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Abstract
LetAbe a∗-algebra andMbe a∗-A-bimodule.We study the local properties of∗-derivations
and ∗-Jordan derivations from A into M under the following orthogonality conditions on
elements inA: ab∗ = 0, ab∗+b∗a = 0 and ab∗ = b∗a = 0.We characterize themappings on
zero product determined algebras and zero Jordan product determined algebras.Moreover,we
give some applications on C∗-algebras, group algebras, matrix algebras, algebras of locally
measurable operators and von Neumann algebras.

Keywords ∗-(Jordan) derivation · ∗-(Jordan) left derivation · Zero (Jordan) product
determined algebra · C∗-algebra · von Neumann algebra.
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1 Introduction

Throughout this paper, let A be an associative algebra over the complex field C and M be
an A-bimodule. For each a, b in A, we define the Jordan product by a ◦ b = ab + ba. A
linear mapping δ from A into M is called a derivation if δ(ab) = aδ(b) + δ(a)b for each
a, b in A; and δ is called a Jordan derivation if δ(a ◦ b) = a ◦ δ(b) + δ(a) ◦ b for each a, b
in A. It follows from the results in [9,20,21] that every Jordan derivation from a C∗-algebra
into its Banach bimodule is a derivation.

By an involution on an algebra A we mean a mapping ∗ from A into itself such that
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(λa + μb)∗ = λ̄a∗ + μ̄b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a,

whenever a, b ∈ A, λ,μ ∈ C and λ̄, μ̄ denote the conjugate complex numbers. An algebra
A equipped with an involution is called a ∗-algebra. Moreover, if A is a ∗-algebra, then an
A-bimodule M is called a ∗-A-bimodule if M is equipped with a ∗-mapping from M into
itself such that

(λm + μn)∗ = λ̄m∗ + μ̄n∗, (am)∗ = m∗a∗, (ma)∗ = a∗m∗ and (m∗)∗ = m,

whenever a ∈ A, m, n ∈ M and λ,μ ∈ C. An element a in A is called self-adjoint if
a∗ = a; an element p in A is called an idempotent if p2 = p; and p is called a projection if
p is both a self-adjoint element and an idempotent.

In [24],A.Kishimoto studied the∗-derivations on aC∗-algebra, and proved that the closure
of a normal ∗-derivation of a UHF algebra satisfying a special condition is a generator of a
one-parameter group of ∗-automorphisms. Let A be a ∗-algebra andM be a ∗-A-bimodule.
A derivation δ from A into M is called a ∗-derivation if δ(a∗) = δ(a)∗ for every a in A.
Obviously, every derivation δ is a linear combination of two ∗-derivations. In fact, we can
define a linear mapping δ̂ from A into M by δ̂(a) = δ(a∗)∗ for every a in A, therefore
δ = δ1 + iδ2, where δ1 = 1

2 (δ + δ̂) and δ2 = 1
2i (δ − δ̂). It is easy to show that δ1 and δ2 are

both ∗-derivations. We can define ∗-Jordan derivations similarly.
For ∗-derivations and ∗-Jordan derivations, in [3,13,17,18], the authors characterized the

following two conditions on a linear mapping δ from a ∗-algebra A into its ∗-bimodule M:

(D1) a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0;
(D2) a, b ∈ A, ab∗ = b∗a = 0 implies aδ(b)∗ + δ(a)b∗ = δ(b)∗a + b∗δ(a) = 0,

where A is a C∗-algebra, a zero product determined algebra or a group algebra L1(G).
Let J be an ideal ofA. We say that J is a right separating set or left separating set ofM

if for every m in M, Jm = {0} implies m = 0 or mJ = {0} implies m = 0, respectively.
We denote by J(A) the subalgebra of A generated algebraically by all idempotents in A.

In Sect. 2, we suppose that A is a ∗-algebra andM is a ∗-A-bimodule that satisfy one of
the following conditions:

(1) A is a zero product determined Banach ∗-algebra with a bounded approximate identity
and M is an essential Banach ∗-A-bimodule;

(2) A is a von Neumann algebra and M = A;
(3) A is a unital ∗-algebra andM is a unital ∗-A-bimodule with a left or right separating set

J ⊆ J(A);

and we investigate whether the linear mappings from A into M satisfying condition D1

characterize ∗-derivations. In particular, we generalize some results from [13,17,18].
An A-bimodule M is said to have property M, if there is an ideal J ⊆ J(A) of A such

that

{m ∈ M : xmx = 0 for every x ∈ J } = {0}.
It is clear that if A = J(A), then M has property M.

For ∗-Jordan derivations, we can study the following conditions on a linear mapping δ

from a ∗-algebra A into its ∗-A-bimodule M:

(D3) a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0,

(D4) a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0.

123



272 G. An et al.

It is obvious that condition D2 or D3 implies condition D4.
In Sect. 3, we suppose that A is a ∗-algebra andM is a ∗-A-bimodule that satisfy one of

the following conditions:

(1) A is a unital zero Jordan product determined ∗-algebra andM is a unital ∗-A-bimodule;
(2) A is a unital ∗-algebra and M is a unital ∗-A-bimodule such that the property M;
(3) A is a C∗-algebra (not necessary unital) and M is an essential Banach ∗-A-bimodule;

and we investigate whether the linear mappings fromA intoM satisfying conditionD3 orD4

characterize ∗-Jordan derivations. In particular, we improve some results from [13,17,18].

2 ∗-derivations on some algebras

A (Banach) algebra A is said to be zero product determined if every (continuous) bilinear
mapping φ from A × A into any (Banach) linear space X satisfying

φ(a, b) = 0 whenever ab = 0

can be written as φ(a, b) = T (ab), for some (continuous) linear mapping T fromA into X .
In [7], M. Brešar showed that if A = J(A), then A is zero product determined, and in [1],
the authors proved that every C∗-algebra A is zero product determined.

