

Characterizing linear mappings through zero products or zero Jordan products

Guangyu An¹ · Jun He² · Jiankui Li³

Accepted: 4 November 2020 / Published online: 22 January 2022 © Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

Let *A* be a ∗-algebra and*M*be a ∗-*A*-bimodule.We study the local properties of ∗-derivations and ∗-Jordan derivations from *A* into *M* under the following orthogonality conditions on elements in $A: ab^* = 0$, $ab^* + b^*a = 0$ and $ab^* = b^*a = 0$. We characterize the mappings on zero product determined algebras and zero Jordan product determined algebras. Moreover, we give some applications on *C*∗-algebras, group algebras, matrix algebras, algebras of locally measurable operators and von Neumann algebras.

Keywords ∗-(Jordan) derivation · ∗-(Jordan) left derivation · Zero (Jordan) product determined algebra · *C*∗-algebra · von Neumann algebra.

Mathematics Subject Classification 15A86 · 47A07 · 47B47 · 47B49.

1 Introduction

Throughout this paper, let *A* be an associative algebra over the complex field $\mathbb C$ and $\mathcal M$ be an *A*-bimodule. For each *a*, *b* in *A*, we define the *Jordan product* by $a \circ b = ab + ba$. A linear mapping δ from *A* into *M* is called a *derivation* if $\delta(ab) = a\delta(b) + \delta(a)b$ for each *a*, *b* in *A*; and δ is called a *Jordan derivation* if $\delta(a \circ b) = a \circ \delta(b) + \delta(a) \circ b$ for each *a*, *b* in *A*. It follows from the results in [\[9](#page-16-0)[,20](#page-16-1)[,21\]](#page-16-2) that every Jordan derivation from a C^* -algebra into its Banach bimodule is a derivation.

By an *involution* on an algebra *A* we mean a mapping ∗ from *A* into itself such that

B Jiankui Li jiankuili@yahoo.com Guangyu An anguangyu310@163.com Jun He hejun_12@163.com

¹ Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China

² Department of Mathematics, Anhui Polytechnic University, Wuhu 241000, China

³ Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

$$
(\lambda a + \mu b)^* = \bar{\lambda} a^* + \bar{\mu} b^*, \ (ab)^* = b^* a^* \text{ and } (a^*)^* = a,
$$

whenever $a, b \in A$, $\lambda, \mu \in \mathbb{C}$ and $\overline{\lambda}, \overline{\mu}$ denote the conjugate complex numbers. An algebra *A* equipped with an involution is called a ∗-algebra. Moreover, if *A* is a ∗-algebra, then an *A*-bimodule *M* is called a ∗-*A*-bimodule if *M* is equipped with a ∗-mapping from *M* into itself such that

$$
(\lambda m + \mu n)^* = \bar{\lambda} m^* + \bar{\mu} n^*
$$
, $(am)^* = m^* a^*$, $(ma)^* = a^* m^*$ and $(m^*)^* = m$,

whenever $a \in \mathcal{A}$, $m, n \in \mathcal{M}$ and $\lambda, \mu \in \mathbb{C}$. An element *a* in \mathcal{A} is called *self-adjoint* if $a^* = a$; an element *p* in *A* is called an *idempotent* if $p^2 = p$; and *p* is called a *projection* if *p* is both a self-adjoint element and an idempotent.

In [\[24](#page-16-3)], A. Kishimoto studied the ∗-derivations on a*C*∗-algebra, and proved that the closure of a normal ∗-derivation of a UHF algebra satisfying a special condition is a generator of a one-parameter group of ∗-automorphisms. Let *A* be a ∗-algebra and *M* be a ∗-*A*-bimodule. A derivation δ from $\mathcal A$ into $\mathcal M$ is called a **-derivation* if $\delta(a^*) = \delta(a)^*$ for every *a* in $\mathcal A$. Obviously, every derivation δ is a linear combination of two $*$ -derivations. In fact, we can define a linear mapping $\hat{\delta}$ from *A* into *M* by $\hat{\delta}(a) = \delta(a^*)^*$ for every *a* in *A*, therefore $\delta = \delta_1 + i\delta_2$, where $\delta_1 = \frac{1}{2}(\delta + \hat{\delta})$ and $\delta_2 = \frac{1}{2i}(\delta - \hat{\delta})$. It is easy to show that δ_1 and δ_2 are both ∗-derivations. We can define ∗-Jordan derivations similarly.

For ∗-derivations and ∗-Jordan derivations, in [\[3](#page-16-4)[,13](#page-16-5)[,17](#page-16-6)[,18\]](#page-16-7), the authors characterized the following two conditions on a linear mapping δ from a ∗-algebra *A* into its ∗-bimodule *M*:

$$
\begin{aligned} \n(\mathbb{D}_1) \ a, b \in \mathcal{A}, \ ab^* = 0 \text{ implies } a\delta(b)^* + \delta(a)b^* = 0;\\ \n(\mathbb{D}_2) \ a, b \in \mathcal{A}, \ ab^* = b^*a = 0 \text{ implies } a\delta(b)^* + \delta(a)b^* = \delta(b)^*a + b^*\delta(a) = 0, \n\end{aligned}
$$

where *A* is a *C*[∗]-algebra, a zero product determined algebra or a group algebra $L^1(G)$.

Let *J* be an ideal of *A*. We say that *J* is a *right separating set* or *left separating set* of *M* if for every *m* in $\mathcal{M}, \mathcal{J}m = \{0\}$ implies $m = 0$ or $m\mathcal{J} = \{0\}$ implies $m = 0$, respectively. We denote by $\mathfrak{J}(\mathcal{A})$ the subalgebra of \mathcal{A} generated algebraically by all idempotents in \mathcal{A} .

In Sect. [2,](#page-2-0) we suppose that *A* is a ∗-algebra and *M* is a ∗-*A*-bimodule that satisfy one of the following conditions:

- (1) *A* is a zero product determined Banach ∗-algebra with a bounded approximate identity and *M* is an essential Banach ∗-*A*-bimodule;
- (2) *A* is a von Neumann algebra and $M = A$;
- (3) *A* is a unital \ast -algebra and *M* is a unital \ast -*A*-bimodule with a left or right separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$;

and we investigate whether the linear mappings from $\mathcal A$ into $\mathcal M$ satisfying condition $\mathbb D_1$ characterize ∗-derivations. In particular, we generalize some results from [\[13](#page-16-5)[,17](#page-16-6)[,18\]](#page-16-7).

An *A*-bimodule *M* is said to have *property* M, if there is an ideal $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ of \mathcal{A} such that

$$
{m \in \mathcal{M} : xmx = 0 \text{ for every } x \in \mathcal{J}} = {0}.
$$

It is clear that if $A = \mathfrak{J}(A)$, then M has property M.

For \ast -Jordan derivations, we can study the following conditions on a linear mapping δ from a ∗-algebra *A* into its ∗-*A*-bimodule *M*:

$$
\text{(D3) } a, b \in A, \ a \circ b^* = 0 \text{ implies } a \circ \delta(b)^* + \delta(a) \circ b^* = 0,
$$
\n
$$
\text{(D4) } a, b \in A, \ ab^* = b^*a = 0 \text{ implies } a \circ \delta(b)^* + \delta(a) \circ b^* = 0.
$$

It is obvious that condition \mathbb{D}_2 or \mathbb{D}_3 implies condition \mathbb{D}_4 .

In Sect. [3,](#page-8-0) we suppose that *A* is a ∗-algebra and *M* is a ∗-*A*-bimodule that satisfy one of the following conditions:

- (1) *A* is a unital zero Jordan product determined ∗-algebra and *M* is a unital ∗-*A*-bimodule;
- (2) *A* is a unital \ast -algebra and *M* is a unital \ast -*A*-bimodule such that the property M;
- (3) *A* is a *C*∗-algebra (not necessary unital) and *M* is an essential Banach ∗-*A*-bimodule;

and we investigate whether the linear mappings from $\mathcal A$ into $\mathcal M$ satisfying condition $\mathbb D_3$ or $\mathbb D_4$ characterize ∗-Jordan derivations. In particular, we improve some results from [\[13](#page-16-5)[,17](#page-16-6)[,18\]](#page-16-7).

2 ∗-derivations on some algebras

A (Banach) algebra *A* is said to be *zero product determined* if every (continuous) bilinear mapping ϕ from $A \times A$ into any (Banach) linear space χ satisfying

$$
\phi(a, b) = 0
$$
 whenever $ab = 0$

can be written as $\phi(a, b) = T(ab)$, for some (continuous) linear mapping T from A into X. In [\[7\]](#page-16-8), M. Brešar showed that if $A = \mathfrak{J}(A)$, then A is zero product determined, and in [\[1\]](#page-16-9), the authors proved that every C^* -algebra $\mathcal A$ is zero product determined.

Let *A* be a Banach *-algebra and *M* be a Banach *-*A*-bimodule. Denote by $\mathcal{M}^{\sharp\sharp}$ the second dual space of *M*. Next, we show that $M^{\sharp\sharp}$ is also a Banach $*$ -*A*-bimodule.

