(n)

z(n)

)

= Δ4x(n) + p(n)Δx(n + 1) − Δ2z(n + 1)Δ

(
Δx(n + 1)

z(n + 1)

)

− z(n + 1)z(n + 2)

v(n + 1)
Δ

(
Δv(n)

z(n + 1)

)
Δ

(
Δx(n + 1)

z(n + 1)

)

= Δ4x(n) + p(n)Δx(n + 1)

− z(n + 1)z(n + 2)

v(n + 1)
Δ

(
Δx(n + 1)

z(n + 1)

)[
Δ2z(n + 1)

v(n + 1)

z(n + 1)z(n + 2)

+Δ

(
Δv(n)

z(n + 1)

)]
.

From (2.3) we conclude that Δ2z(n + 1) v(n+1)
z(n+1)z(n+2) + Δ

(
Δv(n)
z(n+1)

)
= 0 and finally we get

1

v(n + 1)
Δ

(
v(n)v(n + 1)

z(n + 1)
Δ

(
1

v(n)
z(n)z(n + 1)Δ

Δx(n)

z(n)

))

= Δ4x(n) + p(n)Δx(n + 1).

	


5 Conclusions

In this paper, we have studied the oscillation of a fourth-order delay three-terms equation (E).
Our comparison method is based on the canonical representation (E′) of equation (E) and
the existence of positive solutions satisfying the auxiliary equations (2.1) and (2.3). We have
deduced the oscillation of equation (E) from the oscillation of certain first-order difference
equations. Note, that even when we do not know the exact solutions of the auxiliary equation
(2.1) or (2.3), we can easily verify the conditions presented in our criterion.
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