Let A be a Banach ∗-algebra and M be a Banach ∗-A-bimodule. Denote by M�� the
second dual space of M. Next, we show that M�� is also a Banach ∗-A-bimodule.

SinceM is a Banach ∗-A-bimodule,M�� turns into a dual Banach A-bimodule with the
operation defined by

a · m�� = lim
μ

amμ and m�� · a = lim
μ

mμa

for every a in A and every m�� in M��, where (mμ) is a net in M with ‖mμ‖ ≤ ‖m��‖ and
(mμ) → m�� in the weak∗-topology σ(M��,M�).

We define an involution ∗ in M�� by

(m��)∗(ρ) = m��(ρ∗), ρ∗(m) = ρ(m∗),

where m�� ∈ M��, ρ ∈ M� and m ∈ M. Moreover, if (mμ) is a net in M and m�� is an
element inM�� such that mμ → m�� in σ(M��,M�), then for every ρ inM�, we have that

ρ(mμ) = mμ(ρ) → m��(ρ).

It follows that

(m∗
μ)(ρ) = ρ(m∗

μ) = ρ∗(mμ) → m��(ρ∗) = (m��)∗(ρ)

for every ρ in M�. This means that the involution ∗ in M�� is continuous in σ(M��,M�).
Thus, we obtain

(a · m��)∗ = (lim
μ

amμ)∗ = lim
μ

m∗
μa

∗ = (m��)∗ · a∗.

Similarly, we can show (m�� · a)∗ = a∗ · (m��)∗. This implies that M�� is a Banach ∗-A-
bimodule.

If A is a Banach ∗-algebra, then a bounded approximate identity for A is a net (ei )i∈� of
self-adjoint elements in A such that lim

i
‖aei − a‖ = lim

i
‖eia − a‖ = 0 for every a in A

and supi∈�‖ei‖ ≤ k for some k > 0 .
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In [18], H. Ghahramani and Z. Pan proved that if A is a unital zero product determined
∗-algebra and a linear mapping δ from A into itself satisfies the condition

(D1) a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,

then δ(a) = 	(a) + δ(1)a for every a in A, where 	 is a ∗-derivation.
For general zero product determined Banach ∗-algebras with a bounded approximate

identity, the following result holds.

Theorem 2.1 Suppose thatA is a zero product determined Banach ∗-algebra with a bounded
approximate identity, andM is an essential Banach ∗-A-bimodule. If δ is a continuous linear
mapping from A into M such that

a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,

then there exists a ∗-derivation 	 from A into M�� and an element ξ in M�� such that
δ(a) = 	(a) + ξ · a for every a in A. Furthermore, ξ can be chosen in M in each of the
following cases:

(1) A is a unital ∗-algebra,
(2) M is a dual ∗-A-bimodule.

Proof Let (ei )i∈� be a bounded approximate identity of A. Since δ is continuous, the net
(δ(ei ))i∈� is bounded and we can assume that it converges to ξ in M�� with the topology
σ(M��,M�).

Since M is an essential Banach ∗-A-bimodule, we know that the nets (eim)i∈� and
(mei )i∈� converge to m with the norm topology for every m in M. Thus, we have

AnnM(A) = {m ∈ M : amb = 0 for each a, b ∈ A} = {0}.
By the hypothesis, we obtain that

a, b, c ∈ A, ab∗ = b∗c = 0 implies aδ(b)∗c = 0.

It follows that

a, b, c ∈ A, ab = bc = 0 ⇒ c∗b∗ = b∗a∗ = 0 ⇒ c∗δ(b)∗a∗ = 0 ⇒ aδ(b)c = 0.
(2.1)

By (2.1) and [1, Theorem 4.5], we know that

δ(ab) = δ(a)b + aδ(b) − a · ξ · b
for each a, b in A, and ξ can be chosen in M if A is a unital ∗-algebra or M is a dual
∗-A-bimodule.

Define a linear mapping 	 from A into M by

	(a) = δ(a) − ξ · a
for every a in A. It is easy to show that 	 is a norm-continuous derivation from A intoM��

and we only need to show that 	(b∗) = 	(b)∗ for every b in A.
First we claim that 	(ei ) = δ(ei ) − ξ · ei converges to zero in M�� with the topology

σ(M��,M�). In fact, since (ei )i∈� is bounded in A, we assume (ei )i∈� converges to ζ in
A�� with the topology σ(A��,A�). For every m�� in M��, define

m�� · ζ = lim
i
m�� · ei .
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274 G. An et al.

Thus, m · ζ = m for every m inM. By [10, Proposition A.3.52], we know that the mapping
m�� 
→ m�� · ζ from M�� into itself is σ(M��,M�)-continuous, and by the σ(M��,M�)-
denseness of M in M��, we have

m�� · ζ = m�� (2.2)

for every m�� in M��. Hence 	(ei ) = δ(ei ) − ξ · ei converges to zero in M�� with the
topology σ(M��,M�).

Next we prove 	(b∗) = 	(b)∗ for every b in A. By the definition of 	, we know that
a	(b)∗ + 	(a)b∗ = 0 for each a, b in A with ab∗ = 0. Define a bilinear mapping from
A × A into M�� by

φ(a, b) = a	(b∗)∗ + 	(a)b.

Thus, ab = 0 implies φ(a, b) = 0. SinceA is a zero product determined algebra, there exists
a norm-continuous linear mapping T from A into M�� such that

T (ab) = φ(a, b) = a	(b∗)∗ + 	(a)b (2.3)

for each a, b in A. If b = ei in (2.3), then we obtain

T (aei ) = a	(ei )
∗ + 	(a)ei .

