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Abstract
Let X be a Banach space over the field F (R or C). Denote by B(X) the set of all bounded
linear operators on X and by F(X) the set of all finite rank operators on X . A subalgebra
A ⊆ B(X) is called a standard operator algebra if F(X) ⊆ A. Suppose that δ is a mapping
from A into B(X). First, we prove that if δ is a Lie triple derivation, then δ is standard.
Next, we show that if δ is a local Lie triple derivation and dim(X) ≥ 3, then δ is a Lie triple
derivation. Finally, we prove that if δ is a 2-local Lie triple derivation, then δ = d+τ , where d
is a derivation, and τ is a homogeneous mapping fromA into FI such that τ(A+ B) = τ(A)

for each A, B in A where B is a sum of double commutators.

Keywords Lie triple derivation · Local Lie triple derivation · 2-Local Lie triple derivation ·
Standard operator algebra

Mathematics Subject Classification 46L57 · 47B47 · 47C15 · 47L35

1 Introduction

Let A be an associative algebra over the field F (R or C) and M be an A-bimodule. A
linear mapping δ from A into M is called a derivation if δ(AB) = δ(A)B + Aδ(B) for
each A, B in A, and δ is called an inner derivation if there exists an element M in M such
that δ(A) = AM − MA for every A in A. Clearly, every inner derivation is a derivation. In
[13, 24], Kadison and Sakai independently proved that every derivation on a von Neumann
algebra is inner. In [6], Chernoff proved that every derivation from a standard operator algebra
A into B(X) is inner for a Banach space X . In [8], Christensen showed that every derivation
on nest algebras is inner.
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In 1990, Kadison [14], Larson and Sourour [15] independently introduced the concept of
local derivations. A linear mapping δ from A intoM is called a local derivation if for every
A inA there exists a derivation δA (depending on A) fromA intoM such that δ(A) = δA(A).
In [14], Kadison proved that every continuous local derivation from a von Neumann algebra
into its dual Banach module is a derivation. In [15], Larson and Sourour proved that every
local derivation on B(X) is a derivation for a Banach space X . In [12], Johnson proved that
every local derivation from a C∗-algebra into its Banach bimodule is a derivation. In [29],
Zhu and Xiong proved that every local derivation from a unital standard operator algebra A
into B(X) is a derivation.

In 1997, Šemrl [25] introduced the concept of 2-local derivations. A mapping (not nec-
essarily linear) δ from A into M is called a 2-local derivation if for each A, B in A, there
exists a derivation δA,B (depending on A, B) from A intoM such that δ(A) = δA,B(A) and
δ(B) = δA,B(B). In [25], Šemrl proved that every 2-local derivation on B(H) is a derivation
for a separable Hilbert space H . In [2], Ayupov and Kudaybergenov proved that every 2-local
derivation on a von Neumann algebra is a derivation. In [10], we showed that every 2-local
derivation from a standard operator algebra A into B(X) is a derivation.

A linear mapping δ from A intoM is called a Lie derivation if δ([A, B]) = [δ(A), B] +
[A, δ(B)] for each A, B inA, where [A, B] = AB− BA is called a commutator onA. A Lie
derivation δ is said to be standard if it can be decomposed as δ = d+τ , where d is a derivation
from A into M and τ is a linear mapping from A into Z(M,A) with τ([A, B]) = 0 for
each A, B in A, where Z(M,A) = {M ∈ M : MA = AM for every A in A}.

An interesting problem is to identify those algebras on which every Lie derivation is
standard. In [22], Mathieu and Villena proved that every Lie derivation on a C∗-algebra is
standard. In [7], Cheung characterized Lie derivations on triangular algebras. In [20, 21],
Lu studied Lie derivations on CDCSL algebras and reflexive algebras, respectively. In [3],
Benkovič proved that every Lie derivation on a matrix algebra Mn(A) is standard, where
n ≥ 2 and A is a unital algebra.

Similarly to local derivations and 2-local derivations, in [4], Chen et al. introduced the
concepts of local Lie derivations and 2-local Lie derivations. A linear mapping δ from A
into M is called a local Lie derivation if for every A in A there exists a Lie derivation δA
(depending on A) from A into M such that δ(A) = δA(A). A mapping (not necessarily
linear) δ from A intoM is called a 2-local Lie derivation if for every A, B in A there exists
a Lie derivation δA,B (depending on A, B) from A into M such that δ(A) = δA,B(A) and
δ(B) = δA,B(B).

