

Lie triple derivations of standard operator algebras

Guangyu An¹ · Xueli Zhang¹ · Jun He²

Accepted: 25 October 2021 / Published online: 8 April 2022 © Akadémiai Kiadó, Budapest, Hungary 2022

Abstract

Let *X* be a Banach space over the field \mathbb{F} (\mathbb{R} or \mathbb{C}). Denote by $B(X)$ the set of all bounded linear operators on *X* and by $F(X)$ the set of all finite rank operators on *X*. A subalgebra $A \subseteq B(X)$ is called a standard operator algebra if $F(X) \subseteq A$. Suppose that δ is a mapping from *A* into *B*(*X*). First, we prove that if δ is a Lie triple derivation, then δ is standard. Next, we show that if δ is a local Lie triple derivation and dim(*X*) \geq 3, then δ is a Lie triple derivation. Finally, we prove that if δ is a 2-local Lie triple derivation, then $\delta = d + \tau$, where *d* is a derivation, and τ is a homogeneous mapping from *A* into FI such that $\tau(A + B) = \tau(A)$ for each *A*, *B* in *A* where *B* is a sum of double commutators.

Keywords Lie triple derivation · Local Lie triple derivation · 2-Local Lie triple derivation · Standard operator algebra

Mathematics Subject Classification 46L57 · 47B47 · 47C15 · 47L35

1 Introduction

Let *A* be an associative algebra over the field \mathbb{F} (\mathbb{R} or \mathbb{C}) and *M* be an *A*-bimodule. A linear mapping δ from *A* into *M* is called a *derivation* if $\delta(AB) = \delta(A)B + A\delta(B)$ for each *A*, *B* in *A*, and δ is called an *inner derivation* if there exists an element *M* in *M* such that $\delta(A) = AM - MA$ for every A in A. Clearly, every inner derivation is a derivation. In [\[13,](#page-13-0) [24](#page-14-0)], Kadison and Sakai independently proved that every derivation on a von Neumann algebra is inner. In [\[6\]](#page-13-1), Chernoff proved that every derivation from a standard operator algebra A into $B(X)$ is inner for a Banach space X . In [\[8\]](#page-13-2), Christensen showed that every derivation on nest algebras is inner.

 \boxtimes Jun He hejun_12@163.com Guangyu An anguangyu310@163.com Xueli Zhang zhangxueliwww@163.com

¹ Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China

² Department of Mathematics, Anhui Polytechnic University, Wuhu 241000, China

In 1990, Kadison [\[14](#page-14-1)], Larson and Sourour [\[15\]](#page-14-2) independently introduced the concept of local derivations. A linear mapping δ from *A* into *M* is called a *local derivation* if for every *A* in *A* there exists a derivation δ_A (depending on *A*) from *A* into *M* such that $\delta(A) = \delta_A(A)$. In [\[14\]](#page-14-1), Kadison proved that every continuous local derivation from a von Neumann algebra into its dual Banach module is a derivation. In [\[15\]](#page-14-2), Larson and Sourour proved that every local derivation on $B(X)$ is a derivation for a Banach space X. In [\[12](#page-13-3)], Johnson proved that every local derivation from a *C*∗-algebra into its Banach bimodule is a derivation. In [\[29\]](#page-14-3), Zhu and Xiong proved that every local derivation from a unital standard operator algebra *A* into $B(X)$ is a derivation.

In 1997, Semrl $[25]$ $[25]$ $[25]$ introduced the concept of 2-local derivations. A mapping (not necessarily linear) δ from *A* into *M* is called a 2*-local derivation* if for each *A*, *B* in *A*, there exists a derivation $\delta_{A,B}$ (depending on *A*, *B*) from *A* into *M* such that $\delta(A) = \delta_{A,B}(A)$ and $\delta(B) = \delta_{A,B}(B)$. In [\[25](#page-14-4)], Semrl proved that every 2-local derivation on $B(\mathcal{H})$ is a derivation for a separable Hilbert space *H*. In [\[2\]](#page-13-4), Ayupov and Kudaybergenov proved that every 2-local derivation on a von Neumann algebra is a derivation. In [\[10](#page-13-5)], we showed that every 2-local derivation from a standard operator algebra A into $B(X)$ is a derivation.

A linear mapping δ from $\mathcal A$ into $\mathcal M$ is called a *Lie derivation* if $\delta([A, B]) = [\delta(A), B] +$ $[A, \delta(B)]$ for each *A*, *B* in *A*, where $[A, B] = AB - BA$ is called a *commutator* on *A*. A Lie derivation δ is said to be *standard* if it can be decomposed as $\delta = d + \tau$, where *d* is a derivation from *A* into *M* and τ is a linear mapping from *A* into $\mathcal{Z}(\mathcal{M}, \mathcal{A})$ with $\tau([A, B]) = 0$ for each *A*, *B* in *A*, where $\mathcal{Z}(\mathcal{M}, \mathcal{A}) = \{M \in \mathcal{M} : MA = AM$ for every *A* in *A* $\}$.

An interesting problem is to identify those algebras on which every Lie derivation is standard. In [\[22\]](#page-14-5), Mathieu and Villena proved that every Lie derivation on a *C*∗-algebra is standard. In [\[7\]](#page-13-6), Cheung characterized Lie derivations on triangular algebras. In [\[20,](#page-14-6) [21\]](#page-14-7), Lu studied Lie derivations on CDCSL algebras and reflexive algebras, respectively. In [\[3\]](#page-13-7), Benkovic proved that every Lie derivation on a matrix algebra $M_n(\mathcal{A})$ is standard, where $n > 2$ and A is a unital algebra.

Similarly to local derivations and 2-local derivations, in [\[4](#page-13-8)], Chen et al. introduced the concepts of local Lie derivations and 2-local Lie derivations. A linear mapping δ from *A* into *M* is called a *local Lie derivation* if for every *A* in *A* there exists a Lie derivation δ*^A* (depending on *A*) from *A* into *M* such that $\delta(A) = \delta_A(A)$. A mapping (not necessarily linear) δ from *A* into *M* is called a 2*-local Lie derivation* if for every *A*, *B* in *A* there exists a Lie derivation $\delta_{A,B}$ (depending on *A*, *B*) from *A* into *M* such that $\delta(A) = \delta_{A,B}(A)$ and $\delta(B) = \delta_{A,B}(B).$

In [\[4](#page-13-8)], Chen et al. study local Lie derivations and 2-local Lie derivations on *B*(*X*). In [\[5\]](#page-13-9), Chen and Lu proved that every local Lie derivation on nest algebras is a Lie derivation. In [\[18,](#page-14-8) [19](#page-14-9)], Liu and Zhang proved that under certain conditions every local Lie derivation on triangular algebras is a Lie derivation, and every local Lie derivation on factor von Neumann algebras with dimension exceeding 1 is a Lie derivation. In [\[9\]](#page-13-10), He et al. proved that every local Lie derivation on some algebras such as finite von Neumann algebras, nest algebras, Jiang–Su algebras and UHF algebras is a Lie derivation, and every 2-local Lie derivation on on some algebras such as factor von Neumann algebras, Jiang–Su algebra and UHF algebras is also a Lie derivation. In [\[16](#page-14-10), [17\]](#page-14-11), Liu proved that under certain conditions every local Lie derivation on generalized matrix algebras is a Lie derivation, and he showed that every 2-local Lie derivation of nest subalgebras of factors is a Lie derivation.

