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Abstract
In this paper, we define the localization operator associated with the Riemann–Liouville
operator, and show that it is not only bounded, but it is also in the Schatten–von Neumann
class. We also give a trace formula when the symbol function is nonnegative.
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1 Introduction

The localization operators were introduced by Daubechies in [6–8]. She highlighted the role
of these operators in localizing a signal simultaneously in time and frequency; this can be
seen as an uncertainty principle.

Nowadays, localizationoperators have foundmanyapplications in timefrequency analysis,
the theory of differential equationsm and quantum mechanics. Arguing from these points of
view, many works deal with them; we refer in particular to the papers of Balazs et al. [3,4]
(see also [14,20]).

In [1], the authors have defined the Riemann–Liouville operator Rα , α ≥ 0, by

Rα( f )(r , x) =
⎧
⎨

⎩

α
π

∫ 1
−1

∫ 1
−1 f (rs

√
1 − t2, x + r t)(1 − t2)α− 1

2 (1 − s2)α−1 dt ds if α > 0,

1
π

∫ 1
−1 f (r

√
1 − t2, x + r t) dt√

1−t2
, if α = 0,

where f is any continuous function on R
2, even with respect to the first variable. The dual

operator tRα is defined by
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tRα(g)(r , x)

=

⎧
⎪⎨

⎪⎩

1

2α− 1
2

√
π �(α+1)

∫ +∞
r

∫ √
u2−r2

−√
u2−r2

g(u, x + v)(u2 − v2 − r2)α−1u du dv, if α > 0,

1√
2π

∫

R
g
(√

r2 + (x − y)2, y
)
dy, if α = 0,

where g is any continuous function on R
2, even with respect to the first variable and with

compact support. In particular, for α = 0 and by a change of variables, we get

R0( f )(r , x) = 1

2π

∫ 2π

0
f (r cos θ, x + r sin θ) dθ.

This means that R0( f )(r , x) is the mean value of f on the circle centered at (0, x) and
with radius r . The mean operatorR0 and its dual tR0 play an important role and have many
applications, for example, in image processing of the so-called synthetic aperture radar (SAR)
data [13,16] or in the linearized inverse scattering problem in acoustics [9]. The operators
Rα and its dual tRα have the same properties as the Radon transform [15]; for this reason,
Rα is called sometimes the generalized Radon transform.

Motivated by their impact in real-life signals, we define in this paper the localization
operators by means of the most used time-frequency representation that is the continuous
Gabor transformconnectedwith theRiemann–Liouville operator,whichwas introduced in [2,
5,10–12]. Other names of the continuousGabor transform frequently used in the literature are
Weyl-Heisenberg transform, short time Fourier transform and windowed Fourier transform.

In this paper, building signs on the idea of [21], we will define one kind of localization
operator associated to the Riemann–Liouville operator, and will show that this kind of oper-
ator is not only bounded, but it is also in the Schatten–von Neumann class. We also give a
trace formula when the symbol function is nonnegative.

The rest of this paper is arranged as follows. In Sect. 2, we recall some harmonic anal-
ysis results related to the Fourier and the continuous Gabor transforms associated with the
Riemann–Liouville operator. In Sect. 3, we define the localization operators for the con-
tinuous Gabor transform associated with the Riemann–Liouville operator and we study the
boundedness and compactness properties of the localization operators for the continuous
Gabor transform; we show that they are in the Schatten–von Neumann class. We also give a
trace formula.

2 Preliminaries

2.1 Harmonic analysis results related to the Fourier transform associated with the
Riemann–Liouville operator

In this part, we recall some harmonic analysis results related to the Riemann–Liouville
operator (see [1]).

The Lebesgue space with respect to the measure dνα defined on [0,+∞[×R by

dνα(r , x) = r2α+1 dr dx

2α+ 1
2 �(α + 1)

√
π

,

equipped with the L p-norm ‖.‖p,να is denoted by L p(dνα).
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For every f ∈ L1(dνα), the Fourier transform of f is defined by

Fα( f )(λ0, λ) =
∫ +∞

0

∫

R

f (r , x) jα
(
r
√

λ20 + λ2
)
e−iλxdνα(r , x), ∀(λ0, λ) ∈ ϒ,

where jα is the modified Bessel function defined by

jα(z) = �(α + 1)
+∞∑

k=0

(−1)k

k!�(α + k + 1)

( z

2

)2k
, ∀z ∈ C,

and ϒ is the set given by

ϒ = R
2 ∪ {

(iλ0, λ); (λ0, λ) ∈ R
2; |λ0| ≤ |λ|}. (2.1)

In the following, we give some properties of this transform (see [18,19]):

• For every f ∈ L1(dνα), the function Fα( f ) is bounded on the set ϒ and for every
(λ0, λ) ∈ ϒ,

∣
∣Fα( f )(λ0, λ)

∣
∣ ≤ ‖ f ‖1,να .