In [4], Chen et al. study local Lie derivations and 2-local Lie derivations on B(X). In [5],
Chen and Lu proved that every local Lie derivation on nest algebras is a Lie derivation. In
[18, 19], Liu and Zhang proved that under certain conditions every local Lie derivation on
triangular algebras is a Lie derivation, and every local Lie derivation on factor von Neumann
algebras with dimension exceeding 1 is a Lie derivation. In [9], He et al. proved that every
local Lie derivation on some algebras such as finite von Neumann algebras, nest algebras,
Jiang–Su algebras and UHF algebras is a Lie derivation, and every 2-local Lie derivation on
on some algebras such as factor von Neumann algebras, Jiang–Su algebra and UHF algebras
is also a Lie derivation. In [16, 17], Liu proved that under certain conditions every local
Lie derivation on generalized matrix algebras is a Lie derivation, and he showed that every
2-local Lie derivation of nest subalgebras of factors is a Lie derivation.

A linear mapping δ from A into M is a Lie triple derivation if δ([[A, B],C]) =
[[δ(A), B],C]+[[A, δ(B)],C]+[[A, B], δ(C)] for each A, B andC inA.Wecall [[A, B],C]
a double commutator on A. It is clear that every Lie derivation is a Lie triple derivation. A
Lie triple derivation δ from A into M is said to be standard if it can be decomposed as
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δ = d + τ , where d is a derivation from A into M and τ is a linear mapping from A into
Z(M,A) with τ([[A, B],C]) = 0 for each A, B and C in A.

Similarly to Lie derivations, the authors always consider the problem of identifying those
algebras on which every Lie triple derivation is standard. In [23], Miers proved that if A is a
vonNeumann algebrawith no central abelian summands, then everyLie triple derivation onA
is standard. In [11], Ji and Wang proved that every continuous Lie triple derivation on TUHF
algebras is standard. In [28], Zhang et al. proved that if N is a nest on a complex separable
Hilbert spaceH, then every Lie triple derivation on the nest algebraAlgN is standard. In [27],
Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras. In
[3], Benkovič showed that if A is a unital algebra with a nontrivial idempotent, then under
suitable assumptions every Lie triple derivation d onA is of the form d = � + δ + τ , where
� is a derivation on A, δ is a Jordan derivation on A and τ is a linear mapping from A into
its centerZ(A) that vanishes on [[A,A],A]. In [1], Ashraf and Akhtar proved that every Lie
triple derivation on a generalized matrix algebra is standard. In [26], Wani proved that every
Lie triple derivation from standard operator algebra into itself is standard.

Now we give the concepts of local Lie triple derivations and 2-local Lie triple derivations.
A linear mapping δ from A into M is called a local Lie triple derivation if for every A
in A there exists a Lie triple derivation δA (depending on A) from A into M such that
δ(A) = δA(A). A mapping (not necessarily linear) δ from A into M is called a 2-local Lie
triple derivation if for every A, B in A there exists a Lie triple derivation δA,B (depending
on A, B) from A into M such that δ(A) = δA,B(A) and δ(B) = δA,B(B).

In this paper, we always suppose that X is a Banach space over the field F (R or C).
Denote by B(X) the set of all linear mappings on X and by F(X) the set of all finite rank
operators on X . A subalgebraA ⊆ B(X) is called a standard operator algebra if F(X) ⊆ A.
Suppose that δ is a mapping from A into B(X). In Sect. 2, we prove that if δ is a Lie triple
derivation, then δ is standard. In Sect. 3, we prove that if δ is a local Lie triple derivation and
dim(X) ≥ 3, then δ is a Lie triple derivation. In Sect. 4, we prove that if δ is a 2-local Lie
triple derivation, then δ = d + τ , where d is a derivation and τ is a homogeneous mapping
from A into FI such that τ(A + B) = τ(A) for each A, B in A where B is a sum of double
commutators.

We shall review some simple properties of rank one operators and finite rank operators.
Denote by X∗ the set of all bounded linear functionals on X . For each x in X and f in
X∗, one can define an operator x ⊗ f by (x ⊗ f )y = f (y)x for every y in X . Obviously,
x ⊗ f ∈ B(X). If both x and f are nonzero, then x ⊗ f is an operator of rank one. The
following properties are evident and will be used frequently in this paper.

Proposition 1.1 Suppose that X is a Banach space and A ⊆ B(X) is a standard operator
algebra. For each x, y in X, f , g in X∗ and A, B in B(X), the following statements hold:

(1) (x ⊗ f )A = x ⊗ ( f A) and A(x ⊗ f ) = (Ax) ⊗ f ;
(2) (x ⊗ f )(y ⊗ g) = f (y)(x ⊗ g);
(3) Z(B(X),A) = FI .

2 Lie triple derivations

In this section, we choose x0 ∈ X and f0 ∈ X∗ such that f0(x0) = 1, and denote by I the
unit operator in B(X). For the convenience of expression, we give some symbols firstly. Let
P1 = x0 ⊗ f0 and P2 = I − P1. It is easy to see that P1 and P2 are two idempotents in B(X).
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Denote PiAPj and Pi B(X)Pj by Ai j and B(X)i j , respectively, denote Pi APj by Ai j for
every A in A, where 1 ≤ i, j ≤ 2.