Since M is a Banach $*$ - A -bimodule, $M^{\sharp\sharp}$ turns into a dual Banach A -bimodule with the operation defined by

$$
a \cdot m^{\sharp\sharp} = \lim_{\mu} a m_{\mu}
$$
 and $m^{\sharp\sharp} \cdot a = \lim_{\mu} m_{\mu} a$

for every *a* in *A* and every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$, where (m_{μ}) is a net in \mathcal{M} with $||m_{\mu}|| \leq ||m^{\sharp\sharp}||$ and $(m_{\mu}) \rightarrow m^{\sharp\sharp}$ in the weak^{*}-topology $\sigma(M^{\sharp\sharp}, M^{\sharp}).$

We define an involution $*$ in $\mathcal{M}^{\sharp\sharp}$ by

$$
(m^{\sharp\sharp})^*(\rho) = m^{\sharp\sharp}(\rho^*), \quad \rho^*(m) = \overline{\rho(m^*)},
$$

where $m^{\sharp\sharp} \in M^{\sharp\sharp}$, $\rho \in M^{\sharp}$ and $m \in M$. Moreover, if (m_{μ}) is a net in M and $m^{\sharp\sharp}$ is an element in $M^{\sharp\sharp}$ such that $m_{\mu} \to m^{\sharp\sharp}$ in $\sigma(M^{\sharp\sharp}, M^{\sharp})$, then for every ρ in M^{\sharp} , we have that

$$
\rho(m_{\mu}) = m_{\mu}(\rho) \rightarrow m^{\sharp\sharp}(\rho).
$$

It follows that

$$
(m^*_{\mu})(\rho) = \rho(m^*_{\mu}) = \overline{\rho^*(m_{\mu})} \rightarrow \overline{m^{\sharp\sharp}(\rho^*)} = (m^{\sharp\sharp})^*(\rho)
$$

for every ρ in \mathcal{M}^{\sharp} . This means that the involution $*$ in $\mathcal{M}^{\sharp\sharp}$ is continuous in $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$. Thus, we obtain

$$
(a \cdot m^{\sharp\sharp})^* = (\lim_{\mu} a m_{\mu})^* = \lim_{\mu} m_{\mu}^* a^* = (m^{\sharp\sharp})^* \cdot a^*.
$$

Similarly, we can show $(m^{\sharp\sharp} \cdot a)^* = a^* \cdot (m^{\sharp\sharp})^*$. This implies that $\mathcal{M}^{\sharp\sharp}$ is a Banach $*\mathcal{A}$ bimodule.

If *A* is a Banach $*$ -algebra, then a *bounded approximate identity* for *A* is a net $(e_i)_{i \in \Gamma}$ of self-adjoint elements in *A* such that $\lim_{i} ||ae_i - a|| = \lim_{i} ||ei_i - a|| = 0$ for every *a* in *A* and $\sup_{i \in \Gamma} ||e_i|| \leq k$ for some $k > 0$.

In [\[18\]](#page-16-7), H. Ghahramani and Z. Pan proved that if *A* is a unital zero product determined ∗-algebra and a linear mapping δ from *A* into itself satisfies the condition

 (D_1) *a*, *b* ∈ *A*, *ab*^{*} = 0 implies *a*δ(*b*)^{*} + δ(*a*)*b*^{*} = 0,

then $\delta(a) = \Delta(a) + \delta(1)a$ for every *a* in *A*, where Δ is a *-derivation.

For general zero product determined Banach ∗-algebras with a bounded approximate identity, the following result holds.

Theorem 2.1 *Suppose that A is a zero product determined Banach* ∗*-algebra with a bounded approximate identity, andMis an essential Banach* ∗*-A-bimodule. If* δ *is a continuous linear mapping from A into M such that*

$$
a, b \in A, \ ab^* = 0 \ implies \ a\delta(b)^* + \delta(a)b^* = 0,
$$

then there exists a *-*derivation* Δ *from* $\mathcal A$ *into* $\mathcal M^{\sharp\sharp}$ *and an element* ξ *in* $\mathcal M^{\sharp\sharp}$ *such that* $\delta(a) = \Delta(a) + \xi \cdot a$ for every a in A. Furthermore, ξ can be chosen in M in each of the *following cases:*

- (1) *A is a unital* ∗*-algebra,*
- (2) *M is a dual* ∗*-A-bimodule.*

Proof Let $(e_i)_{i \in \Gamma}$ be a bounded approximate identity of *A*. Since δ is continuous, the net $(\delta(e_i))_{i \in \Gamma}$ is bounded and we can assume that it converges to ξ in $\mathcal{M}^{\sharp\sharp}$ with the topology $\sigma(M^{\sharp\sharp},\mathcal{M}^{\sharp}).$

Since *M* is an essential Banach $*$ -*A*-bimodule, we know that the nets $(e_i m)_{i \in \Gamma}$ and $(me_i)_{i \in \Gamma}$ converge to *m* with the norm topology for every *m* in *M*. Thus, we have

$$
Ann_{\mathcal{M}}(\mathcal{A}) = \{ m \in \mathcal{M} : amb = 0 \text{ for each } a, b \in \mathcal{A} \} = \{ 0 \}.
$$

By the hypothesis, we obtain that

$$
a, b, c \in A, ab^* = b^*c = 0
$$
 implies $a\delta(b)^*c = 0$.

It follows that

$$
a, b, c \in \mathcal{A}, ab = bc = 0 \Rightarrow c^*b^* = b^*a^* = 0 \Rightarrow c^*\delta(b)^*a^* = 0 \Rightarrow a\delta(b)c = 0.
$$
\n
$$
(2.1)
$$

By (2.1) and $[1,$ $[1,$ Theorem 4.5], we know that

$$
\delta(ab) = \delta(a)b + a\delta(b) - a \cdot \xi \cdot b
$$

for each *a*, *b* in *A*, and ξ can be chosen in *M* if *A* is a unital *-algebra or *M* is a dual ∗-*A*-bimodule.

Define a linear mapping Δ from $\mathcal A$ into $\mathcal M$ by

$$
\Delta(a) = \delta(a) - \xi \cdot a
$$

for every *a* in *A*. It is easy to show that Δ is a norm-continuous derivation from *A* into $M^{\sharp\sharp}$ and we only need to show that $\Delta(b^*) = \Delta(b)^*$ for every *b* in *A*.

First we claim that $\Delta(e_i) = \delta(e_i) - \xi \cdot e_i$ converges to zero in $\mathcal{M}^{\sharp\sharp}$ with the topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$. In fact, since $(e_i)_{i \in \Gamma}$ is bounded in *A*, we assume $(e_i)_{i \in \Gamma}$ converges to ζ in $\mathcal{A}^{\sharp\sharp}$ with the topology $\sigma(\mathcal{A}^{\sharp\sharp}, \mathcal{A}^{\sharp})$. For every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$, define

$$
m^{\sharp\sharp} \cdot \zeta = \lim_{i} m^{\sharp\sharp} \cdot e_{i}.
$$

Thus, $m \cdot \zeta = m$ for every *m* in *M*. By [\[10](#page-16-10), Proposition A.3.52], we know that the mapping $m^{\sharp\sharp} \mapsto m^{\sharp\sharp} \cdot \zeta$ from $\mathcal{M}^{\sharp\sharp}$ into itself is $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$ -continuous, and by the $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$ denseness of $\mathcal M$ in $\mathcal M^{\sharp\sharp}$, we have

$$
m^{\sharp\sharp} \cdot \zeta = m^{\sharp\sharp} \tag{2.2}
$$

for every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$. Hence $\Delta(e_i) = \delta(e_i) - \xi \cdot e_i$ converges to zero in $\mathcal{M}^{\sharp\sharp}$ with the topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp}).$

Next we prove $\Delta(b^*) = \Delta(b)^*$ for every *b* in *A*. By the definition of Δ , we know that $a\Delta(b)^* + \Delta(a)b^* = 0$ for each *a*, *b* in *A* with $ab^* = 0$. Define a bilinear mapping from $A \times A$ into $M^{\sharp\sharp}$ by

$$
\phi(a, b) = a\Delta(b^*)^* + \Delta(a)b.
$$

Thus, $ab = 0$ implies $\phi(a, b) = 0$. Since A is a zero product determined algebra, there exists a norm-continuous linear mapping *T* from *A* into $M^{\sharp\sharp}$ such that

$$
T(ab) = \phi(a, b) = a\Delta(b^*)^* + \Delta(a)b
$$
 (2.3)

for each *a*, *b* in *A*. If $b = e_i$ in [\(2.3\)](#page-4-0), then we obtain

$$
T(ae_i) = a\Delta(e_i)^* + \Delta(a)e_i.
$$

By the continuity of *T* and [\(2.2\)](#page-4-1), it follows that $T(a) = \Delta(a)$ for every *a* in *A*. Thus,

$$
T(ab) = \Delta(ab) = a\Delta(b^*)^* + \Delta(a)b.
$$

Since Δ is a derivation, we have $a\Delta(b^*)^* = a\Delta(b)$ and $\Delta(b^*)a^* = \Delta(b)^*a^*$. If $a = e_i$, then taking $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$ -limits, by [\(2.2\)](#page-4-1) it follows that $\Delta(b^*) = \Delta(b)^*$ for every *b* in *A*. \Box

Let *G* be a locally compact group. The group algebra and the measure convolution algebra of *G* are denoted by $L^1(G)$ and $M(G)$, respectively. The convolution product is denoted by \cdot and the involution is denoted by $*$. It is well known that $M(G)$ is a unital Banach $*$ -algebra, and $L^1(G)$ is a closed ideal in $M(G)$ with a bounded approximate identity. By [\[3](#page-16-4), Lemma 1.1], we know that $L^1(G)$ is zero product determined. By [\[10,](#page-16-10) Theorem 3.3.15(ii)], it follows that $M(G)$ with respect to convolution product is the dual of $C_0(G)$ as a Banach $M(G)$ -bimodule.