By the continuity of T and (2.2), it follows that T (a) = 	(a) for every a in A. Thus,

T (ab) = 	(ab) = a	(b∗)∗ + 	(a)b.

Since 	 is a derivation, we have a	(b∗)∗ = a	(b) and 	(b∗)a∗ = 	(b)∗a∗. If a = ei ,
then taking σ(M��,M�)-limits, by (2.2) it follows that 	(b∗) = 	(b)∗ for every b in A. ��

LetG be a locally compact group. The group algebra and the measure convolution algebra
of G are denoted by L1(G) and M(G), respectively. The convolution product is denoted by ·
and the involution is denoted by ∗. It is well known that M(G) is a unital Banach ∗-algebra,
and L1(G) is a closed ideal inM(G)with a bounded approximate identity. By [3, Lemma1.1],
we know that L1(G) is zero product determined. By [10, Theorem 3.3.15(ii)], it follows that
M(G)with respect to convolution product is the dual ofC0(G) as a BanachM(G)-bimodule.

By [27, Corollary 1.2], we know that every continuous derivation 	 from L1(G) into
M(G) is an inner derivation, that is, there exists μ in M(G) such that 	( f ) = f · μ − μ · f
for every f in L1(G). Thus, by Theorem 2.1, we can prove [17, Theorem 3.1(ii)] as follows.

Corollary 2.2 Let G be a locally compact group. If δ is a continuous linear mapping from
L1(G) into M(G) such that

f , g ∈ L1(G), f · g∗ = 0 implies f · δ(g)∗ + δ( f ) · g∗ = 0,

then there are μ, ν in M(G) such that

δ( f ) = f · μ − ν · f

for every f in L1(G) and Reμ ∈ Z(M(G)).

Proof By Theorem 2.1, we know that there exists a ∗-derivation 	 from L1(G) into M(G)

and an element ξ in M(G) such that δ( f ) = 	( f ) + ξ · f for every f in L1(G). By [27,
Corollary 1.2], it follows that there exists μ in M(G) such that 	( f ) = f · μ − μ · f . Since
	( f ∗) = 	( f )∗, we have that

f ∗ · μ − μ · f ∗ = μ∗ · f ∗ − f ∗ · μ∗
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for every f in L1(G). By [3, Lemma 1.3(ii)], we know Reμ = 1
2 (μ + μ∗) ∈ Z(M(G)). If

ν = μ− ξ , then from the definition of 	 we have δ( f ) = f ·μ−ν · f for every f in L1(G).
��

For a general C∗-algebra A, in [13], B. Fadaee and H. Ghahramani proved that if δ is
a continuous linear mapping from A into its second dual space A�� such that condition D1

holds, then there exists a ∗-derivation 	 from A into A�� and an element ξ in A�� such that
δ(a) = 	(a) + ξa for every a in A.

In [1], the authors proved that every C∗-algebra A is zero product determined, and it
is well known that A has a bounded approximate identity. Thus, by Theorem 2.1, we can
improve the result in [13] for any essential Banach ∗-bimodule.

Corollary 2.3 Suppose thatA is a C∗-algebra andM is an essential Banach ∗-A-bimodule.
If δ is a continuous linear mapping from A into M such that

a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,

then there exists a ∗-derivation 	 from A into M�� and an element ξ in M�� such that
δ(a) = 	(a) + ξ · a for every a in A. Furthermore, ξ can be chosen in M in each of the
following cases:

(1) A has an identity,
(2) M is a dual ∗-A-bimodule.

For von Neumann algebras, we have the following result.

Theorem 2.4 Suppose thatA is a von Neumann algebra. If δ is a linear mapping fromA into
itself such that

a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,

then δ(a) = 	(a) + δ(1)a for every a in A, where 	 is a ∗-derivation. In particular, δ is a
∗-derivation when δ(1) = 0.

Proof Define a linear mapping 	 from A into M by

	(a) = δ(a) − δ(1)a

for every a in A. In the following we show that 	 is a ∗-derivation. It is clear that 	(1) = 0
and ab∗ = 0 imply a	(b)∗ + 	(a)b∗ = 0.

Case 1 Suppose that A is an abelian von Neumann algebra. First we show that for 	 the
following holds:

a, b ∈ A, ab = 0 implies a	(b) = 0.

It is well known thatA ∼= C(X), where X is a compact Hausdorff space andC(X) denotes
the C∗-algebra of all continuous complex-valued functions on X . Thus, we have ab = 0 if
and only if ab∗ = 0 for each a, b inA. Indeed, if f and g are functions inC(X) corresponding
to a and b, respectively, then

ab∗ = 0 ⇔ f · ḡ = 0 ⇔ f · g = 0 ⇔ ab = 0.

If a and b are inAwith ab∗ = ab = 0, then a	(b)∗ +	(a)b∗ = 0. Multiplying by a on the
left side of the above equation, we obtain a2	(b)∗ = 0. If f and h are functions in C(X)

corresponding to a and 	(b), respectively, then

0 = f 2 ḡ = f 2g = f g.
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276 G. An et al.

This implies that a	(b) = 0. By [23, Theorem 3], the function 	 is continuous. By [19,
Lemma 2.5] and 	(1) = 0, we obtain 	(a) = 	(1)a = 0 for every a in A.

Case 2 Suppose A ∼= Mn(B), where B is also a von Neumann algebra and n ≥ 2. By
[6,7] we know that A is a zero product determined algebra. Thus, by [18, Theorem 3.1] it
follows that 	 is a ∗-derivation.

