

Generalizations of theorems of J. Aczél and R. Ger and T. Kochanek

Marcin Balcerowski¹

Accepted: 14 October 2020 / Published online: 16 January 2022 © Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

We present a result which generalizes a theorem proved by Aczél (Bull Am Math Soc 54:392– 400, 1948). Hence we obtain generalizations of a theorem proved by Ger and Kochanek (Colloq Math 115:87–99, 2009).

Keywords Bisymmetry equation · Mean · Strict mean · Weighted quasi-arithmetic mean

Mathematics Subject Classification 39B12 · 26E60

We start with recalling fundamental notions which will be used in the paper. If $I \subset \mathbb{R}$ is an interval and $M: I^2 \to I$ is a function, then *M* is called a *mean* provided

$$
\min\{x, y\} \le M(x, y) \le \max\{x, y\} \quad \text{for every } x, y \in I. \tag{1}
$$

Let *I* ⊂ ℝ be an interval and let *M* : I^2 → *I* be a mean. We say that the mean *M* is *strict*, if $\min\{x, y\} < M(x, y) < \max\{x, y\}$ for every $x, y \in I$ such that $x \neq y$.

Let *X* be a set. A function $M: X^2 \to X$ is called *reflexive*, if

 $M(x, x) = x$ for every $x \in X$.

Remark 1 Let $I \subset \mathbb{R}$ be an interval. If $M: I^2 \to I$ is a mean, then applying [\(1\)](#page-0-0) with $y = x$ we deduce that the function *M* is reflexive. On the other hand, if $M: I^2 \rightarrow I$ is a reflexive function, strictly increasing with respect to each variable, then *M* is a strict mean.

Let *I* ⊂ ℝ be an interval and let *M* : I^2 → *I* be a mean. We say that *M* is a *weighted quasi-arithmetic mean*, if there exist a $p \in (0, 1)$ and a continuous strictly monotonic function $g: I \to \mathbb{R}$ such that

$$
M(x, y) = g^{-1} \Big(p g(x) + (1 - p) g(y) \Big)
$$
 (2)

for every $x, y \in I$. In this situation the number p is called a *weight* of M and the function g is called a *generator* of M. If M is a weighted quasi-arithmetic mean and $\frac{1}{2}$ is a weight of *M*, then the mean *M* is called *quasi-arithmetic*.

 $⊠$ Marcin Balcerowski mabalcerowski@outlook.com

¹ Sosnowiec, Poland

Remark 2 Let $I \subset \mathbb{R}$ be an interval and let $M: I^2 \to I$ be a weighed quasi-arithmetic mean. If int $I \neq \emptyset$, then a weight of M is uniquely determined. One can check that M is symmetric if, and only if *M* is quasi-arithmetic. Moreover, if $M(x, y) = M(y, x)$ for some different $x, y \in I$, then *M* is symmetric and thus quasi-arithmetic. If $f: I \to \mathbb{R}$ generates *M*, then the function − *f* generates *M* too. Therefore every weighted quasi-arithmetic mean has a strictly increasing generator (see [\[4,](#page-6-0) p. 67]).

The *bisymmetry equation* has the form

$$
M(M(x, y), M(z, t)) = M(M(x, z), M(y, t)).
$$
\n(3)

The next remark is an easy observation which will be useful in the sequel.

Remark 3 Let $I \subset \mathbb{R}$ be an interval. If $M: I^2 \to I$ is a weighted quasi-arithmetic mean, then *M* satisfies the bisymmetry equation.

The title theorem of J. Aczél is the following.

Theorem A ([\[1\]](#page-6-1)) Let $I \subset \mathbb{R}$ be an interval and let $M: I^2 \to I$ be a continuous reflexive *function. Assume that M is symmetric and strictly increasing with respect to each variable. Then M satisfies the bisymmetry equation if and only if M is a quasi-arithmetic mean.*

Using Theorem [A,](#page-1-0) R. Ger and T. Kochanek proved the following result.