By [\[27](#page-16-11), Corollary 1.2], we know that every continuous derivation Δ from $L^1(G)$ into *M*(*G*) is an inner derivation, that is, there exists μ in *M*(*G*) such that $\Delta(f) = f \cdot \mu - \mu \cdot f$ for every *f* in $L^1(G)$. Thus, by Theorem [2.1,](#page-3-1) we can prove [\[17](#page-16-6), Theorem 3.1(ii)] as follows.

Corollary 2.2 *Let G be a locally compact group. If* δ *is a continuous linear mapping from* $L^1(G)$ *into* $M(G)$ *such that*

$$
f, g \in L^1(G), f \cdot g^* = 0
$$
 implies $f \cdot \delta(g)^* + \delta(f) \cdot g^* = 0$,

then there are μ , ν *in* $M(G)$ *such that*

$$
\delta(f) = f \cdot \mu - \nu \cdot f
$$

for every f in $L^1(G)$ *and* $\text{Re}\mu \in \mathcal{Z}(M(G))$ *.*

Proof By Theorem [2.1,](#page-3-1) we know that there exists a \ast -derivation Δ from $L^1(G)$ into $M(G)$ and an element ξ in $M(G)$ such that $\delta(f) = \Delta(f) + \xi \cdot f$ for every f in $L^1(G)$. By [\[27,](#page-16-11) Corollary 1.2], it follows that there exists μ in $M(G)$ such that $\Delta(f) = f \cdot \mu - \mu \cdot f$. Since $\Delta(f^*) = \Delta(f)^*$, we have that

$$
f^* \cdot \mu - \mu \cdot f^* = \mu^* \cdot f^* - f^* \cdot \mu^*
$$

for every *f* in $L^1(G)$. By [\[3,](#page-16-4) Lemma 1.3(ii)], we know Re $\mu = \frac{1}{2}(\mu + \mu^*) \in \mathcal{Z}(M(G))$. If $\nu = \mu - \xi$, then from the definition of Δ we have $\delta(f) = f \cdot \mu - \nu \cdot f$ for every f in $L^1(G)$. \Box

For a general C^* -algebra *A*, in [\[13](#page-16-5)], B. Fadaee and H. Ghahramani proved that if δ is a continuous linear mapping from *A* into its second dual space $A^{\sharp\sharp}$ such that condition \mathbb{D}_1 holds, then there exists a *-derivation Δ from *A* into $A^{\sharp\sharp}$ and an element ξ in $A^{\sharp\sharp}$ such that $\delta(a) = \Delta(a) + \xi a$ for every *a* in *A*.

In [\[1\]](#page-16-9), the authors proved that every *C*∗-algebra *A* is zero product determined, and it is well known that *A* has a bounded approximate identity. Thus, by Theorem [2.1,](#page-3-1) we can improve the result in [\[13](#page-16-5)] for any essential Banach ∗-bimodule.

Corollary 2.3 *Suppose that A is a C*∗*-algebra and M is an essential Banach* ∗*-A-bimodule. If* δ *is a continuous linear mapping from A into M such that*

$$
a, b \in \mathcal{A}, \ ab^* = 0 \ implies \ a\delta(b)^* + \delta(a)b^* = 0,
$$

then there exists a **-derivation* Δ *from A into* $M^{\sharp\sharp}$ *and an element* ξ *in* $M^{\sharp\sharp}$ *such that* $\delta(a) = \Delta(a) + \xi \cdot a$ for every a in A. Furthermore, ξ can be chosen in M in each of the *following cases:*

- (1) *A has an identity,*
- (2) *M is a dual* ∗*-A-bimodule.*

For von Neumann algebras, we have the following result.

Theorem 2.4 *Suppose that A is a von Neumann algebra. If* δ *is a linear mapping from A into itself such that*

$$
a, b \in \mathcal{A}, \ ab^* = 0 \ implies \ a\delta(b)^* + \delta(a)b^* = 0,
$$

then $\delta(a) = \Delta(a) + \delta(1)a$ for every a in *A,* where Δ *is a* **-derivation. In particular,* δ *is a* $*$ *-derivation when* $\delta(1) = 0$.

Proof Define a linear mapping Δ from *A* into *M* by

$$
\Delta(a) = \delta(a) - \delta(1)a
$$

for every *a* in *A*. In the following we show that Δ is a $*$ -derivation. It is clear that $\Delta(1) = 0$ and $ab^* = 0$ imply $a \Delta(b)^* + \Delta(a)b^* = 0$.

Case 1 Suppose that *A* is an abelian von Neumann algebra. First we show that for Δ the following holds:

$$
a, b \in A
$$
, $ab = 0$ implies $a\Delta(b) = 0$.

It is well known that $A \cong C(X)$, where *X* is a compact Hausdorff space and $C(X)$ denotes the C^* -algebra of all continuous complex-valued functions on *X*. Thus, we have $ab = 0$ if and only if $ab^* = 0$ for each a, b in A. Indeed, if f and g are functions in $C(X)$ corresponding to *a* and *b*, respectively, then

$$
ab^* = 0 \Leftrightarrow f \cdot \bar{g} = 0 \Leftrightarrow f \cdot g = 0 \Leftrightarrow ab = 0.
$$

If *a* and *b* are in *A* with $ab^* = ab = 0$, then $a\Delta(b)^* + \Delta(a)b^* = 0$. Multiplying by *a* on the left side of the above equation, we obtain $a^2\Delta(b)^* = 0$. If *f* and *h* are functions in $C(X)$ corresponding to *a* and $\Delta(b)$, respectively, then

$$
0 = f^2 \bar{g} = f^2 g = fg.
$$

This implies that $a\Delta(b) = 0$. By [\[23,](#page-16-12) Theorem 3], the function Δ is continuous. By [\[19,](#page-16-13) Lemma 2.5] and $\Delta(1) = 0$, we obtain $\Delta(a) = \Delta(1)a = 0$ for every *a* in *A*.

Case 2 Suppose $A \cong M_n(\mathcal{B})$, where \mathcal{B} is also a von Neumann algebra and $n \geq 2$. By [\[6](#page-16-14)[,7](#page-16-8)] we know that *A* is a zero product determined algebra. Thus, by [\[18,](#page-16-7) Theorem 3.1] it follows that Δ is a ∗-derivation.

Case 3 Suppose that *A* is a von Neumann algebra without abelian direct summands. By the type decomposition theorem, we have

$$
A = \left(\sum_{n \in E} \bigoplus A_n\right) \oplus A_{I_{\infty}} \oplus A_{II} \oplus A_{III},
$$

where *E* is some set of different finite cardinal numbers and A_n is type I_n ($n \ge 2$).

By [\[22,](#page-16-15) Theorem 6.6.5], we know that A_n is $*$ -isomorphic to $M_n(\mathcal{Z})$, where $\mathcal Z$ is the center of A_n . Since $A_{I_{\infty}}$ is a properly infinite von Neumann algebra and $(A_{II} \oplus A_{III})$ is a continuous von Neumann algebra, by [\[22,](#page-16-15) Lemma 6.3.3] and [\[26](#page-16-16), Theorem 6.8.3], we know that there are two equivalent projections in $(A_{I_{\infty}} \oplus A_{II} \oplus A_{III})$ with sum the unit element of $(A_{I_{\infty}}$ ⊕ A_{II} ⊕ A_{III}). By [\[22,](#page-16-15) Lemmas 6.6.3 and 6.6.4], it follows that $(A_{I_{\infty}}$ ⊕ A_{II} ⊕ A_{III}) is ∗-isomorphic to *M*2(*B*) for some von Neumann algebra *B*.

