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Abstract

In this paper, we define the localization operator associated with the Riemann-Liouville
operator, and show that it is not only bounded, but it is also in the Schatten—von Neumann
class. We also give a trace formula when the symbol function is nonnegative.
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1 Introduction

The localization operators were introduced by Daubechies in [6—8]. She highlighted the role
of these operators in localizing a signal simultaneously in time and frequency; this can be
seen as an uncertainty principle.

Nowadays, localization operators have found many applications in timefrequency analysis,
the theory of differential equationsm and quantum mechanics. Arguing from these points of
view, many works deal with them; we refer in particular to the papers of Balazs et al. [3,4]
(see also [14,20]).

In [1], the authors have defined the Riemann-Liouville operator %, « > 0, by

@ L FesVT=2, x +r(1 =1 2(1 — s dr ds if a >0,

nlfilf(rV]_tzvx+rl)J%v ifO(ZO,

o ([)(r,x) =

where f is any continuous function on R?, even with respect to the first variable. The dual
operator ' %, is defined by
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Ko (8)(r, x)

fifrﬂof,j%g(u x+v)w? =02 —rH* ududv, ifa >0,
272 [(a+1)
7= e 8(Vr2 + (= )2 y)dy. ifo =0,

where g is any continuous function on R2, even with respect to the first variable and with
compact support. In particular, for « = 0 and by a change of variables, we get

1 2
Ro(f)(r,x) = 2 )y f(rcos, x +rsinf) do.

This means that Zy(f)(r, x) is the mean value of f on the circle centered at (0, x) and
with radius . The mean operator % and its dual ' %, play an important role and have many
applications, for example, in image processing of the so-called synthetic aperture radar (SAR)
data [13,16] or in the linearized inverse scattering problem in acoustics [9]. The operators
Py and its dual ' %, have the same properties as the Radon transform [15]; for this reason,
%y 1s called sometimes the generalized Radon transform.

Motivated by their impact in real-life signals, we define in this paper the localization
operators by means of the most used time-frequency representation that is the continuous
Gabor transform connected with the Riemann-Liouville operator, which was introduced in [2,
5,10-12]. Other names of the continuous Gabor transform frequently used in the literature are
Weyl-Heisenberg transform, short time Fourier transform and windowed Fourier transform.

In this paper, building signs on the idea of [21], we will define one kind of localization
operator associated to the Riemann—Liouville operator, and will show that this kind of oper-
ator is not only bounded, but it is also in the Schatten—von Neumann class. We also give a
trace formula when the symbol function is nonnegative.

The rest of this paper is arranged as follows. In Sect. 2, we recall some harmonic anal-
ysis results related to the Fourier and the continuous Gabor transforms associated with the
Riemann-Liouville operator. In Sect. 3, we define the localization operators for the con-
tinuous Gabor transform associated with the Riemann-Liouville operator and we study the
boundedness and compactness properties of the localization operators for the continuous
Gabor transform; we show that they are in the Schatten—von Neumann class. We also give a
trace formula.

2 Preliminaries

2.1 Harmonic analysis results related to the Fourier transform associated with the
Riemann-Liouville operator

In this part, we recall some harmonic analysis results related to the Riemann-Liouville
operator (see [1]).
The Lebesgue space with respect to the measure dv, defined on [0, +00[ xR by

r2+ gr dx

20F3 D@+ 1) ST

dvg(r,x) =
equipped with the L”-norm ||.|| v, is denoted by L” (dvy).
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194 A. Hammami

For every f € L'(dvy), the Fourier transform of f is defined by

+00
%(f)(xo,x):/o /Rf(r,x)ja(r,/ngrxz) e M dvy(r,x), Y(h,A) €Y,

where j, is the modified Bessel function defined by

S =D
i(z) =T 1 — (=), VzeC,
Ju(@) =T+ )];)k!l"(oz+k+l)(2) €
and Y is the set given by
YT =R*U{(i20, 1); (o, 1) € R [hol < [AI}. @1