Case 3 Suppose that A is a von Neumann algebra without abelian direct summands. By
the type decomposition theorem, we have

A =
(∑
n∈E

⊕
An

)
⊕ AI∞ ⊕ AII ⊕ AIII,

where E is some set of different finite cardinal numbers and An is type In (n ≥ 2).
By [22, Theorem 6.6.5], we know that An is ∗-isomorphic to Mn(Z), where Z is the

center of An . Since AI∞ is a properly infinite von Neumann algebra and (AII ⊕ AIII) is a
continuous von Neumann algebra, by [22, Lemma 6.3.3] and [26, Theorem 6.8.3], we know
that there are two equivalent projections in (AI∞ ⊕AII ⊕AIII) with sum the unit element of
(AI∞ ⊕ AII ⊕ AIII). By [22, Lemmas 6.6.3 and 6.6.4], it follows that (AI∞ ⊕ AII ⊕ AIII) is
∗-isomorphic to M2(B) for some von Neumann algebra B.

Hence, for a general von Neumann algebra A, we have A ∼= ∑n
i=1

⊕Ai (n is a finite
integer or infinite), where each Ai coincides with either Case 1 or Case 2. Denote the unit
element ofAi by 1i and the restriction of	 inAi by	i . Since 1i (1−1i ) = 0 and	(1) = 0,
we have

1i	(1 − 1i )
∗ + 	(1i )(1 − 1i ) = 0,

therefore

−1i	(1i )
∗ + 	(1i ) − 	(1i )1i = 0. (2.4)

Multiplying by 1i on the left side of (2.4) and using 1i	(1i ) = 	(1i )1i , we obtain
1i	(1i )∗ = 0. This implies 	(1i ) = 0. For every a in A, we write a = ∑n

i=1 ai with
ai in Ai . Since ai (1 − 1i ) = 0, we have 	(ai )(1 − 1i ) = 0, which means 	(ai ) ∈ Ai . If
ai , bi are in Ai with aib∗

i = 0, then

	(ai )b
∗
i + ai	(bi )

∗ = 	i (ai )b
∗
i + ai	i (bi )

∗ = 0.

By Cases 1 and 2, we know that every 	i is a ∗-derivation. Thus, 	 is a ∗-derivation. ��
In what follows, we characterize the linear mappings δ that satisfy condition D1 from a

unital ∗-algebra into a unital ∗-A-bimodule with a right or left separating set J ⊆ J(A).

Lemma 2.5 ([7, Theorem 4.1]) Suppose that A is a unital algebra and X is a linear space.
If φ is a bilinear mapping from A × A into X such that

a, b ∈ A, ab = 0 implies φ(a, b) = 0,

then

φ(a, x) = φ(ax, 1) and φ(x, a) = φ(1, xa)

for every a in A and every x in J(A).

Theorem 2.6 Suppose that A is a unital ∗-algebra and M is a unital ∗-A-bimodule with a
right or left separating set J ⊆ J(A). If δ is a linear mapping from A into M such that

a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,
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Characterizing linear mappings... 277

then δ(a) = 	(a) + δ(1)a for every a in A, where 	 is a ∗-derivation. In particular, δ is a
∗-derivation when δ(1) = 0.

Proof SinceA is a unital ∗-algebra andM is a unital ∗-A-bimodule, we know thatJ ⊆ J(A)

is a right separating set of M if and only if J ∗ = {x∗ : x ∈ J } ⊆ J(A) is a left separating
set of M. Thus, without loss of generality, we can assume that J is a left separating set of
A, otherwise, we replace J by J ∗.

Define a linear mapping 	 from A into M by

	(a) = δ(a) − δ(1)a

for every a in A. In what follows, we show that 	 is a ∗-derivation.
It is clear that 	(1) = 0 and ab∗ = 0 imply a	(b)∗ + 	(a)b∗ = 0. Define a bilinear

mapping φ from A × A into M by

φ(a, b) = a	(b∗)∗ + 	(a)b

for each a and b in A. By the assumption, ab = 0 implies φ(a, b) = 0.
Let a, b be in A and x be in J . By Lemma 2.5, we obtain

φ(x, 1) = φ(1, x) and φ(a, x) = φ(ax, 1).

Hence, the following two identities hold:

x	(1)∗ + 	(x) = 	(x∗)∗ + 	(1)x (2.5)

and

a	(x∗)∗ + 	(a)x = ax	(1)∗ + 	(ax). (2.6)

By (2.5) and 	(1) = 0, we obtain 	(x)∗ = 	(x∗). Thus, by (2.6), this implies

	(ax) = a	(x) + 	(a)x .

Similarly to the proof of [4, Theorem 2.3], we obtain 	(ab) = a	(b) + 	(a)b for each a
and b in A.

It remains to show that 	(a)∗ = 	(a∗) holds for every a in A. Indeed, for every a in A
and every x in J , we have 	(ax)∗ = 	((ax)∗). This implies

(	(a)x + a	(x))∗ = 	(x∗)a∗ + x∗	(a∗).

Thus, we obtain x∗(	(a)∗ −	(a∗)) = 0, hence (	(a)−	(a∗)∗)x = 0. Therefore	(a)∗ =
	(a∗) for every a in A. ��

Remark 1 LetA be a ∗-algebra,M a ∗-A-bimodule, and δ a linear mapping fromA intoM.
Similarly to condition D1 which we have characterized in Sect. 2 as follows:

(D1) a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + δ(a)b∗ = 0,

we can consider condition D′
1:

(D′
1) a, b ∈ A, a∗b = 0 implies a∗δ(b) + δ(a)∗b = 0.

Through minor modifications, we can obtain the corresponding results.
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278 G. An et al.

Remark 2 A linear mapping δ from A into M is called a local derivation if, for every a in
A, there exists a derivation δa (depending on a) fromA intoM such that δ(a) = δa(a). It is
clear that every local derivation satisfies the following condition:

(H) a, b, c ∈ A, ab = bc = 0 implies aδ(b)c = 0.