Hence, for a general von Neumann algebra *A*, we have $A \cong \sum_{i=1}^{n} \bigoplus_{i=1}^{n} A_i$ (*n* is a finite integer or infinite), where each *Aⁱ* coincides with either Case 1 or Case 2. Denote the unit element of A_i by 1_i and the restriction of Δ in A_i by Δ_i . Since $1_i(1-1_i) = 0$ and $\Delta(1) = 0$, we have

$$
1_i \Delta (1 - 1_i)^* + \Delta (1_i)(1 - 1_i) = 0,
$$

therefore

$$
-1i\Delta(1i)* + \Delta(1i) - \Delta(1i)1i = 0.
$$
 (2.4)

Multiplying by 1_i on the left side of [\(2.4\)](#page-6-0) and using $1_i \Delta(1_i) = \Delta(1_i)1_i$, we obtain $1_i \Delta(1_i)^* = 0$. This implies $\Delta(1_i) = 0$. For every *a* in *A*, we write $a = \sum_{i=1}^n a_i$ with *a_i* in A_i . Since $a_i(1 - 1_i) = 0$, we have $\Delta(a_i)(1 - 1_i) = 0$, which means $\Delta(a_i) \in A_i$. If a_i , b_i are in A_i with $a_i b_i^* = 0$, then

$$
\Delta(a_i)b_i^* + a_i \Delta(b_i)^* = \Delta_i(a_i)b_i^* + a_i \Delta_i(b_i)^* = 0.
$$

By Cases 1 and 2, we know that every Δ_i is a \ast -derivation. Thus, Δ is a \ast -derivation. \square

In what follows, we characterize the linear mappings δ that satisfy condition \mathbb{D}_1 from a unital *-algebra into a unital *-*A*-bimodule with a right or left separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$.

Lemma 2.5 *([\[7](#page-16-8), Theorem 4.1]) Suppose that A is a unital algebra and X is a linear space. If* ϕ *is a bilinear mapping from* $A \times A$ *into* X *such that*

$$
a, b \in A, ab = 0 implies \phi(a, b) = 0,
$$

then

$$
\phi(a, x) = \phi(ax, 1)
$$
 and $\phi(x, a) = \phi(1, xa)$

for every a in $\mathcal A$ *and every x in* $\mathfrak J(\mathcal A)$ *.*

Theorem 2.6 *Suppose that A is a unital* ∗*-algebra and M is a unital* ∗*-A-bimodule with a right or left separating set* $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ *. If* δ *is a linear mapping from* \mathcal{A} *into* \mathcal{M} *such that*

$$
a, b \in \mathcal{A}, \ ab^* = 0 \ implies \ a\delta(b)^* + \delta(a)b^* = 0,
$$

 \mathcal{L} Springer

then $\delta(a) = \Delta(a) + \delta(1)a$ for every a in *A*, where Δ is a *-derivation. In particular, δ is a $*$ *-derivation when* $\delta(1) = 0$.

Proof Since *A* is a unital $*$ -algebra and *M* is a unital $*$ -*A*-bimodule, we know that $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ is a right separating set of *M* if and only if $\mathcal{J}^* = \{x^* : x \in \mathcal{J}\} \subseteq \mathfrak{J}(\mathcal{A})$ is a left separating set of M . Thus, without loss of generality, we can assume that J is a left separating set of *A*, otherwise, we replace \mathcal{J} by \mathcal{J}^* .

Define a linear mapping Δ from $\mathcal A$ into $\mathcal M$ by

$$
\Delta(a) = \delta(a) - \delta(1)a
$$

for every *a* in *A*. In what follows, we show that Δ is a \ast -derivation.

It is clear that $\Delta(1) = 0$ and $ab^* = 0$ imply $a\Delta(b)^* + \Delta(a)b^* = 0$. Define a bilinear mapping ϕ from $A \times A$ into M by

$$
\phi(a, b) = a\Delta(b^*)^* + \Delta(a)b
$$

for each *a* and *b* in *A*. By the assumption, $ab = 0$ implies $\phi(a, b) = 0$.

Let a, b be in A and x be in J . By Lemma [2.5,](#page-6-1) we obtain

$$
\phi(x, 1) = \phi(1, x)
$$
 and $\phi(a, x) = \phi(ax, 1)$.

Hence, the following two identities hold:

$$
x\Delta(1)^{*} + \Delta(x) = \Delta(x^{*})^{*} + \Delta(1)x
$$
\n(2.5)

and

$$
a\Delta(x^*)^* + \Delta(a)x = ax\Delta(1)^* + \Delta(ax). \tag{2.6}
$$

By [\(2.5\)](#page-7-0) and $\Delta(1) = 0$, we obtain $\Delta(x)^* = \Delta(x^*)$. Thus, by [\(2.6\)](#page-7-1), this implies

$$
\Delta(ax) = a\Delta(x) + \Delta(a)x.
$$

Similarly to the proof of [\[4,](#page-16-17) Theorem 2.3], we obtain $\Delta(ab) = a\Delta(b) + \Delta(a)b$ for each *a* and *b* in *A*.

It remains to show that $\Delta(a)^* = \Delta(a^*)$ holds for every *a* in *A*. Indeed, for every *a* in *A* and every *x* in *J*, we have $\Delta(ax)^* = \Delta((ax)^*)$. This implies

$$
(\Delta(a)x + a\Delta(x))^* = \Delta(x^*)a^* + x^*\Delta(a^*).
$$

Thus, we obtain $x^*(\Delta(a)^* - \Delta(a^*)) = 0$, hence $(\Delta(a) - \Delta(a^*)^*)x = 0$. Therefore $\Delta(a)^* = \Delta(a^*)$ for every *a* in *A*. $\Delta(a^*)$ for every *a* in A.

Remark 1 Let *A* be a $*$ -algebra, *M* a $*$ -*A*-bimodule, and δ a linear mapping from $\mathcal A$ into $\mathcal M$. Similarly to condition \mathbb{D}_1 which we have characterized in Sect. [2](#page-2-0) as follows:

$$
(\mathbb{D}_1) \ a, b \in \mathcal{A}, \ ab^* = 0 \implies a\delta(b)^* + \delta(a)b^* = 0,
$$

we can consider condition \mathbb{D}'_1 :

$$
\left(\mathbb{D}'_1\right)a, b \in \mathcal{A}, a^*b = 0 \text{ implies } a^*\delta(b) + \delta(a)^*b = 0.
$$

Through minor modifications, we can obtain the corresponding results.

Remark 2 A linear mapping ^δ from *^A* into *^M* is called a *local derivation* if, for every *^a* in *A*, there exists a derivation δ_a (depending on *a*) from *A* into *M* such that $\delta(a) = \delta_a(a)$. It is clear that every local derivation satisfies the following condition:

(III)
$$
a, b, c \in A
$$
, $ab = bc = 0$ implies $a\delta(b)c = 0$.

In [\[1\]](#page-16-9), the authors proved that every continuous linear mapping from a unital C^* -algebra into its unital Banach bimodule such that condition \mathbb{H} holds and $\delta(1) = 0$ is a derivation.

Let *A* be a ∗-algebra and *M* a ∗-*A*-bimodule. The natural way to translate condition \mathbb{H} to the context of ∗-derivations is to consider the following condition:

$$
(\mathbb{H}') a, b, c \in \mathcal{A}, ab^* = b^*c = 0 \text{ implies } a\delta(b)^*c = 0.
$$

However, conditions \mathbb{H}' and \mathbb{H} are equivalent. Indeed, if condition \mathbb{H}' holds, then

$$
a, b, c \in A, ab = bc = 0 \Rightarrow c^*b^* = b^*a^* = 0 \Rightarrow c^*\delta(b)^*a^* = 0 \Rightarrow a\delta(b)c = 0,
$$

and if condition H holds, then

$$
a, b, c \in \mathcal{A}, ab^* = b^*c = 0 \Rightarrow c^*b = ba^* = 0 \Rightarrow c^*\delta(b)a^* = 0 \Rightarrow a\delta(b)^*c = 0.
$$

This means that condition \mathbb{H}' and $\delta(1) = 0$ do not imply that δ is a \ast -derivation.

3 ∗-Jordan derivations on some algebras

A (Banach) algebra *A* is said to be *zero Jordan product determined* if every (continuous) bilinear mapping ϕ from $A \times A$ into any (Banach) linear space X satisfying

$$
\phi(a, b) = 0
$$
 whenever $a \circ b = 0$

can be written as $\phi(a, b) = T(a \circ b)$ for some (continuous) linear mapping *T* from *A* into \mathcal{X} . In [\[5\]](#page-16-18), we showed that if \mathcal{A} is a unital algebra with $\mathcal{A} = \mathfrak{J}(\mathcal{A})$, then \mathcal{A} is a zero Jordan product determined algebra.

Theorem 3.1 *Suppose that A is a unital zero Jordan product determined* ∗*-algebra, and M is a unital* ∗*-A-bimodule. If* δ *is a linear mapping from A into M such that*

$$
a, b \in A, a \circ b^* = 0
$$
 implies $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$ and $\delta(1)a = a\delta(1)$,

then $\delta(a) = \Delta(a) + \delta(1)a$ for every a in *A*, where Δ is a \ast -Jordan derivation. In particular, $δ$ *is a* \ast *-Jordan derivation when* $δ(1) = 0$ *.*

Proof Define a linear mapping Δ from *A* into *M* by $\Delta(a) = \delta(a) - \delta(1)a$ for every *a* in *A*. It is sufficient to show that Δ is a \ast -Jordan derivation.

It is clear that $\Delta(1) = 0$, and by $\delta(1)a = a\delta(1)$ we have

$$
a, b \in A
$$
, $a \circ b^* = 0$ implies $a \circ \Delta(b)^* + \Delta(a) \circ b^* = 0$.