A linear mapping δ from $\mathcal A$ into $\mathcal M$ is a *Lie triple derivation* if $\delta([A, B], C]) =$ $[[\delta(A), B], C]+[[A, \delta(B)], C]+[[A, B], \delta(C)]$ for each *A*, *B* and *C* in *A*. We call [[*A*, *B*], *C*] a *double commutator* on *A*. It is clear that every Lie derivation is a Lie triple derivation. A Lie triple derivation δ from $\mathcal A$ into $\mathcal M$ is said to be *standard* if it can be decomposed as $\delta = d + \tau$, where *d* is a derivation from *A* into *M* and τ is a linear mapping from *A* into $\mathcal{Z}(\mathcal{M}, \mathcal{A})$ with $\tau([A, B], C] = 0$ for each *A*, *B* and *C* in *A*.

Similarly to Lie derivations, the authors always consider the problem of identifying those algebras on which every Lie triple derivation is standard. In [\[23\]](#page-14-12), Miers proved that if *A* is a von Neumann algebra with no central abelian summands, then every Lie triple derivation on *A* is standard. In [\[11](#page-13-11)], Ji and Wang proved that every continuous Lie triple derivation on TUHF algebras is standard. In [\[28\]](#page-14-13), Zhang et al. proved that if N is a nest on a complex separable Hilbert space H , then every Lie triple derivation on the nest algebra Alg N is standard. In [\[27\]](#page-14-14), Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras. In [\[3](#page-13-7)], Benkovic showed that if $\mathcal A$ is a unital algebra with a nontrivial idempotent, then under suitable assumptions every Lie triple derivation *d* on *A* is of the form $d = \Delta + \delta + \tau$, where Δ is a derivation on *A*, δ is a Jordan derivation on *A* and τ is a linear mapping from *A* into its center $\mathcal{Z}(\mathcal{A})$ that vanishes on $[[\mathcal{A}, \mathcal{A}], \mathcal{A}]$. In [\[1\]](#page-13-12), Ashraf and Akhtar proved that every Lie triple derivation on a generalized matrix algebra is standard. In [\[26](#page-14-15)], Wani proved that every Lie triple derivation from standard operator algebra into itself is standard.

Now we give the concepts of local Lie triple derivations and 2-local Lie triple derivations. A linear mapping δ from *A* into *M* is called a *local Lie triple derivation* if for every *A* in *A* there exists a Lie triple derivation δ_A (depending on *A*) from *A* into *M* such that $\delta(A) = \delta_A(A)$. A mapping (not necessarily linear) δ from *A* into *M* is called a 2*-local Lie triple derivation* if for every *A*, *B* in *A* there exists a Lie triple derivation $\delta_{A,B}$ (depending on *A*, *B*) from *A* into *M* such that $\delta(A) = \delta_{A,B}(A)$ and $\delta(B) = \delta_{A,B}(B)$.

In this paper, we always suppose that *X* is a Banach space over the field $\mathbb{F}(\mathbb{R}$ or $\mathbb{C})$. Denote by $B(X)$ the set of all linear mappings on X and by $F(X)$ the set of all finite rank operators on *X*. A subalgebra $A \subseteq B(X)$ is called a *standard operator algebra* if $F(X) \subseteq A$. Suppose that δ is a mapping from *A* into $B(X)$. In Sect. [2,](#page-2-0) we prove that if δ is a Lie triple derivation, then δ is standard. In Sect. [3,](#page-9-0) we prove that if δ is a local Lie triple derivation and $\dim(X) > 3$, then δ is a Lie triple derivation. In Sect. [4,](#page-12-0) we prove that if δ is a 2-local Lie triple derivation, then $\delta = d + \tau$, where *d* is a derivation and τ is a homogeneous mapping from *A* into \mathbb{F} *I* such that $\tau(A + B) = \tau(A)$ for each *A*, *B* in *A* where *B* is a sum of double commutators.

We shall review some simple properties of rank one operators and finite rank operators. Denote by X^* the set of all bounded linear functionals on *X*. For each *x* in *X* and *f* in *X*[∗], one can define an operator *x* ⊗ *f* by (*x* ⊗ *f*)*y* = *f* (*y*)*x* for every *y* in *X*. Obviously, $x \otimes f \in B(X)$. If both *x* and *f* are nonzero, then $x \otimes f$ is an operator of rank one. The following properties are evident and will be used frequently in this paper.

Proposition 1.1 *Suppose that X is a Banach space and* $A \subseteq B(X)$ *is a standard operator algebra. For each x*, *y in X, f* , *g in X*∗ *and A*, *B in B*(*X*)*, the following statements hold:*

(1) $(x \otimes f)A = x \otimes (fA)$ and $A(x \otimes f) = (Ax) \otimes f$; (2) $(x \otimes f)(y \otimes g) = f(y)(x \otimes g)$; (3) $\mathcal{Z}(B(X), \mathcal{A}) = \mathbb{F}I$.

2 Lie triple derivations

In this section, we choose $x_0 \in X$ and $f_0 \in X^*$ such that $f_0(x_0) = 1$, and denote by *I* the unit operator in $B(X)$. For the convenience of expression, we give some symbols firstly. Let $P_1 = x_0 \otimes f_0$ and $P_2 = I - P_1$. It is easy to see that P_1 and P_2 are two idempotents in $B(X)$. Denote P_iAP_j and $P_iB(X)P_j$ by A_{ij} and $B(X)_{ij}$, respectively, denote P_iAP_j by A_{ij} for every *A* in *A*, where $1 \le i, j \le 2$.

Lemma 2.1 $P_1AP_1 = f_0(Ax_0)P_1 = f_0(P_1AP_1x_0)P_1$ *for every A in B(X). Moreover,* $B(X)_{11}$ *is commutative.*

Proof For every A in $B(X)$, by Proposition [1.1](#page-2-1) (1) and (2), we have

$$
P_1AP_1 = x_0 \otimes f_0Ax_0 \otimes f_0 = f_0(Ax_0)x_0 \otimes f_0 = f_0(Ax_0)P_1. \tag{2.1}
$$

Replacing *A* by P_1AP_1 in [\(2.1\)](#page-3-0), we get

$$
P_1AP_1 = P_1P_1AP_1P_1 = f_0(P_1AP_1x_0)P_1.
$$

It follows that $B(X)_{11}$ is commutative.

Lemma 2.2 (1) *If* $BA_{21} = 0$ *for every* A_{21} *in* A_{21} *, then* $BP_2 = 0$ *.* (2) If $A_{12}B = 0$ for every A_{12} in A_{12} , then $P_2B = 0$.

Proof (1) Let $A_{21} = P_2x \otimes f_0P_1$, where *x* is an arbitrary element in *X*. We obtain

$$
0 = BP_2x \otimes f_0P_1x_0 = f_0(P_1x_0)BP_2x = BP_2x.
$$

It follows that $BP_2 = 0$.