In [1], the authors proved that every continuous linear mapping from a unitalC∗-algebra into
its unital Banach bimodule such that condition H holds and δ(1) = 0 is a derivation.

Let A be a ∗-algebra and M a ∗-A-bimodule. The natural way to translate condition H

to the context of ∗-derivations is to consider the following condition:

(H′) a, b, c ∈ A, ab∗ = b∗c = 0 implies aδ(b)∗c = 0.

However, conditions H′ and H are equivalent. Indeed, if condition H
′ holds, then

a, b, c ∈ A, ab = bc = 0 ⇒ c∗b∗ = b∗a∗ = 0 ⇒ c∗δ(b)∗a∗ = 0 ⇒ aδ(b)c = 0,

and if condition H holds, then

a, b, c ∈ A, ab∗ = b∗c = 0 ⇒ c∗b = ba∗ = 0 ⇒ c∗δ(b)a∗ = 0 ⇒ aδ(b)∗c = 0.

This means that condition H
′ and δ(1) = 0 do not imply that δ is a ∗-derivation.

3 ∗-Jordan derivations on some algebras

A (Banach) algebra A is said to be zero Jordan product determined if every (continuous)
bilinear mapping φ from A × A into any (Banach) linear space X satisfying

φ(a, b) = 0 whenever a ◦ b = 0

can be written as φ(a, b) = T (a ◦ b) for some (continuous) linear mapping T from A into
X . In [5], we showed that if A is a unital algebra with A = J(A), then A is a zero Jordan
product determined algebra.

Theorem 3.1 Suppose that A is a unital zero Jordan product determined ∗-algebra, and M
is a unital ∗-A-bimodule. If δ is a linear mapping from A into M such that

a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = 	(a) + δ(1)a for every a inA, where 	 is a ∗-Jordan derivation. In particular,
δ is a ∗-Jordan derivation when δ(1) = 0.

Proof Define a linear mapping 	 fromA intoM by 	(a) = δ(a) − δ(1)a for every a inA.
It is sufficient to show that 	 is a ∗-Jordan derivation.

It is clear that 	(1) = 0, and by δ(1)a = aδ(1) we have

a, b ∈ A, a ◦ b∗ = 0 implies a ◦ 	(b)∗ + 	(a) ◦ b∗ = 0.

Define a bilinear mapping from A × A into M by

φ(a, b) = a ◦ 	(b∗)∗ + 	(a) ◦ b.

Thus, a ◦ b = 0 implies φ(a, b) = 0. Since A is a zero Jordan product determined algebra,
there exists a linear mapping T from A into M such that

T (a ◦ b) = φ(a, b) = a ◦ 	(b∗)∗ + 	(a) ◦ b (3.1)
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for each a, b in A. Let a = 1 and b = 1 in (3.1). By 	(1) = 0, we obtain

T (a) = 	(a) and T (b) = 	(b∗)∗.

It follows that 	(a∗) = 	(a)∗ holds for every a in A. By (3.1),

T (a ◦ b) = 	(a ◦ b) = φ(a, b) = a ◦ 	(b) + 	(a) ◦ b.

This means that 	 is a ∗-Jordan derivation. ��
In [5], we proved that the matrix algebra Mn(B) for n ≥ 2 is zero Jordan product

determined, where B is a unital algebra. In [16], H. Ghahramani showed that every Jor-
dan derivation from Mn(B) with n ≥ 2 into its unital bimoduleM is a derivation. Hence we
have the following result.

Corollary 3.2 Suppose that B is a unital ∗-algebra, Mn(B) is a matrix algebra with n ≥ 2,
andM is a unital ∗-Mn(B)-bimodule. If δ is a linear mapping from Mn(B) intoM such that

a, b ∈ Mn(B), a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = 	(a) + δ(1)a for every a in Mn(B), where 	 is a ∗-derivation. In particular, δ
is a ∗-derivation when δ(1) = 0.

LetH be a complex Hilbert space and B(H) be the algebra of all bounded linear operators
on H. Suppose that A is a von Neumann algebra on H and LS(A) is the set of all locally
measurable operators affiliated with the von Neumann algebra A.

In [28], M. Muratov and V. Chilin proved that LS(A) is a unital ∗-algebra and A ⊂
LS(A). By [25, Proposition 21.20, Exercise 21.18], we know that if A is a von Neumann
algebra without abelian direct summands, and B is a ∗-algebra with A ⊆ B ⊆ LS(A), then
B ∼= ∑k

i=1
⊕

Mni (Bi ) (k is a finite integer or infinite), where Bi is a unital algebra. By
Theorem 3.1, we have the following result.

Corollary 3.3 Suppose that A is a von Neumann algebra without abelian direct summands,
and B is a ∗-algebra withA ⊆ B ⊆ LS(A). If δ is a linear mapping from B into LS(A) such
that

a, b ∈ B, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = 	(a) + δ(1)a for every a in B, where 	 is a ∗-Jordan derivation. In particular,
δ is a ∗-Jordan derivation when δ(1) = 0.

For von Neumann algebras, by Corollary 3.2 and similarly to the proof of Theorem 2.4,
we can easily obtain the following result and we omit the proof.

Corollary 3.4 Suppose that A is a von Neumann algebra. If δ is a linear mapping from A
into itself such that

a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = 	(a) + δ(1)a for every a in A, where 	 is a ∗-derivation. In particular, δ is a
∗-derivation when δ(1) = 0.

Lemma 3.5 ([5, Theorem 2.1]) Suppose that A is a unital algebra and X is a linear space.
If φ is a bilinear mapping from A × A into X such that

a, b ∈ A, a ◦ b = 0 implies φ(a, b) = 0,
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then

φ(a, x) = 1

2
φ(ax, 1) + 1

2
φ(xa, 1)

for every a in A and every x in J(A).

