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Abstract
Let N be the set of positive integers, and denote by

AMA) =inf{t > 0: Za‘t < oo}

acA

the convergence exponentof A C N.For0 < g < 1,0 < g < 1, respectively, the admissible
ideals Z.,, Z<, of all subsets A C N with A(A) < ¢, A(A) < g, respectively, satisfy

I4C qu) C I<y, where

¥ ={ACN:) a™® < o}.

acA

In this note we sharpen the results of Balaz et al. from (J Number Theory 183:74-83, 2018)
and other papers, concerning characterizations of qu)—convergence of various arithmetic

functions in terms of g. This is achieved by utilizing 7,- and Z,-convergence, for which
new methods and criteria are developed.
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1 Introduction

Denote by N the set of positive integers, and let A be the convergence exponent function on
the power set 2N of N, i.e. for A C N put

A(A):inf{t>0:2a—lt<oo}.

If ¢ > A(A) then ZaeA -7 < 00, and ZaeA -7 = oo when g < A(A);if ¢ = A(A), the
convergence of ), 4 aq is inconclusive. It follows from [11, p.26, Exercises 113, 114] that
the range of A is the interval [0, 1], moreover, for A = {a] <ar <--- <a, < ...} CN,

A(A) = lim sup logn

n—oo 10g an

It is easy to see that A is monotonic, i.e. A(A) < A(B) whenever A C B C N, furthermore,
A(A U B) = max{A(A), L(B)} for all A, B C N. Define the following sets:

I.4,={ACN:A(A) <gq}, if0<qg =<1,
Ty ={ACN:A(A)=<¢q},if0<g <1, and
Zo={A CN:AA) =0}

Clearly, Z<p = Zp, and Z<] = 2N Since A(A) = 0 when A C N is finite, then Ir={AC
N : A is finite} C Zp, moreover, also considering the well-known set

I(q) {ACN Z—<oo}

acA

we get that whenever 0 < g < ¢’ < 1,
I/ CTyC Ty CI® CToy CToy. (1)

In what follows, we will use the following definitions.

The setZ < 2V is a so-called admissible ideal, provided 7 is additive (i.e. A, B € T implies
AU B € I), hereditary (i.e. A € Z, B C A implies B € 7), it contains the singletons, and
N¢7T.

Given an ideal Z C 2N, we say that a sequence x = (xn)52. | Z-converges to a number L,
and write Z-lim x,, = L, if for each ¢ > 0 the set

Ag={n:|x, — Ll =z ¢} (@)

belongs to the ideal Z. One can see, e.g., [6], [7] for a general treatment of Z-convergence.
A useful property is as follows:

Lemma 1.1 [7] IfI1 C 1>, then Z1-lim x,, = L implies Tp-limx, = L.

We will study Z-convergence in the case when Z stands for 7, Ic(.q), T4, respectively. We
will establish necessary and sufficient conditions for a set A C N to belong to Z_,, <4,
respectively; as well as for the set A, = {n : |x, — L| > ¢} so that T_,-limx, = L, resp.

Z<4-limx, = L hold. Note that analogous criteria were not known for ng) .

In this paper, we embed the ideals 7, and T, into the structure of ideals IC(.") . We
show that these ideals are essentially distinct. Then we refine a known statement concerning

the I§4)-convergence of some arithmetic functions. A new method is introduced and can be
applied widely for consideration of 7., and Z<,-convergence of sequences.
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2 Onideals enveloping the ideal Ic(q)

Theorem 2.1 Let0 < g < g’ < 1. Then
Ty C Ty CIW CTey Ty G T CTy ST CTV Ty =2 (3)

Proof The inclusions follow from the definitions of the sets. We can show that the difference
of successive sets in (3) is infinite, so equality does not hold in any of the inclusions, by
considering the following four cases (as usual, | x| is the integer part of the real x):

Case 1. Ty #T4:let0 <s < g < 1,and take the set A = {a; < ap < ---} C N, where
foralln e N,

1
a, = |ns|.
Then a, = ns — g(n) for some 0 < e(n) < 1, and by Lagrange’s Mean Value Theorem for
fx) = x% on [n, n + 1] we get that a,, < a, 1 for all n. Since
logn logn

- —> s
logay, %.logn + log (1 — @)

ns

, ifn — oo,

then 0 < A(A) =5 < g; thus, A € T, \ Io. It is also clear that Z_ \ Zj is infinite, since
for any k € N the sets Ay = {ka, : n € N} satisfy

. logn
A(Ax) = lim sup

n—oo 108 Kay

= A(A).