(2) Let $A_{12} = P_1x_0 \otimes f_2$, where f is an arbitrary element in X^* . We obtain

$$
0 = P_1 x_0 \otimes f P_2 B x = f (P_2 B x) P_1 x_0 = f (P_2 B x) x_0
$$

for every *x* in *X*. It follows that $f(P_2Bx) = 0$ for each $f \in X^*$ and *x* in *X*. Thus, $P_2B = 0$. \Box

Next we consider Lie triple derivations from a unital standard operator algebra *A* into $B(X)$. The following theorem is the main result in this section.

Theorem 2.3 Let *X* be a Banach space and $A \subseteq B(X)$ be a unital standard operator algebra. *If* δ *is a Lie triple derivation* δ *from A into B*(*X*)*, then* δ *is standard.*

Before we prove Theorem [2.3,](#page-3-1) we present some lemmas.

Lemma 2.4 $\delta(I) \in \mathbb{F}I$.

Proof Let *^P* be an idempotent in *^A*. We have

$$
0 = \delta([[I, P], P]) = [[\delta(I), P], P] = [\delta(I)P - P\delta(I), P] = \delta(I)P + P\delta(I) - 2P\delta(I)P.
$$

Multiplying the above equation by *P* from the right, we obtain $P\delta(I)P = \delta(I)P$. It means that $(I - P)\delta(I)P = 0$. Thus, $P_1\delta(I)P_2 = P_2\delta(I)P_1 = 0$; it follows that $\delta(I) \in B(X)_{11}$ + $B(X)_{22}$. By Lemma [2.1,](#page-3-2) we know that A_{11} is commutative, so $[\delta(I), A_{11}] = 0$ for every A_{11} in A_{11} . In the following, we show

$$
[\delta(I), A_{22}] = [\delta(I), A_{12}] = [\delta(I), A_{21}] = 0
$$

for every A_{22} in A_{22} , A_{12} in A_{12} and A_{21} in A_{21} .

For each *A*, *B* in *A*, we have

$$
[[A, B], \delta(I)] = \delta([[A, B], I]) - [[A, \delta(B)], I] - [[\delta(A), B], I] = 0.
$$

By $A_{12} = [P_1, A_{12}]$ and $A_{21} = [A_{21}, P_1]$, we have

$$
[\delta(I), A_{12}] = [\delta(I), A_{21}] = 0.
$$
 (2.2)

By [\(2.2\)](#page-4-0), it follows that

$$
0 = [\delta(I), A_{22}B_{21}] = [\delta(I), A_{22}]B_{21} + A_{22}[\delta(I), B_{21}] = [\delta(I), A_{22}]B_{21}
$$

for every A_{22} in A_{22} and B_{21} in A_{21} . By Lemma [2.2,](#page-3-3) we have $\lbrack \delta (I), A_{22} \rbrack P_2 = 0$. By $\delta(I) \in B(X)_{11} + B(X)_{22}$, we obtain $[\delta(I), A_{22}] \in B(X)_{22}$, it follows that $[\delta(I), A_{22}] = 0$.
Hence by Proposition 1.1 (3), we have $\delta(I) \in \mathcal{Z}(B(X), \mathcal{A}) = \mathbb{F}I$. Hence by Proposition [1.1](#page-2-1) (3), we have $\delta(I) \in \mathcal{Z}(B(X), \mathcal{A}) = \mathbb{F}I$.

Lemma 2.5 $P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2 \in \mathbb{F}I$.

Proof By Lemma [2.1,](#page-3-2) we know that $P_1\delta(P_1)P_1 = \lambda P_1$, where $\lambda = f_0(P_1\delta(P_1)P_1x_0) \in \mathbb{F}$. Let *x* be in *X* and let $P_2x \otimes f_0P_1 = A_{21}$. It follows that

$$
-\delta(A_{21}) = \delta([[P_2, A_{21}], P_2])
$$

= [[\delta(P_2), A_{21}], P_2] + [[P_2, \delta(A_{21})], P_2] + [[P_2, A_{21}], \delta(P_2)]
= -A_{21}\delta(P_2)P_2 - P_2\delta(P_2)A_{21} + A_{21}\delta(P_2) + 2P_2\delta(A_{21})P_2
- \delta(A_{21})P_2 - P_2\delta(A_{21}) + A_{21}\delta(P_2) - \delta(P_2)A_{21}. (2.3)

Multiplying (2.3) by P_2 from the left and by P_1 from the right, we obtain

$$
P_2\delta(P_2)A_{21}=A_{21}\delta(P_2)P_1.
$$

That is,

$$
P_2 \delta(P_2) P_2 x \otimes f_0 P_1 = P_2 x \otimes f_0 P_1 \delta(P_2) P_1. \tag{2.4}
$$

By letting both sides of (2.3) act on x_0 in X, we have

$$
f_0(P_1x_0)P_2\delta(P_2)P_2x = f_0(P_1\delta(P_2)P_1x_0)P_2x.
$$

Since $f_0(P_1x_0) = f_0(x_0) = 1$, it follows that

$$
P_2\delta(P_2)P_2 = f_0(P_1\delta(P_2)P_1x_0)P_2.
$$
\n(2.5)

By Lemma [2.4,](#page-3-4) we know that $\delta(I) \in \mathbb{F}I$. It follows that

$$
P_2\delta(I)P_2 = \delta(I)P_2 = \delta(I)f_0(x_0)P_2 = f_0(\delta(I)x_0)P_2 = f_0(P_1\delta(I)P_1x_0)P_2.
$$

Now replacing $\delta(P_2)$ by $\delta(I) - \delta(P_1)$ in [\(2.5\)](#page-4-2), we obtain

$$
P_2\delta(P_1)P_2 = f_0(P_1\delta(P_1)P_1x_0)P_2 = \lambda P_2.
$$

This implies $P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2 = \lambda(P_1 + P_2) = \lambda I$.

Let $G = P_1 \delta(P_1)P_2 - P_2 \delta(P_1)P_1$ and define a mapping Δ from $\mathcal A$ into $B(X)$ by

$$
\Delta(A) = \delta(A) - [A, G]
$$

for every *A* in *A*. Obviously, Δ is also a Lie triple derivation from *A* into *B*(*X*). Moreover,

$$
\Delta(P_1) = \delta(P_1) - [P_1, G] = P_1 \delta(P_1) P_1 + P_2 \delta(P_1) P_2
$$

and, by Lemma [2.5,](#page-4-3) we know that $\Delta(P_1) \in \mathbb{F}I$. In Lemmas [2.6,](#page-4-4) [2.7](#page-5-0) and [2.8,](#page-5-1) we show some properties of Δ .

 $\circled{2}$ Springer

Lemma 2.6 $\Delta(\mathcal{A}_{ij}) \subseteq B(X)_{ij}$, where $1 \leq i, j \leq 2$ and $i \neq j$.

Proof Since $\Delta(P_1) \in \mathbb{F}I$, for each A_{12} in A_{12} , we have

$$
\Delta(A_{12}) = \Delta([[A_{12}, P_1], P_1])
$$

= [[\Delta(A_{12}), P_1], P_1] + [[A_{12}, \Delta(P_1)], P_1] + [[A_{12}, P_1], \Delta(P_1)]
= [[\Delta(A_{12}), P_1], P_1]
= P_1 \Delta(A_{12}) P_2 + P_2 \Delta(A_{12}) P_1. (2.6)

In the following, we show that $P_2\Delta(A_{12})P_1 = 0$.