• For every f ∈ L1(dνα) and (r , x) ∈ [0,+∞[×R, the function τ(r ,x)( f ) belongs to
L1(dνα) and we have

Fα

(
τ(r ,x)( f )

)
(λ0, λ) = jα

(
r
√

λ20 + λ2
)
e−iλxFα( f )(λ0, λ), ∀(λ0, λ) ∈ ϒ. (2.2)

• For all f , g ∈ L1(dνα), the function f ∗ g belongs to L1(dνα) and

Fα( f ∗ g)(λ0, λ) = Fα( f )(λ0, λ)Fα(g)(λ0, λ), ∀(λ0, λ) ∈ ϒ. (2.3)

• For every f ∈ L1(dνα) we have Fα( f )(λ0, λ) = F̃α( f )
(√

λ20 + λ2, λ
)
, where F̃α is

the so-called Fourier-Bessel transform defined on L1(dνα) by

F̃α( f )(μ, λ) =
∫ ∞

0

∫

R

f (r , x) jα(rμ) e−iλxdνα(r , x), ∀(μ, λ) ∈ [0,+∞[×R.

(2.4)

• (Inversion formula) For every f ∈ L1(dνα), such that F̃α( f ) belongs to L1(dνα) and
for almost every (r , x) ∈ [0,+∞[×R, we have

f (r , x) =
∫ ∞

0

∫

R

F̃α( f )(μ, λ) jα(rμ) eiλx dνα(μ, λ) = F̃α

(
F̃α( f )

)
(r ,−x). (2.5)

• (Plancherel theorem) The transform F̃α can be extended to an isometric isomorphism
from L2(dνα) onto itself and for every f ∈ L2(dνα),

F̃−1
α ( f ) = F̃α( f̆ ) = ˘F̃α( f ). (2.6)

• For every f ∈ L1(dνα), g ∈ L p(dνα), p ∈ {1, 2}, the function f ∗g belongs to L p(dνα)

and we have

F̃α( f ∗ g) = F̃α( f ) F̃α(g). (2.7)
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2.2 The continuous Gabor transform associated with the Riemann–Liouville
operator

Following [12], for every g ∈ L2(dνα), the modulation of g by (ξ1, ξ2) ∈ [0,+∞[×R is
defined by

M(ξ1,ξ2)(g) = F̃α

(√

τ(ξ1,ξ2)

(|F̃α(g)|2)
)

= g(ξ1,ξ2). (2.8)

Then

‖M(ξ1,ξ2)(g)‖2,να = ‖g‖2,να . (2.9)

For a non-zero window function g in L2(dνα) and (r , x), (ξ1, ξ2) ∈ [0,+∞[×R, we
consider the function g(r ,x),(ξ1,ξ2) defined by

g(r ,x),(ξ1,ξ2) = τ(r ,x)
(
M(ξ1,ξ2)(g)

)
. (2.10)

Therefore, for any function f ∈ L2(dνα), we define the continuous Gabor transform associ-
ated with the Riemann–Liouville operator with respect to window g by

Vg( f )
(
(r , x), (ξ1, ξ2)

) =
∫ ∞

0

∫

R

f (s, y) g(r ,x),(ξ1,ξ2)(s, y) dνα(s, y), (2.11)

which can be also written in the form

Vg( f )
(
(r , x), (ξ1, ξ2)

) = 〈 f |g(r ,x),(ξ1,ξ2)〉να = f ∗ g(ξ1,ξ2)(r ,−x). (2.12)

Moreover, from Cauchy–Schwarz’s inequality and relation (2.9), we get

‖Vg( f )‖∞,να⊗να ≤ ‖ f ‖2,να ‖g‖2,να , (2.13)

where να ⊗ να is the product measure on ([0,+∞[×R)2 defined by

d(να ⊗ να)
(
(r , x), (s, y)

) = dνα(r , x) ⊗ dνα(s, y),

then L2(dνα ⊗ dνα) is the Hilbert space of square integrable functions on ([0,+∞[×R)2

with respect to the measure να ⊗ να equipped with the inner product

〈 f |g〉να⊗να =
∫∫

(
[0,+∞[×R

)2 f
(
(r , x), (s, y)

)
g
(
(r , x), (s, y)

)
dνα(r , x) dνα(s, y)

and the norm ‖ f ‖2,να⊗να = √〈 f | f 〉να⊗να .