In the following, we give some properties of this transform (see [18,19]):

e For every f € L(dvy), the function .Z,( f) is bounded on the set Y and for every
(0. M) €T, | Fo(F) o D] < 1 f 1., -

e Forevery f € LY(dvy) and (r, x) € [0, +00[xR, the function 7(+.x)(f) belongs to
L'(dvy) and we have

Fo (T () O0s 2) = Ju(r/ 2§+ A2) e Zo(f)(Ro, 1), Y(ho M) €Y. (22)
e Forall f, g € L'(dvy), the function f % g belongs to L' (dv,) and

Fa ([ *8)(h0, 1) = Fo(f) (R0, 1) Fa(8) (o, 1), V(ko,2) € T. 23)

o Forevery f € L'(dvy) we have Z4(f)(ho, 1) = Fo(f) (/A3 + A2, 1), where Zq is
the so-called Fourier-Bessel transform defined on L1 (dvg) by

Fa(H)(, 2) = fo /R Fr,x) ju(rp) e ™ dvy(r,x), V(u, 1) € [0, +0o[xR.
(2.4)

e (Inversion formula) For every f € L'(dvy), such that ﬁa (f) belongs to LY(dvy) and
for almost every (r, x) € [0, +oo[ xR, we have

flr.x) = /0 /R Fa(H)q. ) Ja(r) e dvg(u, 2) = Fo(Fal())(r, —x). (2.5)

e (Plancherel theorem) The transform Zy can be extended to an isometric isomorphism
from L%(dvy) onto itself and for every f € L% (dvy),

G = Fulh) = Fu(). 2.6)

e Forevery f € Ll(dva),g € LP(dvy), p € {1, 2}, the function f * g belongs to L? (dv,)
and we have

Faf % 8) = Fu(f) Fulg). 2.7)
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2.2 The continuous Gabor transform associated with the Riemann-Liouville
operator

Following [12], for every g € L?(dvy), the modulation of g by (&1, &) € [0, +oo[xR is
defined by

Meere0(®) = Fa ({7160 (17 @) = 861,600 2.8)
Then
Mg, 5@ 12,0, = l18l12,v, - (2.9)

For a non-zero window function g in Lz(dva) and (r,x), (£1,&) € [0, +oo[xR, we
consider the function g x), (&) defined by

800,618 = Tor.0) (Mie1.2)(8))- (2.10)

Therefore, for any function f € L?(dvy), we define the continuous Gabor transform associ-
ated with the Riemann—Liouville operator with respect to window g by

OO —
Yo (OH((r, x), (€1, &)) = / /R S, Y) 80r.x0).(61.8) (5, ¥) dvg (s, ), 2.11)
0
which can be also written in the form

Yo (O, 2), (€1,6)) = (fI8¢x), 1.8 )ve = [ * 8(&1.60) (s —). (2.12)

Moreover, from Cauchy—Schwarz’s inequality and relation (2.9), we get
17 (Plloo,ve@ve < I1F 12,04 118112, (2.13)
where vy ® vy is the product measure on ([0, +oo[xR)? defined by
d(e ® v) ((r, %), (5, ¥)) = dva (r, x) ® dva s, ),

then L%(dvy ® dvy) is the Hilbert space of square integrable functions on ([0, +oo[xR)2
with respect to the measure v, ® v, equipped with the inner product

(Fl8)mem, = / f (). 52 9) 8 (02 (52 9)) dva(r, x) dva(s. ¥)
([0,+oo[><]R)

and the norm || fl12,v,@vy = v/ {1/ )va@va-

The continuous Gabor transform associated with the Riemann—Liouville operator %,
possesses the following properties (see [12]).
Let g € L*(dv,) be a non-zero window function. Then the following hold.

o (Plancherel’s formula for #;) For every f € L%(dvy), we have

17 (2. v0@ve = 11120, 18112,v,- (2.14)

o (Parseval’s formula for #) For all f,h € L?(dvy), we have

A A P AR (2.15)
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196 A. Hammami

e Forevery f € L*(dvg), the function %, (f) belongs to LI(dvy ® dvy), 2 < q¢ < o0
(LP(dvy ® dvy) p € [1, 400], the Lebesgue space on ([0, —i—oo[x]R)2 with respect to
the measure vy ® vy equipped with the L”-norm denoted by ||.1l 5, v, v, )» With