Let B_{12} be in A_{12} , then $[A_{12}, B_{12}] = 0$. Thus,

$$
0 = \Delta(0) = \Delta([[A_{12}, B_{12}], C]) = [[\Delta(A_{12}), B_{12}], C] + [[A_{12}, \Delta(B_{12})], C]
$$

= [[\Delta(A_{12}), B_{12}] + [A_{12}, \Delta(B_{12})], C]

for every *C* in *A*. It means that *J* = $[∆(A_{12}), B_{12}] + [A_{12}, ∆(B_{12})] \in \mathbb{F}I$. Since A_{12} = $[P_1, A_{12}]$, we have

$$
[\Delta(A_{12}), B_{12}] = J - [A_{12}, \Delta(B_{12})] = J - [[P_1, A_{12}], \Delta(B_{12})]
$$

= $J - (\Delta([[P_1, A_{12}], B_{12}]) - [[\Delta(P_1), A_{12}], B_{12}] - [[P_1, \Delta(A_{12})], B_{12}])$
= $J + [[P_1, \Delta(A_{12})], B_{12}].$

By (2.6) , we have

$$
[P_1 \Delta(A_{12})P_2 + P_2 \Delta(A_{12})P_1, B_{12}] = J + [[P_1, P_1 \Delta(A_{12})P_2 + P_2 \Delta(A_{12})P_1], B_{12}]
$$

= J + [P_1 \Delta(A_{12})P_2 - P_2 \Delta(A_{12})P_1, B_{12}].

Hence

$$
[P_2\Delta(A_{12})P_1, B_{12}] = \frac{1}{2}J \in \mathbb{F}I.
$$

It is well known that $[P_2\Delta(A_{12})P_1, B_{12}] = 0$. Thus, $P_2\Delta(A_{12})B_{12} = B_{12}\Delta(A_{12})P_1 = 0$ for every B_{12} in A_{12} . By Lemma [2.2,](#page-3-3) we know that $P_2\Delta(A_{12})P_1 = 0$. Similarly, we have $\Delta(A_{21}) \subseteq B(X)_{21}$. $\Delta(\mathcal{A}_{21}) \subseteq B(X)_{21}.$

Lemma 2.7 $\Delta(\mathcal{A}_{11}) \subseteq \mathbb{F}I$.

Proof For every A_{11} in A_{11} , by Lemma [2.1,](#page-3-2) we have

$$
\Delta(A_{11}) = \Delta(P_1 A_{11} P_1) = \Delta(f_0(A_{11} x_0) P_1) = f_0(A_{11} x_0) \Delta(P_1).
$$

Since $\Delta(P_1)$ ∈ FI, it follows that $\Delta(A_{11})$ ∈ FI.

Lemma 2.8 $\Delta(A_{22}) - f_0(\Delta(A_{22})x_0)I$ ∈ $B(X)_{22}$ *for every A*₂₂ *in A*₂₂*. In particular,* $\Delta(P_2) = f_0(\Delta(P_2)x_0)I$.

Proof Through simple calculation, we get

$$
0 = \Delta([[P_1, A_{22}], P_1]) = [[P_1, \Delta(A_{22})], P_1] = -P_1 \Delta(A_{22}) P_2 - P_2 \Delta(A_{22}) P_1.
$$

It follows that $\Delta(A_{22}) \in B(X)_{11} + B(X)_{22}$. By Lemma [2.1,](#page-3-2) we obtain

$$
\Delta(A_{22}) = P_1 \Delta(A_{22}) P_1 + P_2 \Delta(A_{22}) P_2 = f_0(\Delta(A_{22}) x_0) P_1 + P_2 \Delta(A_{22}) P_2,
$$

that is,

$$
\Delta(A_{22}) - f_0(\Delta(A_{22})x_0)I = -f_0(\Delta(A_{22})x_0)P_2 + P_2\Delta(A_{22})P_2 \in B(X)_{22}.
$$

Since $\Delta(P_2) = \Delta(I) - \Delta(P_1) \in \mathbb{F}I$, we have

$$
\Delta(P_2) - f_0(\Delta(P_2)x_0)I \in \mathbb{F}I \cap B(X)_{22} = \{0\}.
$$

Thus, $\Delta(P_2) = f_0(\Delta(P_2)x_0)I$.

In the following, we prove Theorem [2.3.](#page-3-1)

Proof Define two mappings τ and *D* on from *A* into *B*(*X*) by

$$
\tau(A) = f_0(P_1 A P_1 x_0) \Delta(P_1) + f_0(\Delta(P_2 A P_2) x_0) I
$$

and

$$
D(A) = \Delta(A) - \tau(A)
$$

for every *A* in *A*. It is clear that τ is a linear mapping from *A* into $\mathcal{Z}(B(X), \mathcal{A})$ and *D* is a linear mapping from A into $B(X)$. Moreover, according to the previous lemmas and the definitions of τ and D , we have

- (1) $D(A_{ij}) = \Delta(A_{ij}) \in B(X)_{ij}$ for every A_{ij} in A_{ij} , where $1 \le i, j \le 2$ and $i \ne j$;
- (2) $D(P_1) = D(P_2) = D(I) = 0;$
- (3) $D(A_{11}) = 0$ for every A_{11} in A_{11} ;
- (4) $D(A_{22}) \in B(X)_{22}$ for every A_{22} in A_{22} .

To prove that Δ is standard, it is sufficient to show that *D* is a derivation and $\tau([A, B], C)$ = 0 for each *A*, *B* and *C* in *A*.

In the following we show

$$
D(A_{ij}B_{sk})=D(A_{ij})B_{sk}+A_{ij}D(B_{sk})
$$

for every A_{ij} in A_{ij} and B_{sk} in A_{sk} , where $1 \le i, j, s, k \le 2$.

Since $D(\mathcal{A}_{ij}) \in B(X)_{ij}$, we have

$$
D(A_{ij}B_{sk})=D(A_{ij})B_{sk}+A_{ij}D(B_{sk})
$$

for $j \neq s$. Thus, we only need to prove the following 8 cases:

- (1) $D(A_{11}B_{11}) = D(A_{11})B_{11} + A_{11}D(B_{11});$
- (2) *D*(*A*11*B*12) = *D*(*A*11)*B*¹² + *A*11*D*(*B*12);
- (3) $D(A_{12}B_{22}) = D(A_{12})B_{22} + A_{12}D(B_{22});$
- (4) $D(A_{21}B_{11}) = D(A_{21})B_{11} + A_{21}D(B_{11});$
- (5) $D(A_{22}B_{21}) = D(A_{22})B_{21} + A_{22}D(B_{21});$
- (6) *D*(*A*22*B*22) = *D*(*A*22)*B*²² + *A*22*D*(*B*22);
- (7) $D(A_{12}B_{21}) = D(A_{12})B_{21} + A_{12}D(B_{21});$
- (8) $D(A_{21}B_{12}) = D(A_{21})B_{12} + A_{21}D(B_{12}).$

Since $D(A_{11}) = 0$ for every A_{11} in A_{11} , case (1) is trivial.