Suppose that A is a unital algebra and M is a unital A-bimodule satisfying

{m ∈ M : xmx = 0 for every x ∈ J } = {0},
where J is an ideal of A linear generated by idempotents in A. In [15, Theorem 4.3],
H. Ghahramani studied the linear mapping δ from A into M that satisfies

a, b ∈ A, a ◦ b = 0 implies a ◦ δ(b) + δ(a) ◦ b = 0,

and showed that δ is a generalized Jordan derivation. In what follows, we suppose that J is
an ideal ofA generated algebraically by all idempotents inA, and have the following result.

Theorem 3.6 Suppose that A is a unital ∗-algebra, M is a unital ∗-A-bimodule, and J ⊆
J(A) is an ideal of A such that

{m ∈ M : xmx = 0 for every x ∈ J } = {0}.
If δ is a linear mapping from A into M such that

a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = 	(a) + δ(1)a for every a inA, where 	 is a ∗-Jordan derivation. In particular,
δ is a ∗-Jordan derivation when δ(1) = 0.

Proof Let Ĵ be an algebra generated algebraically by J and J ∗. Since J ⊆ J(A) is an ideal
of A, it is easy to show that Ĵ ⊆ J(A) is also an ideal of A, and also

{m ∈ M : xmx = 0 for every x ∈ Ĵ } = {0}.
Thus, without loss of generality, we can assume that J is a self-adjoint ideal ofA, otherwise
we may replace J by Ĵ .

Define a linear mapping 	 from A into M by

	(a) = δ(a) − δ(1)a

for every a in A. Next, we show that 	 is a ∗-derivation.
It is clear that 	(1) = 0 holds and, by δ(1)a = aδ(1), the equation a ◦ b∗ = 0 implies

a ◦ 	(b)∗ + 	(a) ◦ b∗ = 0.
Define a bilinear mapping φ from A × A into M by

φ(a, b) = a ◦ 	(b∗)∗ + 	(a) ◦ b

for each a and b in A. By the assumption, a ◦ b = 0 implies φ(a, b) = 0.
Let a, b be in A and x be in J . By Lemma 3.5, we obtain

φ(x, 1) = φ(1, x),

hence

x ◦ 	(1)∗ + 	(x) ◦ 1 = 1 ◦ 	(x∗)∗ + 	(1) ◦ x . (3.2)
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By (3.2) and 	(1) = 0, we know that 	(x)∗ = 	(x∗). Again by Lemma 3.5, it follows that

a ◦ 	(x∗)∗ + 	(a) ◦ x = 1

2
[	(ax) ◦ 1 + 	(xa) ◦ 1]. (3.3)

By (3.3) and 	(x)∗ = 	(x∗), it is easy to show that

	(a ◦ x) = a ◦ 	(x) + 	(a) ◦ x . (3.4)

Next, we prove that 	 is a Jordan derivation.
Define {a,m, b} = amb + bma and {a, b,m} = {m, b, a} = abm + mba for each a, b

in A and every m in M. Let a be in A and x, y be in M.
By the technique of the proof of [15, Theorem 4.3] and (3.4), we obtain the following two

identities:

	{x, a, y} = {	(x), a, y} + {x,	(a), y} + {x, a,	(y)}, (3.5)

and

	{x, a2, y} = {	(x), a2, y} + {x, a ◦ 	(a), y} + {x, a2,	(y)}. (3.6)

On the other hand, by (3.5),

	{x, a2, x} = {	(x), a2, x} + {x,	(a2), x} + {x, a2,	(x)}. (3.7)

By comparing (3.6) and (3.7), it follows that {x,	(a2), x} = {x, a ◦ 	(a), x} holds. That
is, x(	(a2) − a ◦ 	(a))x = 0. By the assumption, this implies that 	(a2) − a ◦ 	(a) = 0
is true for every a in A.

It remains to show that 	(a)∗ = 	(a∗) holds for every a in A. Indeed, for every a in
A and every x in J , we have 	(xax)∗ = 	((xax)∗). Since 	 is a Jordan derivation, this
implies

(	(x)ax + x	(a)x + xa	(x))∗ = 	(x∗)a∗x∗ + x∗	(a∗)x∗ + x∗a∗	(x∗).

Thus, we can obtain x∗(	(a)∗ − 	(a∗))x∗ = 0. Since J is a self-adjoint ideal of A, the
equation 	(a)∗ = 	(a∗) follows. ��

Let A be a C∗-algebra and M a Banach ∗-A-bimodule. Denote by A�� and M�� the
second dual space of A and M, respectively. By [11, p. 26], we can define a product � in
A�� by

a�� � b�� = lim
λ

lim
μ

αλβμ

for each a��, b�� ∈ A��, where (αλ) and (βμ) are two nets in A with ‖αλ‖ ≤ ‖a��‖ and
‖βμ‖ ≤ ‖b��‖, such that αλ → a�� and βμ → b�� in the weak∗-topology σ(A��,A�).
Moreover, we can define an involution ∗ in A�� by

(a��)∗(ρ) = a��(ρ∗), ρ∗(a) = ρ(a∗),

where a�� ∈ A��, ρ ∈ A� and a ∈ A. By [22, p. 726], we deduce thatA�� is a von Neumann
algebra with the product � and the involution ∗.

SinceM is a BanachA-bimodule,M�� turns into a dual Banach (A��,�)-bimodule with
the operation defined by

a�� · m�� = lim
λ

lim
μ

aλmμ and m�� · a�� = lim
μ

lim
λ

mμaλ
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for every a�� in A�� and every m�� in M��, where (aλ) is a net in A with ‖aλ‖ ≤ ‖a��‖ and
(aλ) → a�� in σ(A��,A�), (mμ) is a net in M with ‖mμ‖ ≤ ‖m��‖ and (mμ) → m�� in
σ(M��,M�).