The continuous Gabor transform associated with the Riemann–Liouville operator Rα

possesses the following properties (see [12]).
Let g ∈ L2(dνα) be a non-zero window function. Then the following hold.

• (Plancherel’s formula for Vg) For every f ∈ L2(dνα), we have

‖Vg( f )‖2,να⊗να = ‖ f ‖2,να ‖g‖2,να . (2.14)

• (Parseval’s formula for Vg) For all f , h ∈ L2(dνα), we have

〈Vg( f )|Vg(h)〉να⊗να = ‖g‖22,να
〈 f |h〉να . (2.15)
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196 A. Hammami

• For every f ∈ L2(dνα), the function Vg( f ) belongs to Lq(dνα ⊗ dνα), 2 ≤ q ≤ ∞
(L p(dνα ⊗ dνα) p ∈ [1,+∞], the Lebesgue space on ([0,+∞[×R)2 with respect to
the measure να ⊗ να equipped with the L p-norm denoted by ‖.‖p,να⊗να ), with

‖Vg( f )‖q,να⊗να ≤ ‖ f ‖2,να ‖g‖2,να . (2.16)

• (Inversion formula for Vg) For every f ∈ L2(dνα) such that Vg( f ) belongs to L1(dνα ⊗
dνα), we have

f (s, y) = 1

‖g‖22,να∫ ∫

([0,+∞[×R)2
Vg( f )((r , x), (ξ1, ξ2))g(r ,x),(ξ1,ξ2)(s, y)dνα(r , x) dνα(ξ1, ξ2),

weakly in L2(dνα).
• (Reproducing kernel Hilbert space) The space Vg(L2(dνα)) is a reproducing kernel

Hilbert space in L2(dνα ⊗ dνα) with kernel function Kg defined by

Kg
(
(r , x), (ξ1, ξ2), (s, y), (μ, λ)

) = 1

‖g‖22,να

Vg
(
τ(s,y)(g(μ,λ))

)(
(r , x), (ξ1, ξ2)

)
.

Furthermore, the kernel Kg is pointwise bounded, that is

|Kg
(
(r , x), (ξ1, ξ2), (s, y), (μ, λ)

)| ≤ 1, ∀(r , x), (ξ1, ξ2), (s, y), (μ, λ) ∈ [0,+∞[×R.

Remark 2.1 For every non-zero window g ∈ L2(dνα), we denote by Pg the orthogonal
projection of L2(dνα ⊗ dνα) into Vg(L2(dνα)). The reproducing kernelKg gives explicitly
the orthogonal projection Pg , more precisely, for every F ∈ L2(dνα ⊗ dνα),

Pg(F)
(
(s, y), (μ, λ)

) = 〈F |Kg
(
(., .), (., .), (s, y), (μ, λ)

)〉να⊗να . (2.17)

3 Localization operators for the continuous Gabor transform
associated with the Riemann–Liouville operator

In this section, we will study the boundedness and the compactness of the localization opera-
tors for the continuous Gabor transform associated with the Riemann–Liouville operator. To
do so, let g1 and g2 be two window functions in L2(dνα) such that ‖g1‖2,να = ‖g2‖2,να = 1.

LetS be a symbol in L1(dνα⊗dνα)∪L∞(dνα⊗dνα). The localization operatorLg1,g2
S for

the continuous Gabor transform associated with the Riemann–Liouville operator is defined
on L2(dνα) by

Lg1,g2
S f (s, y)

=
∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))Vg1( f )((r , x),

(ξ1, ξ2))(g2)(r ,x),(ξ1,ξ2)(s, y) dνα(r , x) dνα(ξ1, ξ2),

(3.1)

for all (s, y) ∈ [0,+∞[×R. Often it is more convenient to interpret the definition of Lg1,g2
S

in a weak sense, that is, for functions f , h ∈ L2(dνα)

〈Lg1,g2
S f |h〉να = 〈SVg1( f )|Vg2(h)〉να⊗να = 〈S|Vg1( f )Vg2(h)〉να⊗να . (3.2)
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Let us recall the notation of the Schatten–von Neumann class Sp . The singular values
(sk(A))k≥1 of a compact operator A ∈ B(L2(dνα)) (the space of bounded operators A from
L2(dνα) into L2(dνα)) are the eigenvalues of the positive self-adjoint operator |A| = √

A∗A.
We say that the compact operator A : L2(dνα) → L2(dνα) is in the Schatten–von Neumann
class Sp , 1 ≤ p < ∞, if

∑

k

sk(A)p < ∞.