Lemma 2.1 P1AP1 = f0(Ax0)P1 = f0(P1AP1x0)P1 for every A in B(X). Moreover,
B(X)11 is commutative.

Proof For every A in B(X), by Proposition 1.1 (1) and (2), we have

P1AP1 = x0 ⊗ f0Ax0 ⊗ f0 = f0(Ax0)x0 ⊗ f0 = f0(Ax0)P1. (2.1)

Replacing A by P1AP1 in (2.1), we get

P1AP1 = P1P1AP1P1 = f0(P1AP1x0)P1.

It follows that B(X)11 is commutative. �	
Lemma 2.2 (1) If B A21 = 0 for every A21 in A21, then BP2 = 0.
(2) If A12B = 0 for every A12 in A12, then P2B = 0.

Proof (1) Let A21 = P2x ⊗ f0P1, where x is an arbitrary element in X . We obtain

0 = BP2x ⊗ f0P1x0 = f0(P1x0)BP2x = BP2x .

It follows that BP2 = 0.
(2) Let A12 = P1x0 ⊗ f P2, where f is an arbitrary element in X∗. We obtain

0 = P1x0 ⊗ f P2Bx = f (P2Bx)P1x0 = f (P2Bx)x0

for every x in X . It follows that f (P2Bx) = 0 for each f ∈ X∗ and x in X . Thus, P2B = 0.
�	

Next we consider Lie triple derivations from a unital standard operator algebra A into
B(X). The following theorem is the main result in this section.

Theorem 2.3 Let X be a Banach space andA ⊆ B(X) be a unital standard operator algebra.
If δ is a Lie triple derivation δ from A into B(X), then δ is standard.

Before we prove Theorem 2.3, we present some lemmas.

Lemma 2.4 δ(I ) ∈ FI .

Proof Let P be an idempotent in A. We have

0 = δ([[I , P], P]) = [[δ(I ), P], P] = [δ(I )P − Pδ(I ), P] = δ(I )P + Pδ(I ) − 2Pδ(I )P.

Multiplying the above equation by P from the right, we obtain Pδ(I )P = δ(I )P . It means
that (I − P)δ(I )P = 0. Thus, P1δ(I )P2 = P2δ(I )P1 = 0; it follows that δ(I ) ∈ B(X)11 +
B(X)22. By Lemma 2.1, we know that A11 is commutative, so [δ(I ), A11] = 0 for every
A11 in A11. In the following, we show

[δ(I ), A22] = [δ(I ), A12] = [δ(I ), A21] = 0

for every A22 in A22, A12 in A12 and A21 in A21.
For each A, B in A, we have

[[A, B], δ(I )] = δ([[A, B], I ]) − [[A, δ(B)], I ] − [[δ(A), B], I ] = 0.
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By A12 = [P1, A12] and A21 = [A21, P1], we have
[δ(I ), A12] = [δ(I ), A21] = 0. (2.2)

By (2.2), it follows that

0 = [δ(I ), A22B21] = [δ(I ), A22]B21 + A22[δ(I ), B21] = [δ(I ), A22]B21

for every A22 in A22 and B21 in A21. By Lemma 2.2, we have [δ(I ), A22]P2 = 0. By
δ(I ) ∈ B(X)11 + B(X)22, we obtain [δ(I ), A22] ∈ B(X)22, it follows that [δ(I ), A22] = 0.
Hence by Proposition 1.1 (3), we have δ(I ) ∈ Z(B(X),A) = FI . �	
Lemma 2.5 P1δ(P1)P1 + P2δ(P1)P2 ∈ FI .

Proof By Lemma 2.1, we know that P1δ(P1)P1 = λP1, where λ = f0(P1δ(P1)P1x0) ∈ F.
Let x be in X and let P2x ⊗ f0P1 = A21. It follows that

−δ(A21) = δ([[P2, A21], P2])
= [[δ(P2), A21], P2] + [[P2, δ(A21)], P2] + [[P2, A21], δ(P2)]
= −A21δ(P2)P2 − P2δ(P2)A21 + A21δ(P2) + 2P2δ(A21)P2

− δ(A21)P2 − P2δ(A21) + A21δ(P2) − δ(P2)A21. (2.3)

Multiplying (2.3) by P2 from the left and by P1 from the right, we obtain

P2δ(P2)A21 = A21δ(P2)P1.

That is,

P2δ(P2)P2x ⊗ f0P1 = P2x ⊗ f0P1δ(P2)P1. (2.4)

By letting both sides of (2.3) act on x0 in X , we have

f0(P1x0)P2δ(P2)P2x = f0(P1δ(P2)P1x0)P2x .