Case 2. T4 # Ic(q): let0 < g < 1, and take the set A = {a; < ap < ---} C N, where
foralln € N,

1 2
ap = |n7logi(n+1)] + 1.

One can easily show that (a,) is increasing sequence, and,

21 1
Z—q< 57— <00, thus,AeIC(q).
iojan  snlogtn
On the other hand
. logn . logn . logn
lim = lim = lim q,

n=oologan  n=00 00 i logh (n 4 1)) " 3 logn + Zloglog(n +1)

hence, A(A) = ¢. Similarly to Case 1 we can see that Iéq) \ I, is actually infinite.

1
Case 3. Ic(q) #T<y:let0<q < 1,defineA={a; <ap <---} CN,wherea, = |n7]
for all n € N. Then

so A ¢ Ic(q), but A € T, since A(A) = g. Analogously to Case 1, one can show that
Ty Iﬁq) is infinite.
Case 4. T4 # T4 : it suffices to choose the set A = {a; < a2 < ---} C N such that

a, = Ln%J for all n, where 0 < ¢ < s < ¢'. Then A(A) = 5,50 A € I, however,
A ¢ I,. Moreover, again, Z_, \ T4 is infinite. |
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128 J.T.Téthetal.

By (3), it is worth noting that in order to decide if a given A C N belongs to If-q), it may
be easier, or more advantageous to first determine the convergence exponent of A. Indeed,

if M(A) < g,thenA € T, C qu), or,if A\(A) = g, then A € 7T, C Ic(q/) for every
g’ > q. This view is important, since in what follows, we will establish criteria for 74, Z<4
membership, respectively.

Theorem 2.2 Let 0 < g < 1. Then each of the sets Ty, Ty, I<4 forms an admissible ideal,
except for I<j.

Proof Follows from properties of A listed in the Introduction, along with (3). O

Theorem 2.3 We have

To= () Teg= () Z=

0<g=1 0<g=1
hence,
o= () 72
0<g<1
Proof Follows from the definitions of Zy, Ty, T<q,and (3). ]

3 Conditions for a set A to belongto Z.4, 74

Given x > 1, define the counting function of A C N by
Ax) =#la <x:a e A}

Theorem 3.1 Let 0 < g < 1 be a real number and A C N. Then A € I, if and only if for
every$ > 0
A(x)
=0. 4)

xl{rolo xq+5
Proof Let A ={a; <ay <...},and A € T,. Then

logn

A(A) = lim sup

n—oo l0gapy

=q,

so for any é > O there is an ng € N so that, for all n > no,

1 § s
ogn <q+ X thus A(a,) =n < a3+2.

loga,

. . . s
If x is sufficiently large, we can find n > ng witha, < x < a,41, hence, A(x) =n < x9712,
Consequently,

B
—~
=
~
=
_
+
(S}
| —

0< < — = — 0, asx — oo,

=
PISs

which implies (4) for every § > 0.
Conversely, let § > 0, and (4) be true for some A = {a; < a» < ...}. Then
Alan)

ad™?

— 0 asn — oo,
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On Z«4- and Z<4-convergence of arithmetic functions 129

so thereisann; € N such that foralln > ny,n < aZ+8, thus,

logn _ (g +8)logay,
loga, — log ay,

=q+4.
Then for all § > 0, L(A) < g + 8, hence, letting § — 0, we get A(A) < g,s0,A € ZI,. O

The definition of Z7<,-convergence immediately yields

Corollary3.2 Let 0 < g < 1, ¢ > 0, L and x,, be real numbers for all n € N, and
Ag ={n:|x, — L| > e}. Then I<4-limx, = L if and only if for every e > 0 and § > 0

Ag(x)

x—o00 x4+96

Theorem 3.3 Let0 < g < 1 be a real number and A C N. Then A € I, if and only if there

exists a 8 > O such that
. Ax)
lim =0. ©)

xX—00 xq—5

Proof Let A € T,. Then

. logn
A(A) = lim sup ]

n—oo lO0gapy

<q, where A={a; <a <...}.