Theorem GK ([\[3\]](#page-6-2)) *Let I*, $J \subset \mathbb{R}$ *be intervals and let* $M: I^2 \to I$ *and* $K: J^2 \to J$ *be means, continuous with respect to each variable and strictly increasing with respect to each variable. Assume that the equation*

$$
f(M(x, y)) = K(f(x), f(y))
$$
 (4)

has a non-constant solution $f: I \rightarrow J$. Then the following statements hold:

- (a) *if the mean K is quasi-arithmetic, then the mean M is quasi-arithmetic;*
- (b) *if the mean M is quasi-arithmetic, then K restricted to the set* $(\inf f(I), \sup f(I))^2$ *is a quasi-arithmetic mean.*

Theorem was generalized by the author to the following result.

Theorem B ([\[2](#page-6-3)]) *Let I* ⊂ ℝ *be an interval and let M* : I^2 → *I be a strict mean continuous with respect to each variable. Assume that* $J \subset \mathbb{R}$ *is an interval and* $K : J^2 \to J$ *is a quasi-arithmetic mean. If Eq.* [\(4\)](#page-1-1) *has a non-constant solution* $f : I \rightarrow J$ *, then the mean* M *is quasi-arithmetic.*

In this paper we generalize Theorem [A](#page-1-0) and hence we obtain next generalizations of Theorem . Our first result is the following lemma.

Lemma 4 Let $I \subset \mathbb{R}$ be an interval and let $M: I^2 \to I$ be a mean continuous with respect *to each variable. Assume that A* ⊂ *I is an arbitrary set and for every compact interval* $J \subset I\backslash \int I$ athe mean M restricted to J^2 is strict. Then the following statements hold:

(a) if M(A^2) ⊂ *A, then*

$$
cl_I A = [inf A, sup A] \cap I;
$$
 (5)

(b) if $A \neq \emptyset$ and either $M(I \times A) \subset A$ or $M(A \times I) \subset A$, then $\text{cl}_I A = I$.

Proof It follows from the continuity of *M* with respect to each variable that

$$
M(\text{cl}_I B \times \text{cl}_I C) \subset \text{cl}_I M(B \times C) \quad \text{for every sets } B, C \subset I. \tag{6}
$$

Now we prove the point (a). Assume that $M(A^2) \subset A$. We may assume that card $A > 2$. Put *P* = [inf *A*, sup *A*]∩*I*. Then *P* ⊂ *I*, *P* is closed in *I* and *A* ⊂ *P*. Hence cl_{*I*} *A* ⊂ *P*. Now we show that $P \subset \text{cl}_I A$. Since A is not a singleton, it holds the equality $P = \text{cl}_I (\text{inf } A, \text{ sup } A)$. Therefore it is enough to prove that $(\inf A, \sup A) \subset \text{cl}_I A$. Fix any $x \in (\inf A, \sup A)$. Suppose on the contrary that $x \notin cl_I A$. Put $B = [inf A, x] \cap A$ and $C = (x, sup A] \cap A$. The sets *B* and *C* are non-empty subsets of *A*. Moreover, $B \subset (-\infty, x)$ and $C \subset (x, \infty)$. Let $s = \sup B$ and $t = \inf C$. Then

$$
s \le x \le t. \tag{7}
$$

Since $B \neq \emptyset$ and $C \neq \emptyset$, using [\(7\)](#page-2-0) we deduce that $s \in I$ and $t \in I$. Moreover $s \in \text{cl } B$ and *t* ∈ cl *C* and hence $s \text{ ∈ } cl_I$ *B* and $t \text{ ∈ } cl_I$ *C*. In particular, $s \text{ ∈ } cl_I$ *A* and $t \text{ ∈ } cl_I$ *A*. Applying the supposition we deduce that $x \neq s$ and $x \neq t$. Therefore condition [\(7\)](#page-2-0) implies $s < x < t$. It follows from the supposition that $x \notin A$. Hence, using the definitions of *B* and *C*, we deduce that $(s, t) \subset I \backslash A \cup \{x\} = I \backslash A$. Therefore $\text{int}_I(s, t) \subset \text{int}_I(I \backslash A)$ which gives

$$
(s,t)\subset I\setminus cl_I A,\tag{8}
$$

hence

$$
cl_I(s, t) \subset cl_I(I \setminus cl_I A) = I \setminus int_I cl_I A.
$$
\n(9)