Hence Sp is equipped with the norm

‖A‖Sp =
( ∞∑

k=1

sk(A)p
)1/p

. (3.3)

In particular, S1 is the space of trace class operators. It is well known that the trace of an
operator A in S1 is defined by (see [21, Theorem 2.6])

Tr(A) =
∞∑

n=1

〈Aψn |ψn〉να , (3.4)

where (ψn)n is an orthonormal basis of L2(dνα). Tr(A) is independent of the choice of the
orthonormal basis. In addition, if A is non-negative, then

Tr(A) = ‖A‖S1 . (3.5)

S1 is called the trace class.
For consistency, we define S∞ := B

(
L2(dνα)

)
, equipped with the norm

‖A‖S∞ = sup
‖ f ‖2,να ≤1

‖A( f )‖2,να . (3.6)

3.1 Boundedness

In this section we prove that the linear operators Lg1,g2
S : L2(dνα) → L2(dνα) are bounded

for all symbol S ∈ L p(dνα ⊗ dνα), 1 ≤ p ≤ ∞. We first tackle this problem for S ∈
L1(dνα ⊗ dνα) or S ∈ L∞(dνα ⊗ dνα) and then we conclude using interpolation theory.

Proposition 3.1 Let S be a symbol in L1(dνα ⊗ dνα). Then the localization operator Lg1,g2
S

is in S∞ and we have

‖Lg1,g2
S ‖S∞ ≤ ‖S‖1,να⊗να (3.7)

Proof Let f , h be two functions in L2(dνα). Then, by the relations (2.13) and (3.2),

|〈Lg1,g2
S f |h〉να | ≤

∫∫

([0,+∞[×R)2
|S((r , x), (ξ1, ξ2))| |Vg1( f )((r , x), (ξ1, ξ2))|

× |Vg2(h)((r , x), (ξ1, ξ2))| dνα(r , x) dνα(ξ1, ξ2)

≤ ‖Vg1( f )‖∞,να⊗να‖Vg2(h)‖∞,να⊗να‖S‖1,να⊗να

≤ ‖ f ‖2,να⊗να‖h‖2,να⊗να‖S‖1,να⊗να ,

and the proof of the proposition is complete. ��
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198 A. Hammami

We also have the following proposition.

Proposition 3.2 Let S be a symbol in L∞(dνα ⊗dνα). Then the localization operator Lg1,g2
S

is in S∞ and we have

‖Lg1,g2
S ‖S∞ ≤ ‖S‖∞,να⊗να . (3.8)

Proof Let f , h be two functions in L2(dνα). Then, by the relations (3.2), (2.14) and the
Cauchy–Schwartz inequality,

|〈Lg1,g2
S f |h〉να | ≤

∫∫

([0,+∞[×R)2
|S((r , x), (ξ1, ξ2))| |Vg1( f )((r , x), (ξ1, ξ2))|

× |Vg2(h)((r , x), (ξ1, ξ2))| dνα(r , x) dνα(ξ1, ξ2)

≤ ‖Vg1( f )‖2,να⊗να‖Vg2(h)‖2,να⊗να‖S‖∞,να⊗να

= ‖ f ‖2,να‖h‖2,να‖S‖∞,να⊗να .

Thus, the proof of the proposition is complete. ��

Corollary 3.3 If 1 ≤ p ≤ 2, then for any symbol S in L p(dνα ⊗ dνα), there exists a unique
bounded linear operator Lg1,g2

S : L2(dνα) → L2(dνα) satisfying the relation (3.2).