We remarked in the discussion preceding Theorem 2.1 that M�� has an involution ∗ and
it is continuous in σ(M��,M�). By [1, p. 553], we know that every continuous bilinear map
ϕ from A × M into M is Arens regular, which means that

lim
λ

lim
μ

ϕ(aλ,mμ) = lim
μ

lim
λ

ϕ(aλ,mμ)

holds for every σ(A��,A�)-convergent net (aλ) inA and every σ(M��,M�)-convergent net
(mμ) in M. Thus, we obtain

(a�� · m��)∗ = (lim
λ

lim
μ

aλmμ)∗ = lim
λ

lim
μ

m∗
μa

∗
λ = lim

μ
lim
λ

m∗
μa

∗
λ = (m��)∗ · (a��)∗,

where (aλ) is a net in A with (aλ) → a�� in σ(A��,A�) and (mμ) is a net in M with
(mμ) → m�� in σ(M��,M�). Similarly, we can show (m�� · a��)∗ = (a��)∗ · (m��)∗. This
implies that M�� is a Banach ∗-A��-bimodule.

A projection p in A�� is called open if there exists an increasing net (aα) of positive
elements in A such that p = lim

α
aα in the weak∗-topology of A��. If p is open, then we say

that the projection 1 − p is closed.
For a unital C∗-algebra, the following result holds.

Theorem 3.7 Suppose thatA is a unital C∗-algebra andM is a unital Banach ∗-A-bimodule.
If δ is a continuous linear mapping from A into M such that δ(1)a = aδ(1) holds for every
a in A, then the following three statements are equivalent:

(1) a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(2) a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(3) δ(a) = 	(a) + δ(1)a holds for every a in A, where 	 is a ∗-derivation from A intoM.

Proof It is clear that (1) implies (2) and (3) implies (1). It is sufficient the prove that
(2) implies (3).

Define a linear mapping 	 fromA intoM by 	(a) = δ(a)− δ(1)a for every a inA. It is
sufficient to show that 	 is a ∗-derivation. First we prove 	(a∗) = 	(a)∗ for every a in A.

By assumption, we can easily to show that

a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ 	(b)∗ + 	(a) ◦ b∗ = 0 and 	(1) = 0.

Next, we verify 	(b) = 	(b)∗ for every self-adjoint element b in A.
Since 	 is a norm-continuous linear mapping form A into M, we know that 	�� :

(A��,�) → M�� is the weak∗-continuous extension of 	 to the double duals of A and M.
Let b be a nonzero self-adjoint element in A, σ(b) ⊆ [−‖b‖, ‖b‖] the spectrum of b and

r(b) ∈ A�� the range projection of b.
Denote byAb the C∗-subalgebra ofA generated by b, and by C(σ (b)) the C∗-algebra of

all continuous complex-valued functions on σ(b). By Gelfand theory we know that there is
an isometric ∗ isomorphism between Ab and C(σ (b)).

For every n inN, let pn be the projection inA��
b ⊆ A�� corresponding to the characteristic

function χ([−‖b‖,− 1
n ]∪[ 1n ,‖b‖])∩σ(b) in C(σ (b)), and let bn be in Ab such that

bn pn = pnbn = bn = b∗
n and ‖bn − b‖ <

1

n
.
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By [29, Section 1.8], we know that (pn) converges to r(b) in the strong∗-topology of A��,
and hence in the weak∗-topology.

It is well known that pn is a closed projection in A��
b ⊆ A�� and 1 − pn is an

open projection in A��
b . Thus, there exists an increasing net (zλ) of positive elements in

((1 − pn)A��(1 − pn)) ∩ A such that

0 ≤ zλ ≤ 1 − pn

and (zλ) converges to 1 − pn in the weak∗-topology of A��. Since

0 ≤ ((1 − pn) − zλ)
2 ≤ (1 − pn) − zλ ≤ (1 − pn),

the net (zλ) also converges to 1 − pn in the strong∗-topology of A��.
By bn = b∗

n and zλbn = bnzλ = 0, it follows that

zλ ◦ 	��(bn)
∗ + 	��(zλ) ◦ bn = 0. (3.8)

Taking weak∗-limits in (3.8) and since 	�� is weak∗-continuous, we deduce

(1 − pn) ◦ 	��(bn)
∗ + 	��((1 − pn)) ◦ bn = 0. (3.9)

Since (pn) converges to r(b) in the weak∗-topology of A�� and (bn) converges to b in the
norm-topology of A, by (3.9), we have that

(1 − r(b)) ◦ 	��(b)∗ + 	��(1 − r(b)) ◦ b = 0. (3.10)

Now the range projection of every power bm with m ∈ N coincides with the r(b), and by
(3.10), hence

(1 − r(b)) ◦ 	��(bm)∗ + 	��(1 − r(b)) ◦ bm = 0

holds for every m ∈ N, and by the linearity and norm continuity of the product we obtain

(1 − r(b)) ◦ 	��(z)∗ + 	��(1 − r(b)) ◦ z = 0

for every z = z∗ in Ab. A standard argument involving the weak∗-continuity of 	�� gives

(1 − r(b)) ◦ 	��(r(b))∗ + 	��(1 − r(b)) ◦ r(b) = 0. (3.11)

By (3.11), we obtain

(	��(r(b))∗ + 	��(r(b)) − 	��(1)) ◦ r(b) = 2	��(r(b))∗.