Since $s < t$ and $s, t \in I$, we have $\text{cl}_I(s, t) = [s, t]$. Therefore [\(9\)](#page-2-1) implies [s, t] ⊂ *I* \ int_{*I*} cl_{*I*} *A*. Hence, by the assumption, the mean *M* restricted to the set $[s, t]^2$ is strict. Therefore $M(s, t) \in (s, t)$. Using [\(8\)](#page-2-2) we get

$$
M(s, t) \in I \setminus cl_I A.
$$
 (10)

Moreover $s \in \text{cl}_I A$ and $t \in \text{cl}_I A$, which in view of [\(6\)](#page-2-3) implies

$$
M(s, t) \in M(\text{cl}_I A \times \text{cl}_I A) \subset \text{cl}_I M(A^2) \subset \text{cl}_I A.
$$

It contradicts [\(10\)](#page-2-4). Therefore $x \in \text{cl}_I A$.

Now we prove the point (b). Let $A \subset I$ be a non-empty set such that $M(I \times A) \subset A$ or $M(A \times I) \subset A$. We may assume that $M(I \times A) \subset A$, as in the second case the proof is analogous. Therefore, in particular, $M(A^2) \subset A$. Applying the first part of the lemma we deduce that cl_{*I*} $A = \inf A$, sup $A \cap I$. Therefore it is enough to show that inf $A = \inf I$ and $\sup A = \sup I$. We will prove only the first equality, because the second equality can be proved analogously. Suppose, on the contrary, that inf $A \neq \inf I$. Then inf $A > \inf I$ and therefore there exists an $x \in I$ such that

$$
x < \inf A. \tag{11}
$$

The set *A* is non-empty and therefore, using [\(11\)](#page-2-5), we deduce that inf $A \in I$. In particular, inf $A \in \mathbb{R}$ and hence inf $A \in \mathcal{C}[A]$. Consequently inf $A \in \mathcal{C}[I]$ *A*. Applying condition [\(6\)](#page-2-3) we obtain

$$
M(x, \inf A) \in M(I \times cl_I A) \subset cl_I M(I \times A) \subset cl_I A.
$$

Hence, on account of [\(5\)](#page-1-2), we get $M(x, \inf A) \in [\inf A, \sup A]$. Therefore

$$
M(x, \inf A) \ge \inf A. \tag{12}
$$

 $\circled{2}$ Springer

Since inf $A > \inf I$, using [\(5\)](#page-1-2) we obtain

$$
\operatorname{int}_I \operatorname{cl}_I A = \operatorname{int}_I \left([\operatorname{inf} A, \operatorname{sup} A] \cap I \right) \subset (\operatorname{inf} A, \operatorname{sup} A] \cap I.
$$

Therefore

$$
[x, \inf A] \subset I \setminus \bigl((\inf A, \sup A] \cap I\bigr) \subset I \setminus \inf_I cl_I A.
$$

Hence, by the assumption, we deduce that the mean *M* restricted to the set $[x, \inf A]^2$ is strict. Making use of [\(11\)](#page-2-5) we get $M(x, \inf A) < \inf A$. It contradicts [\(12\)](#page-2-6).

Now we present the first main result of this paper. It follows from Remark [1](#page-0-0) that this result generalizes Theorem [A.](#page-1-0)

Theorem 5 *Let I* ⊂ R *be an interval and let* $M: I^2 \rightarrow I$ *be a (symmetric) strict mean continuous with respect to each variable. Then M satisfies the bisymmetry equation if, and only if M is a weighted quasi-arithmetic (quasi-arithmetic) mean.*

Proof In view of Remark [2](#page-0-1) it is enough to prove Theorem [5](#page-3-0) only in the main case. Assume that *M* satisfies the bisymmetry equation. If int $I = \emptyset$, then *M* is a weighted quasi-arithmetic mean with a weight $\frac{1}{2}$ and a generator id_I. Now we consider the case int $I \neq \emptyset$.