For each *A*, *B* in *A*, by $\Delta(A) - D(A) = \tau(A) \in \mathcal{Z}(B(X), \mathcal{A})$, we have $[\Delta(A), B] =$ [*D*(*A*), *B*]. Therefore

$$
D(A_{11}B_{12}) = \Delta(A_{11}B_{12}) = -\Delta([[P_1, B_{12}], A_{11}])
$$

= -[[P_1, \Delta(B_{12})], A_{11}] - [[P_1, B_{12}], \Delta(A_{11})]
= -[\Delta(B_{12}), A_{11}] - [B_{12}, \Delta(A_{11})]
= [A_{11}, D(B_{12})] + [D(A_{11}), B_{12}]
= A_{11}D(B_{12}) + D(A_{11})B_{12}

for each A_{11} in A_{11} and B_{12} in A_{12} . Thus, case (2) holds. The cases (3), (4) and (5) are similar to case (2), so we omit the proofs.

For every C_{21} in A_{21} , according to case (5), we have the following two equations:

$$
D(A_{22}B_{22}C_{21}) = D(A_{22}B_{22})C_{21} + A_{22}B_{22}D(C_{21})
$$
\n(2.7)

and

$$
D(A_{22}B_{22}C_{21}) = D(A_{22})B_{22}C_{21} + A_{22}D(B_{22}C_{21})
$$

=
$$
D(A_{22})B_{22}C_{21} + A_{22}D(B_{22})C_{21} + A_{22}B_{22}D(C_{21})
$$
 (2.8)

for each A_{22} , B_{22} in A_{22} . Comparing [\(2.7\)](#page-7-0) and [\(2.8\)](#page-7-1), we have

$$
D(A_{22}B_{22})C_{21}=D(A_{22})B_{22}C_{21}+A_{22}D(B_{22})C_{21}.
$$

It follows that $(D(A_{22}B_{22}) - D(A_{22})B_{22} - A_{22}D(B_{22}))C_{21} = 0$ for every C_{21} in A_{21} . By Lemma [2.2](#page-3-3) and $D(A_{22}) \in A_{22}$, we know that

$$
D(A_{22}B_{22}) - D(A_{22})B_{22} - A_{22}D(B_{22}) = 0.
$$

Finally, we show cases (7) and (8). Let A_{12} be in A_{12} and B_{21} be in A_{21} . Through simple calculation, we obtain

$$
\Delta([[A_{12}, P_2], B_{21}]) - D([[A_{12}, P_2], B_{21}])
$$
\n= [[\Delta(A_{12}), P_2], B_{21}] + [[A_{12}, P_2], \Delta(B_{21})] - D([[A_{12}, P_2,], B_{21}])
\n= [\Delta(A_{12}), B_{21}] + [A_{12}, \Delta(B_{21})] - D[A_{12}, B_{21}]
\n= [D(A_{12}), B_{21}] + [A_{12}, D(B_{21})] - D(A_{12}B_{21} - B_{21}A_{12})
\n= D(A_{12})B_{21} - B_{21}D(A_{12}) + A_{12}D(B_{21}) - D(B_{21})A_{12} - D(A_{12}B_{21}) + D(B_{21}A_{12})
\n= (D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21})) + (D(B_{21}A_{12}) - B_{21}D(A_{12}) - D(B_{21})A_{12}).

Since $\Delta([A_{12}, B_{21}]) - D([A_{12}, B_{21}])$ belongs to $\mathbb{F}I$, we may assume that

$$
\Delta([A_{12}, B_{21}]) - D([A_{12}, B_{21}]) = \lambda I
$$

holds for some λ in $\mathbb F$. That is,

$$
\lambda I = (D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21})) + (D(B_{21}A_{12}) - B_{21}D(A_{12}) - D(B_{21})A_{12}).
$$
\n(2.9)

Since $D(A_{ij}) \in B(X)_{ij}$, we get

$$
D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21}) \in B(X)_{11}
$$

and

$$
D(B_{21}A_{12})-B_{21}D(A_{12})-D(B_{21})A_{12}\in B(X)_{22}.
$$

 $\circled{2}$ Springer

Multiplying [\(2.9\)](#page-7-2) by P_1 and P_2 respectively from the right, we obtain the following two equations:

$$
D(A_{12}B_{21}) = D(A_{12})B_{21} + A_{12}D(B_{21}) - \lambda P_1
$$
\n(2.10)

and

$$
D(B_{21}A_{12}) = B_{21}D(A_{12}) + D(B_{21})A_{12} + \lambda P_2.
$$
 (2.11)

By case (2) and equation (2.10) , we obtain

$$
D(A_{12}B_{21}A_{12})
$$

= $D(A_{12}B_{21})A_{12} + A_{12}B_{21}D(A_{12})$
= $D(A_{12})B_{21}A_{12} + A_{12}D(B_{21})A_{12} - \lambda A_{12} + A_{12}B_{21}D(A_{12}).$ (2.12)

By case (3) and equation (2.9) , we obtain

$$
D(A_{12}B_{21}A_{12})
$$

= $D(A_{12})B_{21}A_{12} + A_{12}D(B_{21}A_{12})$
= $D(A_{12})B_{21}A_{12} + A_{12}D(B_{21})A_{12} + A_{12}B_{21}D(A_{12}) + \lambda A_{12}.$ (2.13)

Comparing [\(2.12\)](#page-8-1) and [\(2.13\)](#page-8-2), we have $\lambda A_{12} = 0$. Thus, $\lambda = 0$. By [\(2.10\)](#page-8-0) and [\(2.9\)](#page-7-2), cases (7) and (8) hold.

By cases (1)–(8), this implies immediately that *D* is a derivation. Now we show that $\tau([A, B], C]) = 0$ for each *A*, *B* and *C* in *A*. Indeed,

$$
\tau([[A, B], C]) = \Delta([[A, B], C]) - D([[A, B], C])
$$

= [[\Delta(A), B], C] + [[A, \Delta(B)], C] + [[A, B], \Delta(C)] - D([[A, B], C])
= [[D(A), B], C] + [[A, D(B)], C] + [[A, B], D(C)] - D([[A, B], C])
= 0.

It follows that $\Delta(A) = D(A) + \tau(A)$ is a standard Lie triple derivation from *A* into *B*(*X*). Define a linear mapping from A into $B(X)$ by

$$
d(A) = D(A) + [A, G]
$$

for every *A* in *A*. Thus, we have

$$
\delta(A) = \Delta(A) + [A, G] = D(A) + \tau(A) + [A, G] = d(A) + \tau(A),
$$

where *d* is a derivation from *A* into *B*(*X*) and τ is a linear mapping from *A* into $\mathcal{Z}(B(X), A)$ such that τ (IIA *B*) *C*) = 0 for each *A B* and *C* in *A* such that $\tau([A, B], C] = 0$ for each *A*, *B* and *C* in *A*.

For a non-unital standard operator algebra, the following result holds.