Proof LetS be a symbol in L p(dνα⊗dνα), 1 ≤ p < ∞. Then there exists a sequence (Sn)n≥1

of functions in L1(dνα ⊗ dνα) ∩ L∞(dνα ⊗ dνα) such that Sn −→ S in L p(dνα ⊗ dνα) as
n −→ ∞. By Theorem 3.4

‖Lg1,g2
Sm

− Lg1,g2
Sn

‖S∞ ≤ ‖Sm − Sn‖p,να⊗να , (3.9)

therefore (Sn)n≥1 is a Cauchy sequence in S∞. Let it converge to Lg1,g2
S : L2(dνα) →

L2(dνα). This limit Lg1,g2
S is independent of the choice of (Sn)n≥1 and we have

‖Lg1,g2
S ‖S∞ = lim

n−→∞ ‖Lg1,g2
Sn

‖S∞ ≤ lim
n−→∞ ‖Sn‖p,να⊗να = ‖S‖p,να⊗να . (3.10)

Therefore, for 1 ≤ p ≤ 2 and for any functions f , h ∈ L2(dνα),

〈Lg1,g2
S f |h〉να = lim

n→∞〈Lg1,g2
Sn

f |h〉να

= lim
n→∞〈SnVg1( f )|Vg2(h)〉να⊗να

= lim
n→∞〈Sn |Vg1( f )Vg2(h)〉να⊗να

= 〈S|Vg1( f )Vg2(h)〉να⊗να , (3.11)

and the proof is completed. ��

We can now associate a localization operator Lg1,g2
S : L2(dνα) → L2(dνα) to every function

S in L p(dνα ⊗ dνα), 1 < p < ∞ and prove that Lg1,g2
S is in S∞. The precise result is the

following theorem.

Theorem 3.4 Let S be a symbol in L p(dνα ⊗ dνα), 1 ≤ p ≤ ∞. Then there exists a unique
bounded linear operator Lg1,g2

S : L2(dνα) → L2(dνα) such that

‖Lg1,g2
S ‖S∞ ≤ ‖S‖p,να⊗να . (3.12)
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The Schatten–von Neumann class associated with the Gabor… 199

Proof Let f ∈ L2(dνα).We can consider the linear operatorsA : L1(dνα⊗dνα) → L2(dνα)

and A : L∞(dνα ⊗ dνα) → L2(dνα) given by

A(S) = Lg1,g2
S f , S ∈ L1(dνα ⊗ dνα) ∪ L∞(dνα ⊗ dνα).

Then, by Propositions 3.1 and 3.2,

‖A(S)‖2,να ≤ ‖ f ‖2,να‖S‖1,να⊗να (3.13)

and

‖A(S)‖2,να ≤ ‖ f ‖2,να‖S‖∞,να⊗να . (3.14)

Therefore, by (3.13), (3.14) and the Riesz–Thorin interpolation theorem (see [17, Theorem
2] and [21, Theorem 2.11]), A may be uniquely extended to a linear transformation on
L p(dνα ⊗ dνα), 1 ≤ p ≤ ∞, and we obtain

‖Lg1,g2
S f ‖2,να = ‖A(S)‖2,να ≤ ‖ f ‖2,να‖S‖p,να⊗να . (3.15)

Since (3.15) is true for arbitrary functions f ∈ L2(dνα), then we obtain the desired result.
��

3.2 Compactness

In this section we will prove that the localization operator Lg1,g2
S : L2(dνα) → L2(dνα) is

in the Schatten class Sp .
The first result on the Schatten property of localization operators is given in the following

proposition.

Proposition 3.5 Let S be a symbol in L1(dνα ⊗ dνα). Then the localization operator Lg1,g2
S

is in S1 and we have

‖Lg1,g2
S ‖S1 ≤ 4‖S‖1,να⊗να . (3.16)

Moreover, the following trace-formula holds:

Tr(Lg1,g2
S ) =

∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))

〈(g1)(r ,x),(ξ1,ξ2)|(g2)(r ,x),(ξ1,ξ2)〉να dνα(r , x) dνα(ξ1, ξ2). (3.17)

Proof Let S ∈ L1(dνα ⊗ dνα) and let (ϕn)n be an orthonormal basis for L2(dνα). Then

∞∑

n=1

〈Lg1,g2
S ϕn |ϕn〉να =

∞∑

n=1

∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))〈ϕn |(g1)(r ,x),(ξ1,ξ2)〉να

× 〈ϕn |(g2)(r ,x),(ξ1,ξ2)〉να dνα(r , x) dνα(ξ1, ξ2).
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200 A. Hammami

To prove thatLg1,g2
S is in S1, we first assume that S is real-valued and nonnegative. Therefore,

by Parseval’s identity and (2.9),

∞∑

n=1

〈Lg1,g2
S ϕn |ϕn〉να ≤ 1

2

∞∑

n=1

∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))

( ∞∑

n=1

|〈ϕn |(g1)(r ,x),(ξ1,ξ2)〉να |2

+
∞∑

n=1

|〈ϕn |(g2)(r ,x),(ξ1,ξ2)〉να |2
)

dνα(r , x) dνα(ξ1, ξ2)

≤ ‖S‖1,να⊗να . (3.18)

Then, by [21, Proposition 2.4], the localization operator Lg1,g2
S is in S1.