We will show that *M* is injective with respect to the second variable. Fix $x_0, y, z \in I$ and assume that $M(x_0, y) = M(x_0, z)$. Put $A = \{x \in I : M(x, y) = M(x, z)\}$. Then $x_0 \in A$ and therefore $A \neq \emptyset$. Since M is continuous with respect to the first variable, the set A is closed in I. We will prove that $M(A \times I) \subset A$. Let $x \in A$ and $t \in I$. Then $M(x, y) = M(x, z)$ and therefore

$$
M(M(x, y), M(t, w)) = M(M(x, z), M(t, w))
$$
\n(13)

for every $w \in I$. Making use of [\(13\)](#page-3-1) and applying the bisymmetry equation we obtain

$$
M(M(x, t), M(y, w)) = M(M(x, t), M(z, w))
$$
\n(14)

for every $w \in I$. By Remark [1](#page-0-2) the function *M* is reflexive. Applying [\(14\)](#page-3-2) with $w = y$ we get

$$
M(M(x, t), y) = M(M(x, t), M(z, y)).
$$
\n(15)

Using the reflexivity of *M* and applying the bisymmetry equation we obtain

$$
M(M(x, t), M(z, y)) = (M(M(x, t), M(x, t)), M(z, y))
$$

=
$$
M(M(M(x, t), z), M(M(x, t), y)).
$$

The last condition together with [\(15\)](#page-3-3) yields

$$
M(M(x, t), y) = M(M(M(x, t), z), M(M(x, t), y)).
$$

Hence on account of the strictness of M we deduce that $M(M(x, t), y) = M(M(x, t), z)$. Consequently $M(x, t) \in A$. Therefore $M(A \times I) \subset A$. Making use of Lemma [4](#page-1-3) we obtain cl_{*I*} $A = I$ whence $A = I$. In particular, $y \in A$ and hence $y = M(y, z)$. Using the strictness of *M* again, we deduce that $y = z$.

Now we show that *M* is injective with respect to the first variable. Define a function $N: I^2 \rightarrow I$ by $N(x, y) = M(y, x)$. The function N is a strict mean continuous with respect to each variable. We will check that *N* satisfies the bisymmetry equation. For every $x, y, z, t \in I$ the equalities

$$
N(N(x, y), N(z, t)) = N(M(y, x), M(t, z)) = M(M(t, z), M(y, x))
$$

= $M(M(t, y), M(z, x)) = M(N(y, t), N(x, z))$
= $N(N(x, z), N(y, t)).$

hold. Using the first part of the proof we deduce that *N* is injective with respect to the second variable. Consequently *M* is injective with respect to the first variable.

Therefore *M* is injective with respect to each variable. Moreover, *M* is a real function defined on a Cartesian product of intervals and continuous with respect to each variable. Consequently *M* is strictly monotonic with respect to each variable. Hence on account of the continuity of *M* with respect to each variable we deduce that *M* is continuous. Moreover, the function *M* is reflexive. Making use of Theorem 4 from [\[1](#page-6-1)] (p. 294) we state that there exist a $p \in \mathbb{R} \setminus \{0, 1\}$ and a strictly monotonic function $g: I \to \mathbb{R}$ such that equality [\(2\)](#page-0-3) holds for every $x, y \in I$. The function *M* is a mean strictly monotonic with respect to each variable, and therefore *M* is strictly increasing with respect to each variable. Hence on account of the assumption int $I \neq \emptyset$ we deduce that $p > 0$ and $1 - p > 0$. Therefore $p \in (0, 1)$ and using equality [\(2\)](#page-0-3) we state that *M* is a weighted quasi-arithmetic mean. The converse is a consequence of Remark [3.](#page-1-4)

Making use of Theorem [5](#page-3-0) we will prove Theorem [6](#page-4-0) below. It follows from Remarks [3](#page-1-4) and [2](#page-0-1) that Theorem [6](#page-4-0) generalizes Theorem .