Since f0(P1x0) = f0(x0) = 1, it follows that

P2δ(P2)P2 = f0(P1δ(P2)P1x0)P2. (2.5)

By Lemma 2.4, we know that δ(I ) ∈ FI . It follows that

P2δ(I )P2 = δ(I )P2 = δ(I ) f0(x0)P2 = f0(δ(I )x0)P2 = f0(P1δ(I )P1x0)P2.

Now replacing δ(P2) by δ(I ) − δ(P1) in (2.5), we obtain

P2δ(P1)P2 = f0(P1δ(P1)P1x0)P2 = λP2.

This implies P1δ(P1)P1 + P2δ(P1)P2 = λ(P1 + P2) = λI . �	
Let G = P1δ(P1)P2 − P2δ(P1)P1 and define a mapping � from A into B(X) by

�(A) = δ(A) − [A,G]
for every A in A. Obviously, � is also a Lie triple derivation from A into B(X). Moreover,

�(P1) = δ(P1) − [P1,G] = P1δ(P1)P1 + P2δ(P1)P2

and, by Lemma 2.5, we know that �(P1) ∈ FI . In Lemmas 2.6, 2.7 and 2.8, we show some
properties of �.
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Lemma 2.6 �(Ai j ) ⊆ B(X)i j , where 1 ≤ i, j ≤ 2 and i 
= j .

Proof Since �(P1) ∈ FI , for each A12 in A12, we have

�(A12) = �([[A12, P1], P1])
= [[�(A12), P1], P1] + [[A12,�(P1)], P1] + [[A12, P1],�(P1)]
= [[�(A12), P1], P1]
= P1�(A12)P2 + P2�(A12)P1. (2.6)

In the following, we show that P2�(A12)P1 = 0.
Let B12 be in A12, then [A12, B12] = 0. Thus,

0 = �(0) = �([[A12, B12],C]) = [[�(A12), B12],C] + [[A12,�(B12)],C]
= [[�(A12), B12] + [A12,�(B12)],C]

for every C in A. It means that J = [�(A12), B12] + [A12,�(B12)] ∈ FI . Since A12 =
[P1, A12], we have
[�(A12), B12] = J − [A12,�(B12)] = J − [[P1, A12],�(B12)]

= J − (�([[P1, A12], B12]) − [[�(P1), A12], B12] − [[P1,�(A12)], B12])
= J + [[P1,�(A12)], B12].

By (2.6), we have

[P1�(A12)P2 + P2�(A12)P1, B12] = J + [[P1, P1�(A12)P2 + P2�(A12)P1], B12]
= J + [P1�(A12)P2 − P2�(A12)P1, B12].

Hence

[P2�(A12)P1, B12] = 1

2
J ∈ FI .

It is well known that [P2�(A12)P1, B12] = 0. Thus, P2�(A12)B12 = B12�(A12)P1 = 0
for every B12 in A12. By Lemma 2.2, we know that P2�(A12)P1 = 0. Similarly, we have
�(A21) ⊆ B(X)21. �	
Lemma 2.7 �(A11) ⊆ FI .

Proof For every A11 in A11, by Lemma 2.1, we have

�(A11) = �(P1A11P1) = �( f0(A11x0)P1) = f0(A11x0)�(P1).

Since �(P1) ∈ FI , it follows that �(A11) ∈ FI . �	
Lemma 2.8 �(A22) − f0(�(A22)x0)I ∈ B(X)22 for every A22 in A22. In particular,
�(P2) = f0(�(P2)x0)I .

Proof Through simple calculation, we get

0 = �([[P1, A22], P1]) = [[P1,�(A22)], P1] = −P1�(A22)P2 − P2�(A22)P1.

It follows that �(A22) ∈ B(X)11 + B(X)22. By Lemma 2.1, we obtain

�(A22) = P1�(A22)P1 + P2�(A22)P2 = f0(�(A22)x0)P1 + P2�(A22)P2,
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that is,

�(A22) − f0(�(A22)x0)I = − f0(�(A22)x0)P2 + P2�(A22)P2 ∈ B(X)22.

Since �(P2) = �(I ) − �(P1) ∈ FI , we have

�(P2) − f0(�(P2)x0)I ∈ FI ∩ B(X)22 = {0}.
Thus, �(P2) = f0(�(P2)x0)I . �	

In the following, we prove Theorem 2.3.

Proof Define two mappings τ and D on from A into B(X) by

τ(A) = f0(P1AP1x0)�(P1) + f0(�(P2AP2)x0)I

and

D(A) = �(A) − τ(A)

for every A in A. It is clear that τ is a linear mapping from A into Z(B(X),A) and D is
a linear mapping from A into B(X). Moreover, according to the previous lemmas and the
definitions of τ and D, we have

(1) D(Ai j ) = �(Ai j ) ∈ B(X)i j for every Ai j in Ai j , where 1 ≤ i, j ≤ 2 and i 
= j ;
(2) D(P1) = D(P2) = D(I ) = 0;
(3) D(A11) = 0 for every A11 in A11;
(4) D(A22) ∈ B(X)22 for every A22 in A22.