17 (O)llgveeve < 1f 12,0, l1€112,v, - (2.16)
o (Inversion formula for #;) For every f € L?(dvy) such that ¥4 (f) belongs to Li(dvy ®

dvy), we have

fls,y) = ——5—

2
IgI3,,

/ / Ve (), x), 61,6280 %), 1,8 (5, V)dve (r, x) dvg (&1, &2),
([0,400[ xR)2

weakly in L2(dvg).
e (Reproducing kernel Hilbert space) The space ’Y/g(L2(dva)) is a reproducing kernel
Hilbert space in L%(dv, ® dv,) with kernel function Hy defined by

He((r,x), (61, 82), (5, ), (4, V) = ——5—

2
IgI3,,

Ve (T30 () (. %), (€1, £2)).

Furthermore, the kernel 75 is pointwise bounded, that is

| 2 ((r, %), (51, 82), (5, 9), (i, M) < 1, ¥, x), (61, 8), (5, ¥), (, 4) € [0, +oo[xR.

Remark 2.1 For every non-zero window g € L2(dvy), we denote by P, the orthogonal
projection of L%(dv, ® dvy) into ’Y/g(Lz(d vy )). The reproducing kernel ., gives explicitly
the orthogonal projection Py, more precisely, for every F € L% (dvg ® dvy),

Pe(F)((s, ), (11 W) = (FIAg(( ) (), (55 905 s M) (2217

3 Localization operators for the continuous Gabor transform
associated with the Riemann-Liouville operator

In this section, we will study the boundedness and the compactness of the localization opera-
tors for the continuous Gabor transform associated with the Riemann—Liouville operator. To
do so, let g1 and g, be two window functions in L?(dvg) such that lgill2,v, = llg2ll2,0, = 1.

Let S beasymbol in L' (dvy ®d vy ) UL (dvy ®dvy). The localization operator £§*? for
the continuous Gabor transform associated with the Riemann-Liouville operator is defined
on L2(dvy) by

LEEf(s, )
= // S((r, x), (1,82) Vg, (/)((r, x), (3.1)
([0,400[xR)2

(€1, 82))(82) (r,x), (61,60 (8, ¥) dvg (r, x) dvg (&1, &2),

for all (s, y) € [0, +oo[ xR. Often it is more convenient to interpret the definition of [Zi‘ 82
in a weak sense, that is, for functions f, h € Lz(dvo,)

(LS Flh)v, = (ST, (DY D) vy, = (S17, () Vs () v 0, - (3.2)
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Let us recall the notation of the Schatten-von Neumann class S,. The singular values
(sk(A))k>1 of a compact operator A € B(L2(dvy)) (the space of bounded operators A from
L?(dvy) into L2(dvy)) are the eigenvalues of the positive self-adjoint operator |[A| = VvV A*A.
We say that the compact operator A : L*(dvy) — L*(dv,) is in the Schatten—von Neumann
class §), 1 < p < o0, if

Zsk(A)” < 0.
k

Hence S, is equipped with the norm

Ials, = (X serr) . (3:3)
k=1

In particular, S is the space of trace class operators. It is well known that the trace of an
operator A in S is defined by (see [21, Theorem 2.6])

o0

Tr(A) = ) (AVul ¥l (3.4)

n=1

where (), is an orthonormal basis of L%(dvy). Tr(A) is independent of the choice of the
orthonormal basis. In addition, if A is non-negative, then

Tr(A) = [|Alls, . (3.5)

S is called the trace class.
For consistency, we define S, := SB(Lz(d va)), equipped with the norm

[Alls = sup A N12.v,- (3.6)
I 1120 <1

3.1 Boundedness

In this section we prove that the linear operators Eg‘ 2. 12(dvy) — L%(dvy) are bounded
for all symbol S € LP(dvy ® dvy), 1 < p < oo. We first tackle this problem for S €
LY(dvy @ dvy) or S € L®(dvy ® dv,) and then we conclude using interpolation theory.