Moreover, since in this case Lg1,g2
S is positive, then by (3.4), (3.5) and (3.18)

‖Lg1,g2
S ‖S1 = Tr(Lg1,g2

S ) ≤ ‖S‖1,να⊗να . (3.19)

Now, if S is a real-valued function, then we write S = S+ − S−, where S+ = max(S, 0)
and S− = −min(S, 0). Then, by (3.19), we obtain

‖Lg1,g2
S ‖S1 = ‖Lg1,g2

S+ − Lg1,g2
S− ‖S1

≤ ‖Lg1,g2
S+ ‖S1 + ‖Lg1,g2

S− ‖S1
≤ ‖S+‖1,να⊗να + ‖S−‖1,να⊗να

≤ 2‖S‖1,να⊗να . (3.20)

Finally, if S is a complex-valued function, then we write S = SR + iSI where SR and SI

are the real and imaginary parts of S respectively. Then, by (3.20),

‖Lg1,g2
S ‖S1 = ‖Lg1,g2

SR
+ i Lg1,g2

SI
‖S1

≤ ‖Lg1,g2
SR

‖S1 + ‖Lg1,g2
SI

‖S1
≤ 2‖SR‖1,να⊗να + 2‖SI ‖1,να⊗να

≤ 4‖S‖1,να⊗να . (3.21)

Thus for the symbol S ∈ L1(dνα ⊗dνα), the localization operatorLg1,g2
S is in S1 that satisfies

(3.21).
On the other hand, let (ψn)n be an orthonormal basis for L2(dνα), then, by using Fubini’s

theorem, the Parseval identity and the relation (2.12), we get

Tr
(Lg1,g2

S
) =

∞∑

n=1

〈Lg1,g2
S ψn |ψn〉να =

∞∑

n=1

∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))

× 〈ψn |(g1)(r ,x),(ξ1,ξ2)〉να 〈ψn |(g2)(r ,x),(ξ1,ξ2)〉να dνα(r , x)dνα(ξ1, ξ2)

=
∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))

〈(g1)(r ,x),(ξ1,ξ2)|(g2)(r ,x),(ξ1,ξ2)〉ναdνα(r , x)dνα(ξ1, ξ2).

��
Consequently we have the following result.

123



The Schatten–von Neumann class associated with the Gabor… 201

Proposition 3.6 Let S be a symbol in L p(dνα ⊗ dνα), 1 ≤ p < ∞. Then the localization
operator Lg1,g2

S : L2(dνα) → L2(dνα) is compact.

Proof LetS ∈ L p(dνα ⊗dνα) and let (Sn)n≥1 be a sequence of functions in L1(dνα ⊗dνα)∩
L∞(dνα ⊗ dνα) such that Sn −→ S in L p(dνα ⊗ dνα) as n −→ ∞. Then by Theorem 3.4

‖Lg1,g2
Sm

− Lg1,g2
Sn

‖S∞ ≤ ‖Sm − Sn‖p,να⊗να . (3.22)

ThereforeLg1,g2
Sn

−→ Lg1,g2
S in S∞ as n −→ ∞. Now, since, by Proposition 4.5, the operators

Lg1,g2
Sn

are in S1 and hence are compact, then the operator Lg1,g2
S is also compact. ��

More precisely we have the following theorem.