Define a bilinear mapping from $A \times A$ into M by

$$
\phi(a,b) = a \circ \Delta(b^*)^* + \Delta(a) \circ b.
$$

Thus, $a \circ b = 0$ implies $\phi(a, b) = 0$. Since A is a zero Jordan product determined algebra, there exists a linear mapping T from $\mathcal A$ into $\mathcal M$ such that

$$
T(a \circ b) = \phi(a, b) = a \circ \Delta(b^*)^* + \Delta(a) \circ b \tag{3.1}
$$

 \mathcal{L} Springer

for each *a*, *b* in *A*. Let $a = 1$ and $b = 1$ in [\(3.1\)](#page-8-1). By $\Delta(1) = 0$, we obtain

$$
T(a) = \Delta(a) \text{ and } T(b) = \Delta(b^*)^*.
$$

It follows that $\Delta(a^*) = \Delta(a)^*$ holds for every *a* in *A*. By [\(3.1\)](#page-8-1),

$$
T(a \circ b) = \Delta(a \circ b) = \phi(a, b) = a \circ \Delta(b) + \Delta(a) \circ b.
$$

This means that Δ is a ∗-Jordan derivation.

In [\[5](#page-16-18)], we proved that the matrix algebra $M_n(\mathcal{B})$ for $n \geq 2$ is zero Jordan product determined, where β is a unital algebra. In [\[16](#page-16-19)], H. Ghahramani showed that every Jordan derivation from $M_n(\mathcal{B})$ with $n \geq 2$ into its unital bimodule $\mathcal M$ is a derivation. Hence we have the following result.

Corollary 3.2 *Suppose that B is a unital* $*$ *-algebra,* $M_n(\mathcal{B})$ *is a matrix algebra with* $n \geq 2$ *, and M is a unital* $*$ *-M_n*(*B*)*-bimodule. If* δ *is a linear mapping from* $M_n(\mathcal{B})$ *into* \mathcal{M} *such that*

$$
a, b \in M_n(\mathcal{B}), a \circ b^* = 0
$$
 implies $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$ and $\delta(1)a = a\delta(1),$

then $\delta(a) = \Delta(a) + \delta(1)a$ for every a in $M_n(\mathcal{B})$, where Δ is a *-derivation. In particular, δ *is a* \ast *-derivation when* $\delta(1) = 0$ *.*

Let H be a complex Hilbert space and $B(H)$ be the algebra of all bounded linear operators on H . Suppose that *A* is a von Neumann algebra on H and $LS(A)$ is the set of all locally measurable operators affiliated with the von Neumann algebra *A*.

In [\[28\]](#page-16-20), M. Muratov and V. Chilin proved that $LS(A)$ is a unital *-algebra and $A \subset$ *LS(A)*. By [\[25,](#page-16-21) Proposition 21.20, Exercise 21.18], we know that if *A* is a von Neumann algebra without abelian direct summands, and *B* is a $*$ -algebra with $A \subseteq B \subseteq LS(A)$, then $B \cong \sum_{i=1}^{k} \bigoplus M_{n_i}(\mathcal{B}_i)$ (*k* is a finite integer or infinite), where \mathcal{B}_i is a unital algebra. By Theorem [3.1,](#page-8-2) we have the following result.

Corollary 3.3 *Suppose that A is a von Neumann algebra without abelian direct summands, and B is a* $*$ *-algebra with* $A \subseteq B \subseteq LS(A)$ *. If* δ *is a linear mapping from B into* $LS(A)$ *such that*

 $a, b \in \mathcal{B}, a \circ b^* = 0$ *implies* $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$ and $\delta(1)a = a\delta(1),$

then $\delta(a) = \Delta(a) + \delta(1)a$ *for every a in B, where* Δ *is a* **-Jordan derivation. In particular,* $δ$ *is a* \ast *-Jordan derivation when* $δ(1) = 0$ *.*

For von Neumann algebras, by Corollary [3.2](#page-9-0) and similarly to the proof of Theorem [2.4,](#page-5-0) we can easily obtain the following result and we omit the proof.

Corollary 3.4 *Suppose that A is a von Neumann algebra. If* δ *is a linear mapping from A into itself such that*

 $a, b \in A$, $a \circ b^* = 0$ *implies* $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$ and $\delta(1)a = a\delta(1)$,

then $\delta(a) = \Delta(a) + \delta(1)a$ for every a in *A,* where Δ *is a* **-derivation. In particular,* δ *is a* $*$ *-derivation when* $\delta(1) = 0$.

Lemma 3.5 *([\[5](#page-16-18), Theorem 2.1]) Suppose that A is a unital algebra and X is a linear space. If* ϕ *is a bilinear mapping from* $A \times A$ *into* X *such that*

$$
a, b \in A, \ a \circ b = 0 \implies \phi(a, b) = 0,
$$

then

$$
\phi(a, x) = \frac{1}{2}\phi(ax, 1) + \frac{1}{2}\phi(xa, 1)
$$

for every a in A and every x in $\mathfrak{J}(\mathcal{A})$ *.*

Suppose that *A* is a unital algebra and *M* is a unital *A*-bimodule satisfying

 ${m \in \mathcal{M} : xmx = 0 \text{ for every } x \in \mathcal{J}} = \{0\},\$

where $\mathcal I$ is an ideal of $\mathcal A$ linear generated by idempotents in $\mathcal A$. In [\[15,](#page-16-22) Theorem 4.3], H. Ghahramani studied the linear mapping δ from *A* into *M* that satisfies

$$
a, b \in A, \ a \circ b = 0 \text{ implies } a \circ \delta(b) + \delta(a) \circ b = 0,
$$

and showed that δ is a generalized Jordan derivation. In what follows, we suppose that $\mathcal I$ is an ideal of *A* generated algebraically by all idempotents in *A*, and have the following result.

Theorem 3.6 *Suppose that A is a unital* $*$ *-algebra, M is a unital* $*$ *-A-bimodule, and* $\mathcal{J} \subseteq$ J(*A*) *is an ideal of A such that*

$$
{m \in \mathcal{M} : xmx = 0 \text{ for every } x \in \mathcal{J}} = {0}.
$$

If δ *is a linear mapping from A into M such that*

$$
a, b \in A
$$
, $a \circ b^* = 0$ implies $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$ and $\delta(1)a = a\delta(1)$,

then $\delta(a) = \Delta(a) + \delta(1)$ *a for every a in A, where* Δ *is a* **-Jordan derivation. In particular,* $δ$ *is a* \ast *-Jordan derivation when* $δ(1) = 0$ *.*

Proof Let $\widehat{\mathcal{J}}$ be an algebra generated algebraically by \mathcal{J} and \mathcal{J}^* . Since $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ is an ideal of *A*, it is easy to show that $\hat{\mathcal{J}} \subseteq \mathfrak{J}(\mathcal{A})$ is also an ideal of *A*, and also

$$
\{m \in \mathcal{M} : xmx = 0 \text{ for every } x \in \mathcal{J}\} = \{0\}.
$$

Thus, without loss of generality, we can assume that $\mathcal I$ is a self-adjoint ideal of $\mathcal A$, otherwise we may replace $\mathcal J$ by $\widehat{\mathcal J}$.

Define a linear mapping Δ from $\mathcal A$ into $\mathcal M$ by

$$
\Delta(a) = \delta(a) - \delta(1)a
$$

for every *a* in *A*. Next, we show that Δ is a \ast -derivation.

It is clear that $\Delta(1) = 0$ holds and, by $\delta(1)a = a\delta(1)$, the equation $a \circ b^* = 0$ implies $a \circ \Delta(b)^* + \Delta(a) \circ b^* = 0.$

Define a bilinear mapping ϕ from $A \times A$ into M by

$$
\phi(a, b) = a \circ \Delta(b^*)^* + \Delta(a) \circ b
$$

for each *a* and *b* in *A*. By the assumption, $a \circ b = 0$ implies $\phi(a, b) = 0$.

Let *a*, *b* be in *A* and *x* be in *J*. By Lemma [3.5,](#page-9-1) we obtain

$$
\phi(x,1) = \phi(1,x),
$$

hence

$$
x \circ \Delta(1)^{*} + \Delta(x) \circ 1 = 1 \circ \Delta(x^{*})^{*} + \Delta(1) \circ x.
$$
 (3.2)

 \circledcirc Springer

By [\(3.2\)](#page-10-0) and $\Delta(1) = 0$, we know that $\Delta(x)^* = \Delta(x^*)$. Again by Lemma [3.5,](#page-9-1) it follows that

$$
a \circ \Delta(x^*)^* + \Delta(a) \circ x = \frac{1}{2} [\Delta(ax) \circ 1 + \Delta(xa) \circ 1].
$$
 (3.3)

By [\(3.3\)](#page-11-0) and $\Delta(x)^* = \Delta(x^*)$, it is easy to show that

$$
\Delta(a \circ x) = a \circ \Delta(x) + \Delta(a) \circ x. \tag{3.4}
$$

Next, we prove that Δ is a Jordan derivation.