Proposition 3.1 Let S be a symbol in L' (dvy ® dvy). Then the localization operator Egsl’gz
is in Soo and we have

L8 % 15 < 1S 11.vpev (3.7

Proof Let f, h be two functions in L?(dvg). Then, by the relations (2.13) and (3.2),

HLE flh)w,| < // IS((r, x), (€1, E2)] [V, (/)((r, %), (51, §2))]
([0,+00[xR)?

X |V, (M)((r, x), (61, 62)) | dvo (r, x) dve (81, §2)
= 171 (D lloo,va@ve Vg2 (M) loo, v @ve, 1S 111,00 @14
= 1 l2e@ve 12112, 00 @ve 1S 11,06 @0 »

and the proof of the proposition is complete. O
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198 A. Hammami

We also have the following proposition.

Proposition 3.2 Let S be a symbol in L*° (dvy, ® dvy). Then the localization operator E? 82
is in Seo and we have

1£E 50 < 11100, v @ve - (3.8

Proof Let f, h be two functions in L%(dvy). Then, by the relations (3.2), (2.14) and the
Cauchy—Schwartz inequality,

LS8 flhy, | < // IS((r ). (E1 ED] [ () (), E1 E2))]
([0,400[ xR)?2

X Vg (M) ((r, x), (&1, 62)) | dvo (r, x) dva (61, 52)
= 17 (D2 ve@ve | Vg2 (1) 12,0400 1Sl 00, v @4
= [f 112,06 12112,0 1Sl o0, ve @vi -

Thus, the proof of the proposition is complete. O

Corollary 3.3 If1 < p <2, then for any symbol S in LP (dvy ® dvy), there exists a unique
bounded linear operator £f;1’g2 : L2(dvy) — L3(dvy) satisfying the relation (3.2).

Proof LetSbeasymbolin L?(dv,®dvy),1 < p < oco.Then there exists asequence (Sy,),>1
of functions in LY (dvy ® dvy) N L®(dvy ® dvy) such that S, —> Sin LP (dvy ® dvg) as
n —> 00. By Theorem 3.4

81,82 81,82
IC8® — L85 s < 1Sm — Sullpovuons (3.9)

therefore (S,),>1 is a Cauchy sequence in So. Let it converge to E?’gz: Lz(dva) —
L?(dvy). This limit £§** is independent of the choice of (S,),>1 and we have

81,82 _ 81,82 : —
€5 NIss = 1£5, " Nsoe = M AISullp,ve@ve = 1Sl pve@ve- (3.10)

lim |
n—-oQ
Therefore, for 1 < p < 2 and for any functions f, h € Lz(d Vo),

(L8 flh), = lim (L5 Flh),,
n—oo
= 1im (S, %, ()Y Dryan,
= nli)n;o<snlayg1 (f)y/gz (h)>va®va
= (S1741 (/) Vg (1)) vy @4 » 3.1D)

and the proof is completed. O

We can now associate a localization operator Lf;l 82 L2(dvy) = L%(dvy) to every function
Sin L?(dvy ® dvy), 1 < p < 0o and prove that ﬁﬁ"ﬁ is in Seo. The precise result is the
following theorem.

Theorem 3.4 Let S be a symbol in LP (dvy @ dvy), 1 < p < 0. Then there exists a unique
bounded linear operator Eé“gz : L%(dvy) — L%(dvy) such that

128 M5 < 151, va@ve- (3.12)
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Proof Let f € L?(dvy). We can consider the linear operators A : LY (dvy®dvy) — L2(dvy)
and A: L®(dvy @ dvg) — L2(dvy) given by

AS) =L f, S e L' (dvy ® dvg) U L™ (dvg ® dvy).
Then, by Propositions 3.1 and 3.2,

[AG 2,00 = 1 12,0 1S 11,0016 (3.13)

and

IAS 2,0, = 112,00 1S loo, ve@ve - (3.14)
Therefore, by (3.13), (3.14) and the Riesz—Thorin interpolation theorem (see [17, Theorem

2] and [21, Theorem 2.11]), .4 may be uniquely extended to a linear transformation on
L?(dvy ® dvy), 1 < p < 00, and we obtain

L85 fll2,, = 1A 2,0, < 1 12,0, 1S pvg@ve - (3.15)

Since (3.15) is true for arbitrary functions f € L?(dvy), then we obtain the desired result.
O

3.2 Compactness
In this section we will prove that the localization operator £5**: L?(dvy) — L?(dvy) is
in the Schatten class S),.