Theorem 6 *Let I* ⊂ ℝ *be an interval and let M* : I^2 → *I be a* [*symmetric*] *solution of the bisymmetry equation. Assume that* $J \subset \mathbb{R}$ *is an interval and* $K : J^2 \to J$ *is a strict mean continuous with respect to each variable. Let* $f: I \rightarrow J$ *be a function. If the triple* (f, M, K) *satisfies Eq.* [\(4\)](#page-1-1), then K restricted to the set $\left(\left[\inf f(I), \sup f(I) \right] \cap J \right)^2$ is a weighted quasi*arithmetic (quasi-arithmetic) mean.*

Proof First we proceed for the main case. Assume that the triple *(f , M, K)* satisfies Eq. [\(4\)](#page-1-1). It follows from [\(4\)](#page-1-1) that for every *a*, *b*, *c*, $d \in I$ the following equalities hold:

$$
K(K(f(a), f(b)), K(f(c), f(d))) = K(f(M(a, b)), f(M(c, d)))
$$

= $f(M(M(a, b), M(c, d))).$

Since *M* satisfies the bisymmetry equation, the last term of the equalities above is symmetric with respect to *b* and *c*. Therefore the first term of these equalities also has this property. Consequently *K* satisfies equality [\(3\)](#page-1-5) for every *x*, *y*, *z*, $t \in f(I)$. Hence in view of the continuity of K with respect to each variable we deduce that K satisfies equality [\(3\)](#page-1-5) for every x, y, z, t
in $\bigcup f(I)$. Put $P = \left[\inf f(I), \sup f(I) \right] \cap J$. It follows from [\(4\)](#page-1-1) that $K(f(I)^2) \subset f(I)$. Using Lemma [4](#page-1-3) we deduce that cl_{*J*} $f(I) = P$. Therefore the function *K* satisfies equality [\(3\)](#page-1-5) for every *x*, *y*, *z*, $t \in P$. The set *P* is an interval and the function *K* is a mean and hence $K(P^2) \subset P$. Consequently the function *K* restricted to P^2 is a solution of Eq. [\(3\)](#page-1-5). Moreover *K* restricted to P^2 is a strict mean continuous with respect to each variable. Using Theorem [5](#page-3-0) we deduce that the function *K* restricted to the set P^2 is a weighted quasi-arithmetic mean.

Now we prove the parallel version of the theorem. So assume additionally, that the function *M* is symmetric. Let the triple (f, M, K) satisfies Eq. [\(4\)](#page-1-1). Put $P = \text{inf } f(I), \text{sup } f(I) \cap J$. By the first part of the proof the function *K* restricted to P^2 is a weighted quasi-arithmetic mean. If *f* is constant, then *P* contains at most one point and thus *K* restricted to P^2 is a quasi-arithmetic mean. Now assume that the function *f* is non-constant. We can find $x, y \in I$

such that $f(x) \neq f(y)$. The mean M is symmetric and therefore $M(x, y) = M(y, x)$. Using [\(4\)](#page-1-1) we obtain

$$
K(f(x), f(y)) = f(M(x, y)) = f(M(y, x)) = K(f(y), f(x)).
$$

Moreover $f(x) \in P$ and $f(y) \in P$. Applying Remark [2](#page-0-1) we deduce that *K* restricted to P^2 is a quasi-arithmetic mean. It completes the proof. is a quasi-arithmetic mean. It completes the proof. 

Using Theorem [6](#page-4-0) and Remarks [3](#page-1-4) and [2](#page-0-1) we obtain the result below, which is a next generalization of Theorem .

Corollary 7 *Let* $I \subset \mathbb{R}$ *be an interval and let* $M: I^2 \to I$ *be a weighted quasi-arithmetic* [*a quasi-arithmetic*] *mean. Assume that* $J \subset \mathbb{R}$ *is an interval and* $K : J^2 \to J$ *is a strict mean continuous with respect to each variable. Let* $f: I \rightarrow J$ *be a function. If the triple* (f, M, K) *satisfies Eq.* [\(4\)](#page-1-1), then K restricted to the set $\left(\left[\inf f(I), \sup f(I) \right] \cap J \right)^2$ is a weighted quasi*arithmetic (quasi-arithmetic) mean.*

The lemma below comes from [\[2\]](#page-6-3) and presents the solution of Eq. [\(4\)](#page-1-1) in case when the means *M* and *K* are quasi-arithmetic.