Define $\{a, m, b\} = amb + bma$ and $\{a, b, m\} = \{m, b, a\} = abm + mba$ for each *a*, *b* in *A* and every *m* in *M*. Let *a* be in *A* and *x*, *y* be in *M*.

By the technique of the proof of $[15,$ $[15,$ Theorem 4.3] and (3.4) , we obtain the following two identities:

$$
\Delta\{x, a, y\} = \{\Delta(x), a, y\} + \{x, \Delta(a), y\} + \{x, a, \Delta(y)\},
$$
\n(3.5)

and

$$
\Delta\{x, a^2, y\} = \{\Delta(x), a^2, y\} + \{x, a \circ \Delta(a), y\} + \{x, a^2, \Delta(y)\}.
$$
 (3.6)

On the other hand, by (3.5) ,

$$
\Delta\{x, a^2, x\} = \{\Delta(x), a^2, x\} + \{x, \Delta(a^2), x\} + \{x, a^2, \Delta(x)\}.
$$
 (3.7)

By comparing [\(3.6\)](#page-11-3) and [\(3.7\)](#page-11-4), it follows that $\{x, \Delta(a^2), x\} = \{x, a \circ \Delta(a), x\}$ holds. That is, $x(\Delta(a^2) - a \circ \Delta(a))x = 0$. By the assumption, this implies that $\Delta(a^2) - a \circ \Delta(a) = 0$ is true for every *a* in *A*.

It remains to show that $\Delta(a)^* = \Delta(a^*)$ holds for every *a* in *A*. Indeed, for every *a* in *A* and every *x* in *J*, we have $\Delta(xax)^* = \Delta((xax)^*)$. Since Δ is a Jordan derivation, this implies

$$
(\Delta(x)ax + x\Delta(a)x + xa\Delta(x))^* = \Delta(x^*)a^*x^* + x^*\Delta(a^*)x^* + x^*a^*\Delta(x^*).
$$

Thus, we can obtain $x^*(\Delta(a)^* - \Delta(a^*))x^* = 0$. Since *J* is a self-adjoint ideal of *A*, the equation $\Delta(a)^* = \Delta(a^*)$ follows. equation $\Delta(a)^* = \Delta(a^*)$ follows.

Let *A* be a C^* -algebra and *M* a Banach $*$ -*A*-bimodule. Denote by $A^{\sharp\sharp}$ and $M^{\sharp\sharp}$ the second dual space of *A* and *M*, respectively. By [\[11,](#page-16-23) p. 26], we can define a product \diamond in $\mathcal{A}^{\sharp\sharp}$ by

$$
a^{\sharp\sharp} \diamond b^{\sharp\sharp} = \lim_{\lambda} \lim_{\mu} \alpha_{\lambda} \beta_{\mu}
$$

for each $a^{\sharp\sharp}, b^{\sharp\sharp} \in A^{\sharp\sharp}$, where (α_{λ}) and (β_{μ}) are two nets in *A* with $\|\alpha_{\lambda}\| \leq \|a^{\sharp\sharp}\|$ and $\|\beta_\mu\| \leq \|b^{\sharp\sharp}\|$, such that $\alpha_\lambda \to a^{\sharp\sharp}$ and $\beta_\mu \to b^{\sharp\sharp}$ in the weak*-topology $\sigma(A^{\sharp\sharp}, A^{\sharp}).$ Moreover, we can define an involution $*$ in $A^{\sharp\sharp}$ by

$$
(a^{\sharp\sharp})^*(\rho) = \overline{a^{\sharp\sharp}(\rho^*)}, \quad \rho^*(a) = \overline{\rho(a^*)},
$$

where $a^{\sharp\sharp} \in A^{\sharp\sharp}, \rho \in A^{\sharp}$ and $a \in A$. By [\[22](#page-16-15), p. 726], we deduce that $A^{\sharp\sharp}$ is a von Neumann algebra with the product \diamond and the involution $*$.

Since *M* is a Banach *A*-bimodule, $M^{\sharp\sharp}$ turns into a dual Banach ($A^{\sharp\sharp}$, \diamond)-bimodule with the operation defined by

$$
a^{\sharp\sharp} \cdot m^{\sharp\sharp} = \lim_{\lambda} \lim_{\mu} a_{\lambda} m_{\mu}
$$
 and $m^{\sharp\sharp} \cdot a^{\sharp\sharp} = \lim_{\mu} \lim_{\lambda} m_{\mu} a_{\lambda}$

for every $a^{\sharp\sharp}$ in $\mathcal{A}^{\sharp\sharp}$ and every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$, where (a_{λ}) is a net in \mathcal{A} with $\|a_{\lambda}\| \leq \|a^{\sharp\sharp}\|$ and $(a_{\lambda}) \rightarrow a^{\sharp\sharp}$ in $\sigma(A^{\sharp\sharp}, A^{\sharp}), (m_{\mu})$ is a net in *M* with $||m_{\mu}|| \leq ||m^{\sharp\sharp}||$ and $(m_{\mu}) \rightarrow m^{\sharp\sharp}$ in $\sigma(M^{\sharp\sharp},\mathcal{M}^{\sharp}).$

We remarked in the discussion preceding Theorem [2.1](#page-3-1) that $M^{\sharp\sharp}$ has an involution $*$ and it is continuous in $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$. By [\[1,](#page-16-9) p. 553], we know that every continuous bilinear map φ from $A \times M$ into M is Arens regular, which means that

$$
\lim_{\lambda} \lim_{\mu} \varphi(a_{\lambda}, m_{\mu}) = \lim_{\mu} \lim_{\lambda} \varphi(a_{\lambda}, m_{\mu})
$$

holds for every $\sigma(A^{\sharp\sharp}, A^{\sharp})$ -convergent net (a_{λ}) in *A* and every $\sigma(M^{\sharp\sharp}, M^{\sharp})$ -convergent net (m_{μ}) in *M*. Thus, we obtain

$$
(a^{\sharp\sharp} \cdot m^{\sharp\sharp})^* = (\lim_{\lambda} \lim_{\mu} a_{\lambda} m_{\mu})^* = \lim_{\lambda} \lim_{\mu} m_{\mu}^* a_{\lambda}^* = \lim_{\mu} \lim_{\lambda} m_{\mu}^* a_{\lambda}^* = (m^{\sharp\sharp})^* \cdot (a^{\sharp\sharp})^*,
$$

where (a_λ) is a net in *A* with $(a_\lambda) \to a^{\sharp\sharp}$ in $\sigma(A^{\sharp\sharp}, A^{\sharp})$ and (m_μ) is a net in *M* with $(m_{\mu}) \rightarrow m^{\sharp\sharp}$ in $\sigma(M^{\sharp\sharp}, M^{\sharp})$. Similarly, we can show $(m^{\sharp\sharp} \cdot a^{\sharp\sharp})^* = (a^{\sharp\sharp})^* \cdot (m^{\sharp\sharp})^*$. This implies that $\mathcal{M}^{\sharp\sharp}$ is a Banach \ast - $\mathcal{A}^{\sharp\sharp}$ -bimodule.

A projection *p* in $A^{\sharp\sharp}$ is called *open* if there exists an increasing net (a_{α}) of positive elements in *A* such that $p = \lim_{\alpha} a_{\alpha}$ in the weak^{*}-topology of $A^{\sharp\sharp}$. If *p* is open, then we say that the projection $1 - p$ is *closed*.

For a unital *C*∗-algebra, the following result holds.

Theorem 3.7 *Suppose that A is a unital C*∗*-algebra andMis a unital Banach* ∗*-A-bimodule. If* δ *is a continuous linear mapping from A into M such that* $\delta(1)a = a\delta(1)$ *holds for every a in A, then the following three statements are equivalent:*

(1) $a, b \in A$, $a \circ b^* = 0$ *implies* $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$;

(2) a, *b* ∈ *A*, *ab*[∗] = *b*∗*a* = 0 *implies a* ◦ δ(*b*)[∗] + δ(*a*) ◦ *b*[∗] = 0;

(3) $\delta(a) = \Delta(a) + \delta(1)a$ holds for every a in *A*, where Δ is a *-derivation from *A* into *M*.

Proof It is clear that (1) implies (2) and (3) implies (1). It is sufficient the prove that (2) implies (3).

Define a linear mapping Δ from *A* into *M* by $\Delta(a) = \delta(a) - \delta(1)a$ for every *a* in *A*. It is sufficient to show that Δ is a ∗-derivation. First we prove $\Delta(a^*) = \Delta(a)^*$ for every *a* in *A*.

By assumption, we can easily to show that

$$
a, b \in A, ab^* = b^*a = 0
$$
 implies $a \circ \Delta(b)^* + \Delta(a) \circ b^* = 0$ and $\Delta(1) = 0$.

Next, we verify $\Delta(b) = \Delta(b)^*$ for every self-adjoint element *b* in A.

Since Δ is a norm-continuous linear mapping form *A* into *M*, we know that $\Delta^{\sharp\sharp}$: $(A^{\sharp\sharp}, \diamond) \to \mathcal{M}^{\sharp\sharp}$ is the weak^{*}-continuous extension of \triangle to the double duals of A and M.