Theorem 3.7 Let S be a symbol in L p(dνα ⊗ dνα), 1 ≤ p ≤ ∞. Then the localization
operator Lg1,g2

S is in Sp. Moreover,

‖Lg1,g2
S ‖Sp ≤ 41/p‖S‖p,να⊗να . (3.23)

Proof The result follows immediately from Propositions 3.2, 3.5, 3.6 and by the interpolation
theorem [21, Theorems 2.10 and 2.11]. ��

Based on an idea of Wong [21] we can prove that the constant in Proposition 3.5 and then
the constant in Theorem 3.7 can be improved. The next theorem improves Proposition 4.5
and gives a lower bound for the norm ‖Lg1,g2

S ‖S1 of the localization operator Lg1,g2
S in S1 in

terms of the norm of the function S̃ defined by

S̃((r , x), (ξ1, ξ2)) = 〈Lg1,g2
S (g1)(r ,x),(ξ1,ξ2)|(g2)(r ,x),(ξ1,ξ2)〉να . (3.24)

Theorem 3.8 Let S ∈ L1(dνα ⊗ dνα). Then

‖S̃‖1,να⊗να ≤ ‖Lg1,g2
S ‖S1 ≤ ‖S‖1,να⊗να . (3.25)

Proof First, by Proposition 3.5, the localization operator Lg1,g2
S is in S1. Now by using the

canonical form for compact operators given in [21, Theorem 2.2], we obtain for f ∈ L2(dνα)

Lg1,g2
S f =

∞∑

n=1

sn〈 f |ϕn〉ναφn, (3.26)

where sn := sn(Lg1,g2
S ), n = 1, 2, . . . , are the positive singular values of Lg1,g2

S , (φn)n≥1

is an orthonormal set in L2(dνα) and (ϕn)n≥1 is an orthonormal basis for the orthogonal
complement of the null space ofLg1,g2

S , consisting of eigenvectors of the positive and compact
operator |Lg1,g2

S | : L2(dνα) → L2(dνα). Then

‖Lg1,g2
S f ‖S1 =

∞∑

n=1

sn =
∞∑

n=1

〈Lg1,g2
S ϕn |φn〉να . (3.27)
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Thus, by Schwartz’ inequality, Bessel’s inequality and (2.9) we obtain

‖Lg1,g2
S f ‖S1 =

∞∑

n=1

〈Lg1,g2
S ϕn |φn〉να =

∞∑

n=1

∫∫

([0,+∞[×R)2
S((r , x), (ξ1, ξ2))

× Vg1(ϕn)((r , x), (ξ1, ξ2))Vg2(φn)((r , x), (ξ1, ξ2))dνα(r , x)dνα(ξ1, ξ2)

≤
∫∫

([0,+∞[×R)2
|S((r , x), (ξ1, ξ2))|

(
∞∑

n=1

|〈ϕn |(g2)(r ,x),(ξ1,ξ2)〉να |2)1/2

× (
∞∑

n=1

|〈φn |(g2)(r ,x),(ξ1,ξ2)〉να |2)1/2dνα(r , x)dνα(ξ1, ξ2)

≤ ‖S‖1,να⊗να .

On the other hand, by the relation (3.26), we have

S̃((r , x), (ξ1, ξ2)) = 〈Lg1,g2
S (g1)(r ,x),(ξ1,ξ2)|(g2)(r ,x),(ξ1,ξ2)〉να

=
∞∑

n=1

sn〈(g1)(r ,x),(ξ1,ξ2)|ϕn〉να 〈φn |(g2)(r ,x),(ξ1,ξ2)〉να .

Then

|S̃((r , x), (ξ1, ξ2))| ≤ 1

2

∞∑

n=1

sn
(|〈ϕn |(g1)(r ,x),(ξ1,ξ2)〉να |2 + |〈φn |(g2)(r ,x),(ξ1,ξ2)〉να |2)

= 1

2

∞∑

n=1

sn
(|Vg1 (ϕn)((r , x), (ξ1, ξ2))|2+|Vg2 (φn)((r , x), (ξ1, ξ2))|2

)
.

Therefore

‖S̃‖1,να⊗να ≤ 1

2

∞∑

n=1

sn
(‖Vg1(ϕn)‖22,να⊗να

+ ‖Vg2(φn)‖22,να⊗να

)
. (3.28)

Thus, by Plancherel’s formula (2.14), we have S̃ ∈ L1(dνα ⊗ dνα), and

‖S̃‖1,να⊗να ≤
∞∑

n=1

sn = ‖Lg1,g2
S ‖S1 . (3.29)

This completes the proof of the theorem. ��
An immediate consequence ofTheorem3.8 and interpolation theory is the following improve-
ment of Theorem 3.7.

Corollary 3.9 Let S be a symbol in L p(dνα ⊗ dνα), 1 ≤ p ≤ ∞. Then the localization
operator Lg1,g2

S is in Sp. Moreover,

‖Lg1,g2
S ‖Sp ≤ ‖S‖p,να⊗να . (3.30)
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