The first result on the Schatten property of localization operators is given in the following

proposition.

Proposition 3.5 Let S be a symbol in L' (dve ® dvgy). Then the localization operator .Cél 82
is in S1 and we have

1£E % 1ls, < 4USI1.vp@ve - (3.16)

Moreover, the following trace-formula holds:

Tr(c8 ) = / / S((r.x). (€1, £2)
([0,4+00[ xR)2

(€D, 1,00 1(82) (r,x), (61,6) v AVa (7, X) dvg (81, &2). (3.17)

Proof LetS € L' (dvy ® d vy) and let (¢, ), be an orthonormal basis for L%(dv,). Then

oo

oo
> L onlon)y, = Z// S((r, x), (61, 82))(0nl (8D r,2),(61.,62) ) v
w1 /(0. +00[xR)?

n=1

X (¢n|(g2)(r,x),(§1,$2))va dvy (r,x)dvy (&1, &2).
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To prove that Li‘ 82 isin Sy, we first assume that S is real-valued and nonnegative. Therefore,

by Parseval’s identity and (2.9),

81,82
Zw Oalgnl, < 5 Z/fom i S0 G182

o0
(ZI {(nl (8D 0. 61,60 v

n=1

+ Z| (onl(82)r, x), (&1, 52))va| )dva(r, x) dvg(§1,82)

n=1

= |S||l Vo @y (318)

Then, by [21, Proposition 2.4], the localization operator £5 ¥ is in Sj.
Moreover, since in this case llé"gz is positive, then by (3.4), (3.5) and (3.18)

L5 s, = Tr(LE %) < IISIve@ve- (3.19)
Now, if S is a real-valued function, then we write S = S; — S_, where S; = max(S, 0)
and S_ = —min(S, 0). Then, by (3.19), we obtain
1825 = 1£4% — 285,

< 1£E % 1s, + 1255 1ls,
< IS+ veev, + I1S-11,v,0v,
< 2081, ve@ve - (3.20)

Finally, if S is a complex-valued function, then we write S = Sg + iS; where Sg and Sy
are the real and imaginary parts of S respectively. Then, by (3.20),

||£§l’g2||51 ||£gl 8y £g1 g2||S|
< L5 s, + 125, s,
< 2[ISrII1ve®ve + 2181 11,00 ®vq
= 41S11, v @ve - (3.21)
Thus for the symbol S € L' (dvy ®dvy), the localization operator £§1,g2 isin S that satisfies
(3.21).

On the other hand, let (,,),, be an orthonormal basis for L?(dvy), then, by using Fubini’s
theorem, the Parseval identity and the relation (2.12), we get

o0

ﬁgl 282 Lé’l 282 n . // 8 ; , ,
Tr (£8°52) = Y (L8 Sy ¥n) Z e S €12

n=1

X <wn|(g1)(r,x),(§1,éz)>va <wn|(g2)(r,x),(§|,$2)>ua dvg(r, x)dvy (81, 82)

_ / / S((r, %), 1, £2)
([0,4-00[ xR)?2
(81 (), 1,60 [(82) (r,x), (51.62) ho AV (1, X)d Ve (61, £2).

Consequently we have the following result.
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Proposition 3.6 Let S be a symbol in L (dvy @ dvy), 1 < p < oo. Then the localization
operator L% : L%(dvy) — L?(dvy) is compact.