Let *b* be a nonzero self-adjoint element in *A*, $\sigma(b) \subseteq [-||b||, ||b||]$ the spectrum of *b* and $r(b) \in A^{\uparrow\uparrow\uparrow}$ the range projection of *b*.

Denote by A_b the C^* -subalgebra of A generated by b , and by $C(\sigma(b))$ the C^* -algebra of all continuous complex-valued functions on $\sigma(b)$. By Gelfand theory we know that there is an isometric $*$ isomorphism between A_b and $C(\sigma(b))$.

For every *n* in N, let p_n be the projection in $A_b^{\sharp\sharp} \subseteq A^{\sharp\sharp}$ corresponding to the characteristic function $\chi_{([-||b||, -\frac{1}{n}] \cup [\frac{1}{n}, ||b||]) \cap \sigma(b)}$ in $C(\sigma(b))$, and let b_n be in A_b such that

$$
b_n p_n = p_n b_n = b_n^*
$$
 and $||b_n - b|| < \frac{1}{n}$.

 \mathcal{L} Springer

By [\[29,](#page-16-24) Section 1.8], we know that (p_n) converges to $r(b)$ in the strong^{*}-topology of $\mathcal{A}^{\sharp\sharp}$. and hence in the weak∗-topology.

It is well known that p_n is a closed projection in $A_b^{\sharp\sharp} \subseteq A^{\sharp\sharp}$ and $1 - p_n$ is an open projection in $A_b^{\sharp\sharp}$. Thus, there exists an increasing net (z_λ) of positive elements in $((1 - p_n)\mathcal{A}^{\sharp\sharp}(1 - p_n)) \cap \mathcal{A}$ such that

$$
0\leq z_{\lambda}\leq 1-p_n
$$

and (z_λ) converges to $1 - p_n$ in the weak^{*}-topology of $A^{\sharp\sharp}$. Since

$$
0 \le ((1 - p_n) - z_\lambda)^2 \le (1 - p_n) - z_\lambda \le (1 - p_n),
$$

the net (z_λ) also converges to $1 - p_n$ in the strong^{*}-topology of $A^{\sharp\sharp}$.

By $b_n = b_n^*$ and $z_\lambda b_n = b_n z_\lambda = 0$, it follows that

$$
z_{\lambda} \circ \Delta^{\sharp\sharp}(b_n)^* + \Delta^{\sharp\sharp}(z_{\lambda}) \circ b_n = 0. \tag{3.8}
$$

Taking weak^{*}-limits in [\(3.8\)](#page-13-0) and since $\Delta^{\uparrow\uparrow}$ is weak^{*}-continuous, we deduce

$$
(1 - p_n) \circ \Delta^{\sharp\sharp}(b_n)^* + \Delta^{\sharp\sharp}((1 - p_n)) \circ b_n = 0. \tag{3.9}
$$

Since (p_n) converges to $r(b)$ in the weak^{*}-topology of $A^{\sharp\sharp}$ and (b_n) converges to *b* in the norm-topology of A , by (3.9) , we have that

$$
(1 - r(b)) \circ \Delta^{\sharp\sharp}(b)^{*} + \Delta^{\sharp\sharp}(1 - r(b)) \circ b = 0.
$$
 (3.10)

Now the range projection of every power b^m with $m \in \mathbb{N}$ coincides with the $r(b)$, and by [\(3.10\)](#page-13-2), hence

$$
(1 - r(b)) \circ \Delta^{\sharp\sharp}(b^m)^* + \Delta^{\sharp\sharp}(1 - r(b)) \circ b^m = 0
$$

holds for every $m \in \mathbb{N}$, and by the linearity and norm continuity of the product we obtain

$$
(1 - r(b)) \circ \Delta^{\sharp\sharp}(z)^{*} + \Delta^{\sharp\sharp}(1 - r(b)) \circ z = 0
$$

for every $z = z^*$ in A_b . A standard argument involving the weak^{*}-continuity of $\Delta^{\sharp\sharp}$ gives

$$
(1 - r(b)) \circ \Delta^{\sharp\sharp}(r(b))^* + \Delta^{\sharp\sharp}(1 - r(b)) \circ r(b) = 0.
$$
 (3.11)

By (3.11) , we obtain

$$
(\Delta^{\sharp\sharp}(r(b))^* + \Delta^{\sharp\sharp}(r(b)) - \Delta^{\sharp\sharp}(1)) \circ r(b) = 2\Delta^{\sharp\sharp}(r(b))^*.
$$

By $\Delta(1) = 0$, the equality $\Delta^{\sharp\sharp}(1) = 0$ holds, hence

$$
\Delta^{\sharp\sharp}(r(b))^* = \Delta^{\sharp\sharp}(r(b)).\tag{3.12}
$$

It is clear that every characteristic function

$$
p = \chi_{([-||b||, -\alpha] \cup [\alpha, ||b||]) \cap \sigma(b)} \tag{3.13}
$$

in $C_0(\sigma(b))$ ^{$\sharp\sharp$} with $0 < \alpha < ||b||$ is the range projection of a function in $C(\sigma(b))$. Moreover, every projection of the form

$$
q = \chi_{([-\beta, -\alpha] \cup [\alpha, \beta]) \cap \sigma(b)} \tag{3.14}
$$

in $C_0(\sigma(b))$ ^{$\sharp\sharp$} with $0 < \alpha < \beta < ||b||$ can be written as the difference of two projections of the type in (3.13) .

Since A_b and $C(\sigma(b))$ are isometric \ast -isomorph and $\Delta^{\sharp\sharp}(r(b))^* = \Delta^{\sharp\sharp}(r(b))$ holds for the range projection of *b* in $A^{\sharp\sharp}$, we infer $\Delta^{\sharp\sharp}(p)^* = \Delta^{\sharp\sharp}(p)$ for every projection *p* of the type in [\(3.13\)](#page-13-4). It follows that $\Delta^{\uparrow\sharp}(q)^* = \Delta^{\uparrow\sharp}(q)$ holds for every projection *q* of the type in [\(3.14\)](#page-13-5).

It is well known that *b* can be approximated in norm by finite linear combinations of mutually orthogonal projections q_i of the type in (3.14) . Therefore, using the continuity of Δ , we obtain $\Delta(b)^* = \Delta(b)$. Thus, $\Delta(a)^* = \Delta(a)$ for every *a* in *A*.

By the assumption, it follows that

$$
a, b \in A, ab = ba = 0
$$
 implies $a \circ \Delta(b) + \Delta(a) \circ b = 0$.

By [\[2](#page-16-25), Theorem 4.1], we infer that Δ is a ∗-derivation.

Next, we consider general C^* -algebras *A*. If $(e_i)_{i \in \Gamma}$ is a bounded approximate identity of *A*, *M* is an essential Banach ∗-*A*-bimodule, and δ is a continuous linear mapping from *A* into *M*, then $(\delta(e_i))_{i \in \Gamma}$ is bounded and we can assume that it converges to ξ in $\mathcal{M}^{\sharp\sharp}$ in the topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp}).$

Theorem 3.8 *Suppose that A is a C*∗*-algebra (not necessary unital) and M is an essential Banach* ∗*-A-bimodule. If* δ *is a continuous linear mapping from A intoMsuch that* ξ ·*a* = *a*·ξ *for every a in A, then the following three statements are equivalent:*

(1) $a, b \in A$, $a \circ b^* = 0$ *implies* $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$; *(2) a*, *b* ∈ *A*, *ab*[∗] = *b*∗*a* = 0 *implies a* ◦ δ(*b*)[∗] + δ(*a*) ◦ *b*[∗] = 0; (3) $\delta(a) = \Delta(a) + \xi \cdot a$ for every a in *A*, where Δ is a *-derivation from *A* into M^{#1}.

Proof It is clear that (1) implies (2) and (3) implies (1). We only need to prove that (2) implies (3).

Define a linear mapping Δ from A into $\mathcal{M}^{\sharp\sharp}$ by

$$
\Delta(a) = \delta(a) - \xi \cdot a
$$

for every *a* in *A*. It is sufficient to show that Δ is a \ast -derivation.

By the definition of Δ and $\xi \cdot a = a \cdot \xi$ for every *a* in *A*, we can easily to show that

$$
a, b \in \mathcal{A}, \ ab^* = b^*a = 0 \text{ implies } a \circ \Delta(b)^* + \Delta(a) \circ b^* = 0.
$$

By [\[10,](#page-16-10) Proposition 2.9.16], we know that $(e_i)_{i \in \Gamma}$ converges to the identity 1 in $A^{\sharp\sharp}$ with the topology $\sigma(A^{\sharp\sharp}, A^{\sharp})$. By the proof of Theorem [2.1,](#page-3-1) we infer that $\Delta(e_i) = \delta(e_i) - e_i \cdot \xi$ converges to zero in $\mathcal{M}^{\sharp\sharp}$ in the topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^{\sharp})$, and we obtain

$$
m^{\sharp\sharp}\cdot 1=m^{\sharp\sharp}
$$

for every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$. Since $\mathcal{M}^{\sharp\sharp}$ is a Banach \ast - $\mathcal{A}^{\sharp\sharp}$ -bimodule,

$$
1 \cdot m^{\sharp\sharp} = m^{\sharp\sharp}
$$

holds for every $m^{\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp}$. Since Δ is a norm-continuous linear mapping form A into $\mathcal{M}^{\sharp\sharp}$, the mapping $\Delta^{\sharp\sharp}$: ($\mathcal{A}^{\sharp\sharp}$, \diamond) $\rightarrow \mathcal{M}^{\sharp\sharp\sharp\sharp}$ is the weak^{*}-continuous extension of Δ to the double duals of *A* and $\mathcal{M}^{\sharp\sharp}$ such that $\Delta^{\sharp\sharp}(1) = 0$.