Corollary 2.9 *Let X be a Banach space and* $A \subseteq B(X)$ *be a non-unital standard operator algebra. If* δ *is a Lie triple derivation* δ *from A into B*(*X*)*, then* δ *is standard.* **Corollary 2.9** Let *X* be a Banach space and $A \subseteq B(X)$ be a non-unital standard operator algebra. If δ is a Lie triple derivation δ from A into $B(X)$, then δ is standard.
Proof Denote the unital algebra $A \oplus$

Corollary 2.9 Let *X* be a Banach *defined* algebra. If δ is a Lie triple derivate.
Proof Denote the unital algebra *A*
Define a linear mapping $\tilde{\delta}$ from $\tilde{\mathcal{A}}$ Define a linear mapping δ from \tilde{A} into $B(X)$ by Define a linear mapping δ from \tilde{A} into $B(X)$ by
 $\delta(A + \lambda I) = \delta(A)$

for every A in A and λ in \mathbb{F} . Through a simple calculation, it is easy to show that δ is also a

$$
\widetilde{\delta}(A + \lambda I) = \delta(A)
$$

 $\delta(A + \lambda I) = \delta(A)$
for every A in A and λ in F. Through a simple calcula
Lie triple derivation. By Theorem [2.3,](#page-3-1) we know that δ Lie triple derivation. By Theorem 2.3, we know that δ is standard, and so is δ .

3 Local Lie triple derivations

In this section, we study local Lie triple derivations and the following theorem is the main result.

Theorem 3.1 *Let X be a Banach space of dimension at least* 3 *and* $A \subseteq B(X)$ *be a unital standard operator algebra. If* δ *is a local Lie triple derivation* δ *from A into B*(*X*)*, then* δ *is a Lie triple derivation.*

Proof For every *A* in *B*(*X*), there is a Lie triple derivation δ_A from *A* into *B*(*X*) such that $\delta(A) = \delta_A(A)$. By Theorem [2.3,](#page-3-1) we know $\delta_A(A)$ is standard, then there exist a derivation *d_A* from *A* into *B*(*X*) and a scalar operator $\tau_A(A)$ in F*I* such that $\delta(A) = d_A(A) + \tau_A(A)$. By $[6,$ Corollary 3.4], we know that d_A is an inner derivation, then there exists an element *T_A* in *B*(*X*) such that $d_A(A) = [A, T_A]$. Thus, we have

$$
\delta(A) = d_A(A) = [A, T_A] + \tau_A(A).
$$

We claim that $\tau_A(A)$ is unique. In fact, if

$$
\delta(A) = [A, S_A] + \tau'_A(A)
$$

for some S_A in $B(X)$ and $\tau'_A(A)$ in $\mathbb{F}I$, then

$$
[A, S_A - T_A] = \tau_A(A) - \tau'_A(A) = \lambda I
$$

for some λ in \mathbb{F} . It is well known that $\tau_A(A) = \tau_A'(A)$. Hence we can define a mapping from $\mathcal A$ into $\mathbb F I$ by

$$
\tau(A) = \tau_A(A)
$$

for every *A* in *A*. Moreover, by the definition of τ and Theorem [2.3,](#page-3-1) we know that $\tau(A)$ = $\tau_A(A) = 0$ if *A* is a sum of double commutators.

For each *x* in *X* and *f* in X^* , define $\psi(x, f) = \tau(x \otimes f)$. Then we have

$$
\delta(x \otimes f) = [x \otimes f, T_{x \otimes f}] + \psi(x, f) \tag{3.1}
$$

for some $T_{x\otimes f}$ in $B(X)$. In the following we show that $\psi(x, f)$ is a bilinear mapping.

Firstly, we show the homogeneity of ψ . For each x in X, f in X^* and λ in \mathbb{F} , by [\(3.1\)](#page-9-1), we have

$$
\delta(x \otimes f) = [x \otimes f, T_{x \otimes f}] + \psi(x, f) \text{ and } \delta(\lambda x \otimes f) = [\lambda x \otimes f, T_{\lambda x \otimes f}] + \psi(\lambda x, f).
$$

By $\delta(\lambda x \otimes f) = \lambda \delta(x \otimes f)$, we infer

$$
[\lambda x \otimes f, T_{x\otimes f} - T_{\lambda x \otimes f}] = \psi(\lambda x, f) - \lambda \psi(x, f) \in \mathbb{F}I.
$$

Thus, $\lambda \psi(x, f) = \psi(\lambda x, f)$. This proved that ψ is homogenous in the first variable. In the same way, we can show that ψ is homogenous in the second variable.

Secondly, we show that $\psi(x, f)$ is biadditive. We note that $\psi(x, f) = 0$ for *x* in *X* and *f* in *X*[∗] with $f(x) = 0$. Indeed, we may choose an element *z* in *X* such that $f(z) = 1$, then $x \otimes f = [x \otimes f, z \otimes f], z \otimes f$ is a double commutator and hence $\psi(x, f) = \tau(x \otimes f) = 0$.

Let x_1, x_2 be in *X* and *f* be in X^* . If both x_1 and x_2 belong to ker *f*, then

$$
\psi(x_1, f) = \psi(x_2, f) = \psi(x_1 + x_2, f) = 0
$$

 \mathcal{L} Springer

and so

$$
\psi(x_1 + x_2, f) = \psi(x_1, f) + \psi(x_2, f).
$$

If one of x_1 and x_2 is not in ker *f*, then dim(span{ x_1, x_2 } ∩ ker *f*) ≤ 1. Since dim(*X*) ≥ 3, we know that dim(ker f) \geq 2. Thus, we can take $y \in \text{ker } f$ such that $y \notin \text{span}\{x_1, x_2\}$. By [\(3.1\)](#page-9-1), we have the following equations:

$$
\delta(x_1 \otimes f)y = \psi(x_1, f)y + \mu_1 x_1 \quad \delta(x_2 \otimes f)y = \psi(x_2, f)y + \mu_2 x_2
$$

and

$$
\delta((x_1 + x_2) \otimes f)y = \psi(x_1 + x_2, f)y + \mu(x_1 + x_2)
$$

for some μ , μ_1 , $\mu_2 \in \mathbb{F}$. Since δ is an additive mapping, we know that

$$
(\psi(x_1+x_2,f)-\psi(x_1,f)-\psi(x_2,f))y=\mu_1x_1+\mu_2x_2-\mu(x_1+x_2).
$$

Since $y \notin \text{span } \{x_1, x_2\}$, it follows that

$$
\psi(x_1 + x_2, f) = \psi(x_1, f) + \psi(x_2, f).
$$

It means that ψ is additive in the first variable.

Let f_1 , f_2 be in X^* and x be in X . If $x \in \text{ker } f_1 \cap \text{ker } f_2$, then

$$
\psi(x, f_1 + f_2) = \psi(x, f_1) = \psi(x, f_2) = 0
$$

and so

$$
\psi(x, f_1 + f_2) = \psi(x, f_1) + \psi(x, f_2).
$$

If *x* ∉ ker *f*₁ ∩ ker *f*₂, then we can take $z \in \text{ker } f_1 \cap \text{ker } f_2$ which is linearly independent of x , By (3.1) , we have

$$
\delta(x \otimes f_1)z = \psi(x, f_1)z + \lambda_1 x \quad \delta(x \otimes f_2)z = \psi(x, f_2)z + \lambda_2 x
$$

and

$$
\delta(x \otimes (f_1 + f_2))z = \psi(x, f_1 + f_2)z + \lambda x
$$

for some λ , λ_1 , $\lambda_2 \in \mathbb{F}$. Since δ is an additive mapping, we know that

$$
(\psi(x, f_1 + f_2) - \psi(x, f_1) - \psi(x, f_2))z = (\lambda_1 + \lambda_2 - \lambda)x.
$$

Since *z* and *x* are linearly independent, it follows that

$$
\psi(x, f_1 + f_2) = \psi(x, f_1) + \psi(x, f_2).
$$

The next goal is to show that there is an element J in $B(X)$ such that

$$
\delta(x \otimes f) = [x \otimes f, J] + \psi(x, f)
$$

for every rank one operator $x \otimes f$ in $B(X)$.