To prove that� is standard, it is sufficient to show that D is a derivation and τ([[A, B],C]) =
0 for each A, B and C in A.

In the following we show

D(Ai j Bsk) = D(Ai j )Bsk + Ai j D(Bsk)

for every Ai j in Ai j and Bsk in Ask , where 1 ≤ i, j, s, k ≤ 2.
Since D(Ai j ) ∈ B(X)i j , we have

D(Ai j Bsk) = D(Ai j )Bsk + Ai j D(Bsk)

for j 
= s. Thus, we only need to prove the following 8 cases:

(1) D(A11B11) = D(A11)B11 + A11D(B11);
(2) D(A11B12) = D(A11)B12 + A11D(B12);
(3) D(A12B22) = D(A12)B22 + A12D(B22);
(4) D(A21B11) = D(A21)B11 + A21D(B11);
(5) D(A22B21) = D(A22)B21 + A22D(B21);
(6) D(A22B22) = D(A22)B22 + A22D(B22);
(7) D(A12B21) = D(A12)B21 + A12D(B21);
(8) D(A21B12) = D(A21)B12 + A21D(B12).

Since D(A11) = 0 for every A11 in A11, case (1) is trivial.
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For each A, B in A, by �(A) − D(A) = τ(A) ∈ Z(B(X),A), we have [�(A), B] =
[D(A), B]. Therefore

D(A11B12) = �(A11B12) = −�([[P1, B12], A11])
= −[[P1,�(B12)], A11] − [[P1, B12],�(A11)]
= −[�(B12), A11] − [B12,�(A11)]
= [A11, D(B12)] + [D(A11), B12]
= A11D(B12) + D(A11)B12

for each A11 in A11 and B12 in A12. Thus, case (2) holds. The cases (3), (4) and (5) are
similar to case (2), so we omit the proofs.

For every C21 in A21, according to case (5), we have the following two equations:

D(A22B22C21) = D(A22B22)C21 + A22B22D(C21) (2.7)

and

D(A22B22C21) = D(A22)B22C21 + A22D(B22C21)

= D(A22)B22C21 + A22D(B22)C21 + A22B22D(C21) (2.8)

for each A22, B22 in A22. Comparing (2.7) and (2.8), we have

D(A22B22)C21 = D(A22)B22C21 + A22D(B22)C21.

It follows that (D(A22B22) − D(A22)B22 − A22D(B22))C21 = 0 for every C21 in A21. By
Lemma 2.2 and D(A22) ∈ A22, we know that

D(A22B22) − D(A22)B22 − A22D(B22) = 0.

Finally, we show cases (7) and (8). Let A12 be inA12 and B21 be inA21. Through simple
calculation, we obtain

�([[A12, P2], B21]) − D([[A12, P2, ], B21])
= [[�(A12), P2], B21] + [[A12, P2],�(B21)] − D([[A12, P2, ], B21])
= [�(A12), B21] + [A12,�(B21)] − D[A12, B21]
= [D(A12), B21] + [A12, D(B21)] − D(A12B21 − B21A12)

= D(A12)B21 − B21D(A12) + A12D(B21) − D(B21)A12 − D(A12B21) + D(B21A12)

= (D(A12)B21+A12D(B21)−D(A12B21))+(D(B21A12)−B21D(A12)−D(B21)A12).

Since �([A12, B21]) − D([A12, B21]) belongs to FI , we may assume that

�([A12, B21]) − D([A12, B21]) = λI

holds for some λ in F. That is,

λI = (D(A12)B21 + A12D(B21) − D(A12B21))

+ (D(B21A12) − B21D(A12) − D(B21)A12). (2.9)

Since D(Ai j ) ∈ B(X)i j , we get

D(A12)B21 + A12D(B21) − D(A12B21) ∈ B(X)11

and

D(B21A12) − B21D(A12) − D(B21)A12 ∈ B(X)22.
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Multiplying (2.9) by P1 and P2 respectively from the right, we obtain the following two
equations:

D(A12B21) = D(A12)B21 + A12D(B21) − λP1 (2.10)

and

D(B21A12) = B21D(A12) + D(B21)A12 + λP2. (2.11)

By case (2) and equation (2.10), we obtain

D(A12B21A12)

= D(A12B21)A12 + A12B21D(A12)

= D(A12)B21A12 + A12D(B21)A12 − λA12 + A12B21D(A12). (2.12)

By case (3) and equation (2.9), we obtain

D(A12B21A12)

= D(A12)B21A12 + A12D(B21A12)

= D(A12)B21A12 + A12D(B21)A12 + A12B21D(A12) + λA12. (2.13)

Comparing (2.12) and (2.13), we have λA12 = 0. Thus, λ = 0. By (2.10) and (2.9), cases
(7) and (8) hold.