By [\[10,](#page-16-10) Proposition A.3.52], we know that the mapping $m^{\text{eff}} \mapsto m^{\text{eff}} \cdot 1$ from \mathcal{M}^{eff} into itself is $\sigma(M^{\sharp\sharp\sharp\sharp}, \mathcal{M}^{\sharp\sharp\sharp})$ -continuous and, by the $\sigma(M^{\sharp\sharp\sharp\sharp}, \mathcal{M}^{\sharp\sharp\sharp})$ -denseness of $\mathcal{M}^{\sharp\sharp}$ in $M^{\sharp\sharp\sharp\sharp}$, the equality

$$
m^{\sharp\sharp\sharp\sharp\sharp}\cdot 1=m^{\sharp\sharp\sharp\sharp\sharp}
$$

holds for every m^{diff} in $\mathcal{M}^{\text{diff}}$. Since $\mathcal{M}^{\text{diff}}$ is a Banach $*$ - \mathcal{A}^{iff} -bimodule,

$$
1 \cdot m^{\sharp\sharp\sharp\sharp} = m^{\sharp\sharp\sharp\sharp}
$$

holds for every $m^{\sharp\sharp\sharp\sharp}$ in $\mathcal{M}^{\sharp\sharp\sharp\sharp}$.

Finally, we use the proof of Theorem [3.7](#page-12-0) to show that Δ is a $*$ -derivation from *A* into $M^{\sharp\sharp}$. $\mathcal{M}^{\sharp\sharp}$.

Remark 3 In [\[12\]](#page-16-26), A. Essaleh and A. Peralta investigated the concept of triple derivation on *C*∗-algebras. Suppose that *A* is a *C*∗-algebra. If *a*, *b* and *c* be in *A*, define the *ternary product* by $\{a, b, c\} = \frac{1}{2}(ab^*c + cb^*a)$. A linear mapping δ from *A* into itself is called a *triple derivation* if

$$
\delta\{a, b, c\} = \{\delta(a), b, c\} + \{a, \delta(b), c\} + \{a, b, \delta(c)\}\
$$

holds for each *a*, *b* and *c* in *A*. If *z* is an element in *A*, then δ is called a *triple derivation at z* if

$$
a, b, c \in A, \{a, b, c\} = z
$$
 implies $\delta(z) = \{\delta(a), b, c\} + \{a, \delta(b), c\} + \{a, b, \delta(c)\}.$

In [\[12](#page-16-26)], A. Essaleh and A. Peralta proved that every continuous linear mapping δ which is a triple derivation at zero from a unital C^* -algebra into itself with $\delta(1) = 0$ is a $*$ -derivation.

On the other hand, it is easy to show that if δ is a triple derivation at zero, then

$$
a, b \in A, ab^* = b^*a = 0
$$
 implies $a \circ \delta(b)^* + \delta(a) \circ b^* = 0$.

Thus, Theorem [3.7](#page-12-0) generalizes [\[12](#page-16-26), Corollary 2.10].

Remark 4 In [\[8\]](#page-16-27), M. Brešar and J. Vukman introduced left derivations and Jordan left derivations. A linear mapping δ from an algebra *A* into its bimodule *M* is called a *left derivation* if $\delta(ab) = a\delta(b) + b\delta(a)$ holds for each *a*, *b* in *A*; and δ is called a *Jordan left derivation* if $\delta(a \circ b) = 2a\delta(b) + 2b\delta(a)$ holds for each *a*, *b* in *A*.

Let *A* be a $*$ -algebra and *M* a $*$ -*A*-bimodule. A left derivation (Jordan left derivation) δ from *A* into *M* is called a *∗-left derivation* (**-Jordan left derivation*) if $\delta(a^*) = \delta(a)^*$ for every *a* in *A*.

We also can investigate the following conditions on a linear mapping δ from *A* into *M*:

$$
(\mathbb{J}_1) \ a, b \in \mathcal{A}, \ ab^* = 0 \text{ implies } a\delta(b)^* + b^*\delta(a) = 0;
$$

$$
(\mathbb{J}_2) \ a, b \in \mathcal{A}, \ a \circ b^* = 0 \text{ implies } a\delta(b)^* + b^*\delta(a) = 0;
$$

$$
(\mathbb{J}_3) \ a, b \in \mathcal{A}, \ ab^* = b^*a = 0 \text{ implies } a\delta(b)^* + b^*\delta(a) = 0.
$$

Acknowledgements The authors thank the referee for his or her suggestions. This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11801342, 11801005, 11871021); Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693); Scientific research plan projects of Shannxi Education Department (Grant No. 9JK0130).

References

- 1. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Maps preserving zero products. Studia Math. **193**, 131–159 (2009)
- 2. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on *C*∗-algebras through zero products. Proc. Edinburgh Math. Soc. **53**, 543–555 (2010)
- 3. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Phil. Soc. **158**, 493–504 (2015)
- 4. G. An, J. Li, Characterizations of linear mappings through zero products or zero Jordan products. Electron. J. Linear Algebra **31**, 408–424 (2016)
- 5. G. An, J. Li, J. He, Zero Jordan product determined algebras. Linear Algebra Appl. **475**, 90–93 (2015)
- 6. M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. Roy. Soc. Edinburgh Sect. A **137**, 9–21 (2007)
- 7. M. Brešar, Multiplication algebra and maps determined by zero products. Linear Multilinear Algebra **60**, 763–768 (2012)
- 8. M. Brešar, J. Vukman, On left derivations and related mappings. Proc. Am. Math. Soc. **110**, 7–16 (1990)
- 9. J. Cuntz, On the continuity of Semi-Norms on operator algebras. Math. Ann. **220**, 171–183 (1976)
- 10. H. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monog. Ser. **24**, Oxford Univ. Press, New York, 2000
- 11. H. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebra. Studia Math. **128**, 19–54 (1998)
- 12. A. Essaleh, A. Peralta, Linear maps on *C*∗-algebras which are derivations or triple derivations at a point. Linear Algebra Appl. **538**, 1–21 (2018)
- 13. B. Fadaee and H. Ghahramani. Linear maps behaving like derivations or anti-derivations at orthogonal elements on *C*∗-algebras, [arXiv: 1907.03594v1](http://arxiv.org/abs/1907.03594v1)
- 14. P. Fillmore, D. Topping, Operator algebras generated by projections. Duke Math. J. **34**, 333–336 (1967)
- 15. H. Ghahramani, On derivations and Jordan derivations through zero products. Oper. Matrices **8**, 759–771 (2014)
- 16. H. Ghahramani, Characterizing Jordan derivations of matrix rings through zero products. Math. Slovaca **65**, 1277–1290 (2015)
- 17. H. Ghahramani. Linear maps on group algebras determined by the action of the derivations or antiderivations on a set of orthogonal element, Results Math., **73** (2018), no. 4, Art. 133, 14pp
- 18. H. Ghahramani, Z. Pan, Linear maps on ∗-algebras acting on orthogonal element like derivations or anti-derivations. Filomat **13**, 4543–4554 (2018)
- 19. J. He, J. Li, W. Qian, Characterizations of centrelizers and derivations on some algebras. J. Korean Math. Soc. **54**, 685–696 (2017)
- 20. S. Hejazian, A. Niknam, Modules, annihilators and module derivations of *J B*∗-algebras. Indian J. Pure Appl. Math. **27**, 129–140 (1996)
- 21. B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations Math. Proc. Camb. Philos. Soc. **120**, 455–473 (1996)
- 22. R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras, I, Pure Appl. Math. 100, Academic Press, New York, 1983
- 23. R. Kantrowitz, M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions. Glasgow Math. J. **43**, 295–309 (2001)
- 24. A. Kishimoto, Dissipations and Derivations. Commun. Math. Phys. **47**, 25–32 (1976)
- 25. T. Lam, *A First Course in Noncommutative Rings* (Springer-Verlag, New York, 1991)
- 26. B. Li, *Introduction to Operator Algebras* (World Scientific, Singapore, 1992)
- 27. V. Losert, The derivation problem for group algebras. Ann. Math. **168**, 221–246 (2008)
- 28. M. Muratov, V. Chilin, Algebras of measurable and locally measurable operators, Kyiv, Pratse In-ty matematiki NAN ukraini., **69** (2007), 390 pp, (Russian)
- 29. S. Sakai, *C*-Algebras and W*-Algebras* (Springer-Verlag, Berlin, 1971)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.