Proof LetS € L (dvy, ®dvy) and let (Sy,),>1 be a sequence of functions in LY (dvy ®dvy,)N
L*®°(dvy ® dvy) suchthat S, —> Sin L? (dvy ® dvy) as n —> oo. Then by Theorem 3.4

81,8 81,8
1285 — £ s, < 15m — Sull paove- (3.22)

Therefore Lgln’ 8 Cg‘ *$2in S asn —> 00. Now, since, by Proposition 4.5, the operators
£ are in §1 and hence are compact, then the operator £§*** is also compact. o

More precisely we have the following theorem.

Theorem 3.7 Let S be a symbol in LP(dvy @ dvy), 1 < p < oo. Then the localization
operator £§1,g2 is in Sp. Moreover,

1L s, < 4P 1S p,vecve- (3.23)

Proof The result follows immediately from Propositions 3.2, 3.5, 3.6 and by the interpolation
theorem [21, Theorems 2.10 and 2.11]. O

Based on an idea of Wong [21] we can prove that the constant in Proposition 3.5 and then
the constant in Theorem 3.7 can be improved. The next theorem improves Proposition 4.5
and gives a lower bound for the norm ||£%** |5, of the localization operator £ ' in S} in
terms of the norm of the function S defined by

S((r,x), (61, £)) = (LE (81 ¢ 0).1.60 [ (€2) (-0, (E1.62) ) v - (3.24)
Theorem 3.8 Let S € L' (dvy ® dvy). Then

IS vev, < 1£5 s < 1S ve@ve- (3.25)

Proof First, by Proposition 3.5, the localization operator ﬁ?’gz is in S7. Now by using the
canonical form for compact operators given in [21, Theorem 2.2], we obtain for f € L2(dvy)

LELL =" sulflpnuabn: (3.26)

n=1

where s, := 5,(L5®*),n = 1,2,..., are the positive singular values of £§*?, (¢,)n>1
is an orthonormal set in L%(dv,) and (¢n)n>1 1s an orthonormal basis for the orthogonal
complement of the null space of Efg' 82 consisting of eigenvectors of the positive and compact
operator |£%%?|: L*(dvy) — L*(dv,). Then

o0

o0
1L Fllsy =D su =D (LE 2 0ul¢n)u,- (3.27)

n=1 n=1
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202 A. Hammami

Thus, by Schwartz’ inequality, Bessel’s inequality and (2.9) we obtain

o0

81,82 _ 81,82 _
I8 11 = U8 P, = 3 [ /( IR CRNCIES:

n=1

X Vg (@n)((r, x), (51, 82)) Vg () ((r, X)), (81, §2))d v (r, X)dve (81, §2)

S ’ k] ) 3 n r,x V, 2 1/2
< / /([OW[X]R)J (00, €L IS Honl @061 )

n=1

< (D 10nl(82) (6160w ) v (. ) v (61 £2)

n=1
= ”S”LUO,@UQ'

On the other hand, by the relation (3.26), we have

S((r,x), (1, 8)) = (L2281 (), 1.6 [(82) (r,2), (61.,82) Y e

00
= Z sn{(g1 )(r,x),(él £2) |0 ) v, (¢n|(g2)(r,x),(§1 ,Sg))ua .

n=1

Then

¢

< 1
1S, x), ELEN < =Y su(I@nl (€)1 ) ve 12+ 1801 (82) (00, 61,60 v 1)

1

s (17, (@) ((r, ), (€1, ED) 41T (B ((r, x), (E1, E2)17).

Nl\l—
M2 3

3
Il

Therefore

o0
D sn (17 @) 13 s ov, + 1722 @) 13,000, )- (3.28)

n=1

N =

||‘§|| Lvg®vy =
Thus, by Plancherel’s formula (2.14), we have S e LY (dvy ® dvy), and

o0
1S ove < D sn = I1LE s, (3.29)

n=1

This completes the proof of the theorem. O

Animmediate consequence of Theorem 3.8 and interpolation theory is the following improve-
ment of Theorem 3.7.

Corollary 3.9 Let S be a symbol in LP (dvy, ® dvy), 1 < p < oo. Then the localization
operator ﬁf’g' 82 s in Sp. Moreover,

1254 1s, < ISlp.vev,- (3.30)
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