By cases (1)–(8), this implies immediately that D is a derivation. Now we show that
τ([[A, B],C]) = 0 for each A, B and C in A. Indeed,

τ([[A, B],C]) = �([[A, B],C]) − D([[A, B],C])
= [[�(A), B],C] + [[A,�(B)],C] + [[A, B],�(C)] − D([[A, B],C])
= [[D(A), B],C] + [[A, D(B)],C] + [[A, B], D(C)] − D([[A, B],C])
= 0.

It follows that �(A) = D(A) + τ(A) is a standard Lie triple derivation from A into B(X).
Define a linear mapping from A into B(X) by

d(A) = D(A) + [A,G]
for every A in A. Thus, we have

δ(A) = �(A) + [A,G] = D(A) + τ(A) + [A,G] = d(A) + τ(A),

where d is a derivation fromA into B(X) and τ is a linear mapping fromA intoZ(B(X),A)

such that τ([[A, B],C]) = 0 for each A, B and C in A. �	
For a non-unital standard operator algebra, the following result holds.

Corollary 2.9 Let X be a Banach space and A ⊆ B(X) be a non-unital standard operator
algebra. If δ is a Lie triple derivation δ from A into B(X), then δ is standard.

Proof Denote the unital algebraA⊕FI by ˜A. Thus, ˜A is a unital standard operator algebra.
Define a linear mapping˜δ from ˜A into B(X) by

˜δ(A + λI ) = δ(A)

for every A in A and λ in F. Through a simple calculation, it is easy to show that˜δ is also a
Lie triple derivation. By Theorem 2.3, we know that˜δ is standard, and so is δ. �	
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3 Local Lie triple derivations

In this section, we study local Lie triple derivations and the following theorem is the main
result.

Theorem 3.1 Let X be a Banach space of dimension at least 3 and A ⊆ B(X) be a unital
standard operator algebra. If δ is a local Lie triple derivation δ from A into B(X), then δ is
a Lie triple derivation.

Proof For every A in B(X), there is a Lie triple derivation δA from A into B(X) such that
δ(A) = δA(A). By Theorem 2.3, we know δA(A) is standard, then there exist a derivation
dA from A into B(X) and a scalar operator τA(A) in FI such that δ(A) = dA(A) + τA(A).

By [6, Corollary 3.4], we know that dA is an inner derivation, then there exists an element
TA in B(X) such that dA(A) = [A, TA]. Thus, we have

δ(A) = dA(A) = [A, TA] + τA(A).

We claim that τA(A) is unique. In fact, if

δ(A) = [A, SA] + τ ′
A(A)

for some SA in B(X) and τ ′
A(A) in FI , then

[A, SA − TA] = τA(A) − τ ′
A(A) = λI

for some λ in F. It is well known that τA(A) = τ ′
A(A). Hence we can define a mapping from

A into FI by

τ(A) = τA(A)

for every A in A. Moreover, by the definition of τ and Theorem 2.3, we know that τ(A) =
τA(A) = 0 if A is a sum of double commutators.

For each x in X and f in X∗, define ψ(x, f ) = τ(x ⊗ f ). Then we have

δ(x ⊗ f ) = [x ⊗ f , Tx⊗ f ] + ψ(x, f ) (3.1)

for some Tx⊗ f in B(X). In the following we show that ψ(x, f ) is a bilinear mapping.
Firstly, we show the homogeneity of ψ . For each x in X , f in X∗ and λ in F, by (3.1), we

have

δ(x ⊗ f ) = [x ⊗ f , Tx⊗ f ] + ψ(x, f ) and δ(λx ⊗ f ) = [λx ⊗ f , Tλx⊗ f ] + ψ(λx, f ).

By δ(λx ⊗ f ) = λδ(x ⊗ f ), we infer

[λx ⊗ f , Tx⊗ f − Tλx⊗ f ] = ψ(λx, f ) − λψ(x, f ) ∈ FI .

Thus, λψ(x, f ) = ψ(λx, f ). This proved that ψ is homogenous in the first variable. In the
same way, we can show that ψ is homogenous in the second variable.

Secondly, we show that ψ(x, f ) is biadditive. We note that ψ(x, f ) = 0 for x in X and
f in X∗ with f (x) = 0. Indeed, we may choose an element z in X such that f (z) = 1, then
x⊗ f = [[x⊗ f , z⊗ f ], z⊗ f ] is a double commutator and henceψ(x, f ) = τ(x⊗ f ) = 0.