For each *x* in *X* and *f* in X^* , define

$$
\phi(x, f) = [x \otimes f, T_{x \otimes f}] = \delta(x \otimes f) - \psi(x, f). \tag{3.2}
$$

 $\hat{\mathfrak{D}}$ Springer

It is easy to see that $\phi(x, f)$ is a bilinear mapping and $\phi(x, f)$ ker $f \subseteq \mathbb{F}x$. Hence by [\[21,](#page-14-7) Proposition 1.1], there are two linear mappings $T : X \to X$ and $S^* : X^* \to X^*$ such that

$$
\phi(x, f) = [x \otimes f, T_{x \otimes f}] = Tx \otimes f + x \otimes S^* f \tag{3.3}
$$

for each x in X and f in X^* . It follows that

$$
(T + T_{x \otimes f})x \otimes f = x \otimes (T_{x \otimes f}^* - S^*)f \tag{3.4}
$$

for each x in X and f in X^* .

We claim that $S^* = -T^*$. We only have to show that $S^* f(x) = -f(Tx)$ for each *x* in *X* and *f* in X^* . It is trivial if one of *x* and *f* is zero. Suppose that neither of *x* and *f* is zero. If both sides of (3.4) are zeros, then

$$
(T + T_{x \otimes f})x = (T_{x \otimes f}^* - S^*)f = 0.
$$

It follows that

$$
S^* f(x) = T^*_{x \otimes f} f(x) = f(T_{x \otimes f} x) = -f(T x).
$$

If both sides of (3.4) are not zeros, then we have

$$
[(T+T_{x\otimes f})x\otimes f]^2=[x\otimes (T_{x\otimes f}^*-S^*)f]^2,
$$

that is,

$$
f((T+T_{x\otimes f})x)((T+T_{x\otimes f})x\otimes f) = ((T_{x\otimes f}^* - S^*)f)(x)(x\otimes (T_{x\otimes f}^* - S^*)f).
$$

It follows that

$$
f((T + T_{x \otimes f})x) = ((T_{x \otimes f}^* - S^*)f)(x)
$$

and then $S^* f(x) = -f(Tx)$. Consequently, we always have $S^* = -T^*$. By [\(3.2\)](#page-10-0) and [\(3.3\)](#page-11-1), we have

$$
\delta(x \otimes f) = Tx \otimes f + x \otimes S^*f + \psi(x, f) = [x \otimes f, -T] + \psi(x, f)
$$

for every $x \otimes f$ in *A*. Let $J = -T$ and by $\psi(x, f) = \tau(x \otimes f) \in \mathbb{F}I$, we obtain

$$
\delta(A) = [A, J] + \lambda_A I \tag{3.5}
$$

for every $A = x \otimes f$ in *A* and some $\lambda_A \in \mathbb{F}$. Finally, we show that

$$
\delta(A) = [A, J] + \lambda_A I
$$

holds for every *A* in *A*. Suppose that *P*, *Q* are two idempotents of rank one and let P^{\perp} = $I - P$, $Q^{\perp} = I - Q$. By Proposition [1.1\(](#page-2-1)1) and [\(3.5\)](#page-11-2), it follows that

$$
\delta(A) = \delta(PA + P^{\perp}AQ + P^{\perp}AQ^{\perp})
$$

= $\delta(PA) + \delta(P^{\perp}AQ) + \delta(P^{\perp}AQ^{\perp})$
= $[PA, J] + \lambda_{PA}I + [P^{\perp}AQ, J] + \lambda_{P^{\perp}AQ}I + [P^{\perp}AQ^{\perp}, T_{P^{\perp}AQ^{\perp}}] + \lambda_{P^{\perp}AQ^{\perp}I}$
= $PAJ - JPA + P^{\perp}AQJ - JP^{\perp}AQ + [P^{\perp}AQ^{\perp}, T_{P^{\perp}AQ^{\perp}}] + \lambda_{A}I$
= $PAJ - JAQ + P^{\perp}AQJ - JPAQ^{\perp} + [P^{\perp}AQ^{\perp}, T_{P^{\perp}AQ^{\perp}}] + \lambda_{A}I,$ (3.6)

 \circledcirc Springer

where $\lambda_A = \lambda_{PA} + \lambda_{P^{\perp}AO} + \lambda_{P^{\perp}AO^{\perp}}$. Multiplying [\(3.6\)](#page-11-3) by *P* on the left and by *Q* on the right, we have

$$
P\delta(A)Q = P[A, J]Q + \lambda PQ,
$$

that is,

$$
P(\delta(A) - [A, J] - \lambda_A I)Q = 0.
$$

By the arbitrariness of *P* and *Q*, it follows that $\delta(A) = [A, J] + \lambda_A I$, where *J* is a fixed element and λ_A is depends on *A*. By the uniqueness of τ , we know that $\tau(A) = \lambda_A I$ and τ is a linear mapping from *A* into F*I* vanishing on every double commutator, which means that δ is a Lie triple derivation that δ is a Lie triple derivation.

Corollary 3.2 *Let X be a Banach space of dimension at least* 3 *and A* ⊆ *B*(*X*) *be a non-unital standard operator algebra. If* δ *is a local Lie triple derivation* δ *from A into B*(*X*)*, then* δ *is a Lie triple derivation.* **Corollary 3.2** Let *X* be a Banach space of dimension at least 3 and $A \subseteq B(X)$ be a non-unital standard operator algebra. If δ is a local Lie triple derivation δ from A into $B(X)$, then δ is a Lie triple deriva

standard operator algebra. If δ *is a*
a Lie triple derivation.
Proof Denote the unital algebra *A*
Define a linear mapping $\widetilde{\delta}$ from \widetilde{A} Define a linear mapping δ from \tilde{A} into $B(X)$ by

$$
\delta(A + \lambda I) = \delta(A)
$$

for every A in A and λ in $\mathbb F$.

Since δ is a local Lie triple derivation from *A* into *B*(*X*), for each $A \in \mathcal{A}$ and $\lambda \in \mathbb{F}$, there exists a Lie triple derivation δ_A such that $\delta(A) = \delta_A(A)$. Define a linear mapping δ_A from for
 $\frac{eX}{\tilde{\mathcal{A}}}$ $\mathcal A$ into $B(X)$ by

$$
\delta_A(B + \lambda I) = \delta_A(B)
$$

for every *B* in *A* and λ in \mathbb{F} . It is easy to show that $\tilde{\delta}_A$ is also a Lie triple derivation. Moreover, we have

$$
\widetilde{\delta}(A + \lambda I) = \delta(A) = \delta_A(A) = \widetilde{\delta_A}(A + \lambda I).
$$

we have
 $\widetilde{\delta}(A + \lambda I) = \delta(A) = \delta_A(A) = \widetilde{\delta_A}(A + \lambda I).$

It means that $\widetilde{\delta}$ is a local Lie triple derivation from \widetilde{A} into $B(X)$. By the result of the case $\delta(A)$
It means that δ is a local l
that *A* contains the unit, δ that A contains the unit, δ is a Lie triple derivation. Hence δ is also a Lie triple derivation. \Box

4 2-Local Lie triple derivations

In this section, we study the 2-local Lie triple derivations and the following theorem is the main result.