By 	(1) = 0, the equality 	��(1) = 0 holds, hence

	��(r(b))∗ = 	��(r(b)). (3.12)

It is clear that every characteristic function

p = χ([−‖b‖,−α]∪[α,‖b‖])∩σ(b) (3.13)

in C0(σ (b))�� with 0 < α < ‖b‖ is the range projection of a function in C(σ (b)). Moreover,
every projection of the form

q = χ([−β,−α]∪[α,β])∩σ(b) (3.14)

in C0(σ (b))�� with 0 < α < β < ‖b‖ can be written as the difference of two projections of
the type in (3.13).
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Since Ab and C(σ (b)) are isometric ∗-isomorph and 	��(r(b))∗ = 	��(r(b)) holds for
the range projection of b in A��, we infer 	��(p)∗ = 	��(p) for every projection p of the
type in (3.13). It follows that 	��(q)∗ = 	��(q) holds for every projection q of the type in
(3.14).

It is well known that b can be approximated in norm by finite linear combinations of
mutually orthogonal projections q j of the type in (3.14). Therefore, using the continuity of
	, we obtain 	(b)∗ = 	(b). Thus, 	(a)∗ = 	(a) for every a in A.

By the assumption, it follows that

a, b ∈ A, ab = ba = 0 implies a ◦ 	(b) + 	(a) ◦ b = 0.

By [2, Theorem 4.1], we infer that 	 is a ∗-derivation. ��
Next, we consider general C∗-algebrasA. If (ei )i∈� is a bounded approximate identity of

A, M is an essential Banach ∗-A-bimodule, and δ is a continuous linear mapping from A
into M, then (δ(ei ))i∈� is bounded and we can assume that it converges to ξ in M�� in the
topology σ(M��,M�).

Theorem 3.8 Suppose that A is a C∗-algebra (not necessary unital) and M is an essential
Banach∗-A-bimodule. If δ is a continuous linearmapping fromA intoM such that ξ ·a = a·ξ
for every a in A, then the following three statements are equivalent:

(1) a, b ∈ A, a ◦ b∗ = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(2) a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(3) δ(a) = 	(a) + ξ · a for every a in A, where 	 is a ∗-derivation from A into M��.

Proof It is clear that (1) implies (2) and (3) implies (1). We only need to prove that
(2) implies (3).

Define a linear mapping 	 from A into M�� by

	(a) = δ(a) − ξ · a
for every a in A. It is sufficient to show that 	 is a ∗-derivation.

By the definition of 	 and ξ · a = a · ξ for every a in A, we can easily to show that

a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ 	(b)∗ + 	(a) ◦ b∗ = 0.

By [10, Proposition 2.9.16], we know that (ei )i∈� converges to the identity 1 in A�� with
the topology σ(A��,A�). By the proof of Theorem 2.1, we infer that 	(ei ) = δ(ei ) − ei · ξ
converges to zero in M�� in the topology σ(M��,M�), and we obtain

m�� · 1 = m��

for every m�� in M��. Since M�� is a Banach ∗-A��-bimodule,

1 · m�� = m��

holds for everym�� inM��. Since 	 is a norm-continuous linear mapping formA intoM��,
the mapping 	�� : (A��,�) → M���� is the weak∗-continuous extension of 	 to the double
duals of A and M�� such that 	��(1) = 0.

By [10, Proposition A.3.52], we know that the mapping m���� 
→ m���� · 1 from M����

into itself is σ(M����,M���)-continuous and, by the σ(M����,M���)-denseness ofM�� in
M����, the equality

m���� · 1 = m����
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holds for every m���� in M����. Since M���� is a Banach ∗-A��-bimodule,

1 · m���� = m����

holds for every m���� in M����.
Finally, we use the proof of Theorem 3.7 to show that 	 is a ∗-derivation from A into

M��. ��

Remark 3 In [12], A. Essaleh and A. Peralta investigated the concept of triple derivation on
C∗-algebras. Suppose thatA is aC∗-algebra. If a, b and c be inA, define the ternary product
by {a, b, c} = 1

2 (ab
∗c + cb∗a). A linear mapping δ from A into itself is called a triple

derivation if

δ{a, b, c} = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)}
holds for each a, b and c in A. If z is an element in A, then δ is called a triple derivation at
z if

a, b, c ∈ A, {a, b, c} = z implies δ(z) = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)}.
In [12], A. Essaleh and A. Peralta proved that every continuous linear mapping δ which is a
triple derivation at zero from a unital C∗-algebra into itself with δ(1) = 0 is a ∗-derivation.

On the other hand, it is easy to show that if δ is a triple derivation at zero, then

a, b ∈ A, ab∗ = b∗a = 0 implies a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0.

Thus, Theorem 3.7 generalizes [12, Corollary 2.10].

Remark 4 In [8], M. Brešar and J. Vukman introduced left derivations and Jordan left deriva-
tions. A linear mapping δ from an algebra A into its bimodule M is called a left derivation
if δ(ab) = aδ(b) + bδ(a) holds for each a, b in A; and δ is called a Jordan left derivation if
δ(a ◦ b) = 2aδ(b) + 2bδ(a) holds for each a, b in A.

Let A be a ∗-algebra and M a ∗-A-bimodule. A left derivation (Jordan left derivation) δ

from A into M is called a ∗-left derivation (∗-Jordan left derivation) if δ(a∗) = δ(a)∗ for
every a in A.

We also can investigate the following conditions on a linear mapping δ from A into M:

(J1) a, b ∈ A, ab∗ = 0 implies aδ(b)∗ + b∗δ(a) = 0;
(J2) a, b ∈ A, a ◦ b∗ = 0 implies aδ(b)∗ + b∗δ(a) = 0;
(J3) a, b ∈ A, ab∗ = b∗a = 0 implies aδ(b)∗ + b∗δ(a) = 0.
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