Let x1, x2 be in X and f be in X∗. If both x1 and x2 belong to ker f , then

ψ(x1, f ) = ψ(x2, f ) = ψ(x1 + x2, f ) = 0
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and so

ψ(x1 + x2, f ) = ψ(x1, f ) + ψ(x2, f ).

If one of x1 and x2 is not in ker f , then dim(span{x1, x2} ∩ ker f ) ≤ 1. Since dim(X) ≥ 3,
we know that dim(ker f ) ≥ 2. Thus, we can take y ∈ ker f such that y /∈ span{x1, x2}. By
(3.1), we have the following equations:

δ(x1 ⊗ f )y = ψ(x1, f )y + μ1x1 δ(x2 ⊗ f )y = ψ(x2, f )y + μ2x2

and

δ((x1 + x2) ⊗ f )y = ψ(x1 + x2, f )y + μ(x1 + x2)

for some μ,μ1, μ2 ∈ F. Since δ is an additive mapping, we know that

(ψ(x1 + x2, f ) − ψ(x1, f ) − ψ(x2, f ))y = μ1x1 + μ2x2 − μ(x1 + x2).

Since y /∈ span {x1, x2}, it follows that
ψ(x1 + x2, f ) = ψ(x1, f ) + ψ(x2, f ).

It means that ψ is additive in the first variable.
Let f1, f2 be in X∗ and x be in X . If x ∈ ker f1 ∩ ker f2, then

ψ(x, f1 + f2) = ψ(x, f1) = ψ(x, f2) = 0

and so

ψ(x, f1 + f2) = ψ(x, f1) + ψ(x, f2).

If x /∈ ker f1 ∩ ker f2, then we can take z ∈ ker f1 ∩ ker f2 which is linearly independent of
x , By (3.1), we have

δ(x ⊗ f1)z = ψ(x, f1)z + λ1x δ(x ⊗ f2)z = ψ(x, f2)z + λ2x

and

δ(x ⊗ ( f1 + f2))z = ψ(x, f1 + f2)z + λx

for some λ, λ1, λ2 ∈ F. Since δ is an additive mapping, we know that

(ψ(x, f1 + f2) − ψ(x, f1) − ψ(x, f2))z = (λ1 + λ2 − λ)x .

Since z and x are linearly independent, it follows that

ψ(x, f1 + f2) = ψ(x, f1) + ψ(x, f2).

The next goal is to show that there is an element J in B(X) such that

δ(x ⊗ f ) = [x ⊗ f , J ] + ψ(x, f )

for every rank one operator x ⊗ f in B(X).
For each x in X and f in X∗, define

φ(x, f ) = [x ⊗ f , Tx⊗ f ] = δ(x ⊗ f ) − ψ(x, f ). (3.2)

123



54 G. An et al.

It is easy to see that φ(x, f ) is a bilinear mapping and φ(x, f )ker f ⊆ Fx . Hence by
[21, Proposition 1.1], there are two linear mappings T : X → X and S∗ : X∗ → X∗ such
that

φ(x, f ) = [x ⊗ f , Tx⊗ f ] = T x ⊗ f + x ⊗ S∗ f (3.3)

for each x in X and f in X∗. It follows that

(T + Tx⊗ f )x ⊗ f = x ⊗ (T ∗
x⊗ f − S∗) f (3.4)

for each x in X and f in X∗.
We claim that S∗ = −T ∗. We only have to show that S∗ f (x) = − f (T x) for each x in X

and f in X∗. It is trivial if one of x and f is zero. Suppose that neither of x and f is zero. If
both sides of (3.4) are zeros, then

(T + Tx⊗ f )x = (T ∗
x⊗ f − S∗) f = 0.

It follows that

S∗ f (x) = T ∗
x⊗ f f (x) = f (Tx⊗ f x) = − f (T x).

If both sides of (3.4) are not zeros, then we have

[(T + Tx⊗ f )x ⊗ f ]2 = [x ⊗ (T ∗
x⊗ f − S∗) f ]2,

that is,

f ((T + Tx⊗ f )x)((T + Tx⊗ f )x ⊗ f ) = ((T ∗
x⊗ f − S∗) f )(x)(x ⊗ (T ∗

x⊗ f − S∗) f ).