Theorem 4.1 Let X be a Banach space and $A \subseteq B(X)$ be a unital standard operator algebra. *If* δ *is a* 2*-local Lie triple derivation from* $\mathcal A$ *into* $B(X)$ *, then* $\delta = d + \tau$ *, where d is a derivation and* τ *is a homogeneous mapping from A into* \mathbb{F} *I such that* $\tau(A + B) = \tau(A)$ *for each A*, *B in A where B is a sum of double commutators.*

Proof Similarly to the proof of Theorem 3.1, we can show that δ has a unique decomposition at each point *A* in *A*, i.e.

$$
\delta(A) = \delta_A(A) = d_A(A) + \tau_A(A),
$$

where δ_A is a Lie triple derivation, d_A is a derivation and τ_A is a linear mapping from A into \mathbb{F} *I* such that $\tau_A[[X, Y], Z] = 0$ each *X*, *Y* and *Z* in *A*.

 \mathcal{L} Springer

 \Box

Thus, we can define

$$
d(A) = d_A(A)
$$
 and $\tau(A) = \tau_A(A)$

for every *A* in *A*.

In the following we show that *d* is a derivation and τ is a homogeneous mapping. Given *A* and *B* in *A*, there exists a Lie triple derivation $\delta_{A,B}$ from *A* into *B(X)* such that

$$
\delta(A) = \delta_{A,B}(A) = d_{A,B}(A) + \tau_{A,B}(A),
$$

and

$$
\delta(B) = \delta_{A,B}(B) = d_{A,B}(B) + \tau_{A,B}(B),
$$

where $d_{A,B}$ + $\tau_{A,B}$ is the standard decomposition of $\delta_{A,B}$. By the uniqueness of the decomposition, $d(A) = d_{A,B}(A)$ and $d(B) = d_{A,B}(B)$. Hence *d* is a 2-local derivation and by [\[10,](#page-13-5) Theorem 3.1], we know *d* is a derivation from *A* into $B(X)$.

For every *A* in *A* and λ in \mathbb{F} , there exists a Lie triple derivation $\delta_{A,\lambda A}$ from *A* into $B(X)$ such that

$$
\delta(A) = \delta_{A,\lambda A}(A) \text{ and } \delta(\lambda A) = \delta_{A,\lambda A}(\lambda A).
$$

It follows that δ is homogeneous, and so is τ .

Moreover, for each *A*, *B* in *A* where *B* is a sum of double commutators, there is a linear mapping $\tau_{A, A+B}$ from *A* into F*I* vanishing on every double commutator such that

$$
\tau(A + B) = \tau_{A,A+B}(A + B) = \tau_{A,A+B}(A) = \tau(A).
$$

Acknowledgements The authors thank the referee for his or her suggestions. This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11801342, 11801005); Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693); Scientific research plan projects of Shannxi Education Department (Grant No. 19JK0130).

References

- 1. M. Ashraf,M. Akhtar, Characterizations of Lie triple derivations on generalized matrix algebras. Commun. Algebra **48**, 3651–3660 (2020)
- 2. S. Ayupov, K. Kudaybergenov, 2-Local derivations on von Neumann algebras. Positivity **19**, 445–455 (2014)
- 3. D. Benkoviˇc, Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra **63**, 141–165 (2015)
- 4. L. Chen, F. Lu, T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces. Integral Equ. Oper. Theory **77**, 109–121 (2013)
- 5. L. Chen, F. Lu, Local Lie derivations of nest algebras. Linear Algebra Appl. **475**, 62–72 (2015)
- 6. P. Chernoff, Representations, automorphism and derivation of some operator algebras. J. Funct. Anal. **12**, 275–289 (1973)
- 7. W. Cheung, Lie derivations of triangular algebra. Linear Multilinear Algebra **512**, 299–310 (2003)
- 8. E. Christensen, Derivations of nest algebras. Math. Ann. **229**, 155–161 (1977)
- 9. J. He, J. Li, G. An, W. Huang, Characterizations of 2-local derivations and local Lie derivations on some algebras. Sib. Math. J. **59**, 721–730 (2018)
- 10. J. He, H. Zhao, G. An, W. Qian, Derivations, local and 2-local derivations of standard operator algebras. Acta Math. Sci., submitted. [arXiv:2203.05268](http://arxiv.org/abs/2203.05268)
- 11. P. Ji, L. Wang, Lie triple derivations of TUHF algebras. Linear Algebra Appl. **403**, 399–408 (2005)
- 12. B. Johnson, Local derivations on*C*∗-algebras are derivations. Trans. Am. Math. Soc. **353**, 313–325 (2001)
- 13. R. Kadison, Derivations of operator algebras. Ann. Math. **83**, 280–293 (1966)
- 14. R. Kadison, Local derivations. J. Algebra **130**, 494–509 (1990)
- 15. D. Larson, A. Sourour, Local derivations and local automorphisms. Proc. Symp. Pure Math. **51**, 187–194 (1990)
- 16. L. Liu, 2-Local lie derivations of nest subalgebras of factors. Linear Multilinear Algebra **67**, 448–455 (2019)
- 17. L. Liu, On local lie derivations of generalized matrix algebra. Banach J. Math. Anal. **14**, 249–268 (2020)
- 18. D. Liu, J. Zhang, Local Lie derivations on certain operator algebras. Ann. Funct. Anal. **8**, 270–280 (2017)
- 19. D. Liu, J. Zhang, Local Lie derivations of factor von Neumann algebras. Linear Algebra Appl. **519**, 208–218 (2017)
- 20. F. Lu, Lie derivation of certain CSL algebras. Israel J. Math. **155**, 149–156 (2006)
- 21. F. Lu, B. Liu, Lie derivations of reflexive algebras. Integral Equ. Oper. Theory **64**, 261–271 (2009)
- 22. M. Mathieu, A. Villena, The structure of Lie derivations on *C*∗-algebras. J. Funct. Anal. **202**, 504–525 (2003)
- 23. C. Miers, Lie triple derivations of von Neumann algebras. Proc. Am. Math. Soc. **71**, 57–61 (1978)
- 24. S. Sakai, Derivations of *W*∗-algebras. Ann. Math. **83**, 273–279 (1966)
- 25. P. Šemrl, Local automorphisms and derivations on *B*(*H*). Proc. Am. Math. Soc. **125**, 2677–2680 (1997)
- 26. B.A. Wani, Multiplicative Lie triple derivations on standard operator algebras. Commun. Math. (2021). <https://doi.org/10.2478/cm-2021-0012>
- 27. W. Yu, J. Zhang, Lie triple derivations of CSL algebras. Int. J. Theor. Phys. **52**, 2118–2127 (2013)
- 28. J. Zhang, B. Wu, H. Cao, Lie triple derivations of nest algebras. Linear Algebra Appl. **416**, 559–567 (2006)
- 29. J. Zhu, C. Xiong, Bilocal derivations of standard operator algebras. Proc. Am. Math. Soc. **125**, 1367–1370 (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.