Lemma B ([\[2](#page-6-3)]) *Let I*, $J \subset \mathbb{R}$ *be intervals and let* $f: I \rightarrow J$ *be a function. Assume that* $M: I^2 \rightarrow I$ and $K: J^2 \rightarrow J$ are quasi-arithmetic means. The triple (f, M, K) satisfies *Eq.* [\(4\)](#page-1-1) if, and only if there exist continuous and strictly increasing functions $g: I \to \mathbb{R}$ and $h: J \to \mathbb{R}$, an $x_0 \in \mathbb{R}$ and an additive function $a: \mathbb{R} \to \mathbb{R}$ such that g generates M, h *generates* K *,* $a(g(I)) + x_0 \subset h(J)$ *and*

$$
f(x) = h^{-1}(a(g(x)) + x_0) \text{ for every } x \in I.
$$
 (16)

The proof of Lemma [B](#page-5-0) (see [\[2](#page-6-3)]) did not comprise the case $I = \emptyset$. However, in this case the assertion of Lemma [B](#page-5-0) remains valid because the triple (f, M, K) satisfies Eq. [\(4\)](#page-1-1) and to obtain the right side of the equivalence in the assertion it is enough to put the empty function as *g*, an arbitrary strictly increasing generator of *K* as h , $x_0 = 0$ and $a = 0$.

Making use of Corollary [7](#page-5-1) and Lemma [B](#page-5-0) we will prove the following result.

Theorem 8 Let $I \subset \mathbb{R}$ be an interval and let $M: I^2 \to I$ be a quasi-arithmetic mean. *Assume that* $J \subset \mathbb{R}$ *is an interval and* $K : J^2 \to J$ *is a strict mean continuous with respect to each variable. Let* $f: I \rightarrow J$ *be a function. The triple* (f, M, K) *satisfies Eq.* [\(4\)](#page-1-1) *if, and only if there exist an interval P* $\subset J$ *, continuous and strictly increasing functions g: I* $\to \mathbb{R}$ *and h* : $P \to \mathbb{R}$, an $x_0 \in \mathbb{R}$ and an additive function $a : \mathbb{R} \to \mathbb{R}$ such that g generates M, h *generates K restricted to* P^2 , $a(g(I)) + x_0 \subset h(P)$ *and condition* [\(16\)](#page-5-2) *holds.*

Proof Assume that the triple (f, M, K) satisfies Eq. [\(4\)](#page-1-1). Put $P = \text{inf } f(I), \sup f(I) \cap J$. The set *P* is an interval contained in *J*. Let K_1 denotes the mean *K* restricted to P^2 . By Corollary [7](#page-5-1) the mean K_1 is quasi-arithmetic. Moreover $f(I) \subset P$ and the triple (f, M, K_1) satisfies Eq. [\(4\)](#page-1-1). Using Lemma [B](#page-5-0) with $J = P$ we obtain the right side of the equivalence in the assertion.

Now assume that the right side of the equivalence in the assertion holds. By K_1 we denote the mean *K* restricted to P^2 . Applying condition [\(16\)](#page-5-2) we obtain $f(x) = h^{-1}(a(g(x)) + x_0) \in$ *P* for every $x \in I$. Hence $f(I) \subset P$. Making use of Lemma [B](#page-5-0) with $J = P$ we state that the triple (f, M, K_1) satisfies Eq. [\(4\)](#page-1-1). Therefore the triple (f, M, K) satisfies Eq. (4).

References

- 1. J. Aczél, On mean values. Bull. Am. Math. Soc. **54**, 392–400 (1948)
- 2. M. Balcerowski, Solution of a problem of Z. Daróczy, J. Jarczyk and W. Jarczyk and generalization of a theorem of R. Ger and T. Kochanek. Acta Math. Hungar. **155**, 241–247 (2018)
- 3. R. Ger, T. Kochanek, An inconsistency equation involving means. Colloq. Math. **115**, 87–99 (2009)
- 4. G.H. Hardy, J.E. Littlewood, G. Pólya, *Inequalities* (Cambridge University Press, Cambridge, 1934)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.