It follows that

f ((T + Tx⊗ f )x) = ((T ∗
x⊗ f − S∗) f )(x)

and then S∗ f (x) = − f (T x). Consequently, we always have S∗ = −T ∗. By (3.2) and (3.3),
we have

δ(x ⊗ f ) = T x ⊗ f + x ⊗ S∗ f + ψ(x, f ) = [x ⊗ f ,−T ] + ψ(x, f )

for every x ⊗ f in A. Let J = −T and by ψ(x, f ) = τ(x ⊗ f ) ∈ FI , we obtain

δ(A) = [A, J ] + λA I (3.5)

for every A = x ⊗ f in A and some λA ∈ F. Finally, we show that

δ(A) = [A, J ] + λA I

holds for every A in A. Suppose that P, Q are two idempotents of rank one and let P⊥ =
I − P , Q⊥ = I − Q. By Proposition 1.1(1) and (3.5), it follows that

δ(A) = δ(PA + P⊥AQ + P⊥AQ⊥)

= δ(PA) + δ(P⊥AQ) + δ(P⊥AQ⊥)

= [PA, J ] + λPA I + [P⊥AQ, J ] + λP⊥AQ I + [P⊥AQ⊥, TP⊥AQ⊥] + λP⊥AQ⊥ I

= PAJ − J P A + P⊥AQJ − J P⊥AQ + [P⊥AQ⊥, TP⊥AQ⊥] + λA I

= PAJ − J AQ + P⊥AQJ − J P AQ⊥ + [P⊥AQ⊥, TP⊥AQ⊥] + λA I , (3.6)
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where λA = λPA + λP⊥AQ + λP⊥AQ⊥ . Multiplying (3.6) by P on the left and by Q on the
right, we have

Pδ(A)Q = P[A, J ]Q + λPQ,

that is,

P(δ(A) − [A, J ] − λA I )Q = 0.

By the arbitrariness of P and Q, it follows that δ(A) = [A, J ] + λA I , where J is a fixed
element and λA is depends on A. By the uniqueness of τ , we know that τ(A) = λA I and
τ is a linear mapping from A into FI vanishing on every double commutator, which means
that δ is a Lie triple derivation. �	
Corollary 3.2 Let X be a Banach space of dimension at least 3 andA ⊆ B(X) be a non-unital
standard operator algebra. If δ is a local Lie triple derivation δ from A into B(X), then δ is
a Lie triple derivation.

Proof Denote the unital algebraA⊕FI by ˜A. Thus, ˜A is a unital standard operator algebra.
Define a linear mapping˜δ from ˜A into B(X) by

˜δ(A + λI ) = δ(A)

for every A in A and λ in F.
Since δ is a local Lie triple derivation fromA into B(X), for each A ∈ A and λ ∈ F, there

exists a Lie triple derivation δA such that δ(A) = δA(A). Define a linear mapping ˜δA from
˜A into B(X) by

˜δA(B + λI ) = δA(B)

for every B inA and λ in F. It is easy to show that ˜δA is also a Lie triple derivation. Moreover,
we have

˜δ(A + λI ) = δ(A) = δA(A) = ˜δA(A + λI ).

It means that˜δ is a local Lie triple derivation from ˜A into B(X). By the result of the case
that A contains the unit,˜δ is a Lie triple derivation. Hence δ is also a Lie triple derivation. �	

4 2-Local Lie triple derivations

In this section, we study the 2-local Lie triple derivations and the following theorem is the
main result.

Theorem 4.1 Let X be a Banach space andA ⊆ B(X) be a unital standard operator algebra.
If δ is a 2-local Lie triple derivation fromA into B(X), then δ = d+τ , where d is a derivation
and τ is a homogeneous mapping fromA into FI such that τ(A+ B) = τ(A) for each A, B
in A where B is a sum of double commutators.

Proof Similarly to the proof of Theorem 3.1, we can show that δ has a unique decomposition
at each point A in A, i.e.

δ(A) = δA(A) = dA(A) + τA(A),

where δA is a Lie triple derivation, dA is a derivation and τA is a linear mapping fromA into
FI such that τA[[X , Y ], Z ] = 0 each X , Y and Z in A.
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Thus, we can define

d(A) = dA(A) and τ(A) = τA(A)

for every A in A.
In the following we show that d is a derivation and τ is a homogeneous mapping. Given

A and B in A, there exists a Lie triple derivation δA,B from A into B(X) such that

δ(A) = δA,B(A) = dA,B(A) + τA,B(A),

and

δ(B) = δA,B(B) = dA,B(B) + τA,B(B),

where dA,B + τA,B is the standard decomposition of δA,B . By the uniqueness of the decom-
position, d(A) = dA,B(A) and d(B) = dA,B(B). Hence d is a 2-local derivation and by [10,
Theorem 3.1], we know d is a derivation from A into B(X).

For every A in A and λ in F, there exists a Lie triple derivation δA,λA from A into B(X)

such that

δ(A) = δA,λA(A) and δ(λA) = δA,λA(λA).

It follows that δ is homogeneous, and so is τ .
Moreover, for each A, B in A where B is a sum of double commutators, there is a linear

mapping τA,A+B from A into FI vanishing on every double commutator such that

τ(A + B) = τA,A+B(A + B) = τA,A+B(A) = τ(A).
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