Foreaché > Owith0 < § < %(q — A(A)) there is an ng € N so that for all n > ny,

logn _
g <gq —268, thus,n < al 26,
logay,
hence, for all n > ny,
A(ay) =n < a,‘{‘“.
If x is large enough, there exists some n > ng witha, < x < ay41,50 A(x) =n < xq72,
This implies
A(x) x972% |

< < =——0 asx — oo,
x4=8 = xa-8 8

and (5) follows.
Conversely, let § > 0 be such that (5) is true. Then by Theorems 2.1 and 3.1 we have

A € ng—a C I<q.

The definition of the 7, -convergence immediately yields

Corollary3.4 Let 0 < g < 1, ¢ > 0, L and x,, be real numbers for all n € N, and
Ag = {n: |x, — L| > &}. Then Ty4-limx, = L if and only if for every ¢ > 0 there exists
8 > 0 such that
A
lim 29 _g

xX—00 xq—(S

As an application of the above results, we will show that an important number-theoretic
set belongs to the smallest element of (3), namely Zy:
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Lemma 3.5 Given k € N, and arbitrary primes p1 < py < --- < pg, denote

D(pi.pr-...pp) ={neN:n=p{'p? - p*a; >0,i=1,2,...,k}.

Then
D(p1,p2....pr) €1p.
Proof For a number x > 2 denote

D(p1,p2--., p)x) =#n <x:neD(p,p2..., p)}
Then by [9, p.37, Exercise 15] we have

k

D1 p2-... P < 1_[<11§gg; 1) = (

i=1

2 k
log x) .
log?2

From this, by Theorem 3.1 for ¢ = 0 we get

D(p1,p2-.., pr) € Zo.

4 On Z.4- and Z.4-convergence of arithmetic functions

First we recall some arithmetic functions, which we will investigate with respect to Z,- and
Z-4-convergence. We refer to the papers [2,5,8,10,12,14-16] for definitions and properties

of these functions.

Letn = pi" - p3? -+ pi* be the canonical representation of n € N. Define the following

functions:

e w(n) is the number of distinct prime factors of n (i.e. w(n) = k);

e 2(n) is the number of prime factors of n counted with multiplicities (i.e. Q(n) = o1 +

cetog);
o forn > 1,
h(n) = 1r§nj12kaj’ H(n) = 1?]2'?1{0[]
and h(l)=1,H(1) =1;
o f(n) =TIy, dand f*(n) = ; f(n);

e ap(n) as follows: a,(1) = 0 and a, (n) is the unique integer j > O satisfying pl | n, but

p/ T n,ie p™ | n, forn > 1;

e y(n)is the number of all representations of a natural number n in the formn = a’, where

a, b are positive integers (see [8]). Let

_ by _ by _ by )
n=a; =da, _-~_ay(n)

be all such representations of a given n, where a;, b; € N;
o forn > 1,

t(n) =br+by+ -+ bym;

e N(n) is the number of times the positive integer n occurs in Pascal’s triangle (see [1] and

[15D.
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Recall that Ic(q)-convergence of the following sequences has been established in [2—4]:

I. For0 < ¢ < 1 we have Z.”-lim 22 — 0 (see [2], [ Th.8]).

logn
I Only for g = 1 we have Z¢-lim {22 = 0 (see [2], [Th.10, Th.11]),
II. For a prime number p the sequence ((log p) [{ggl)) is 79 _convergent to 0 only

forg =1 (see [31], [Th 2 3D,
IV. For g > 5 we have I -limy(n) = l,and for0 < g < % the sequence y (n) is not
qu)—convergent (see [3], [Cor.3.5]),
V. For g > % we have ng)—lim t(n) = l,and for0 < ¢ < % the sequence t(n) is not
ng)—convergent (see [3], [Cor.3.8]),
VI. For g > % we have Iéq)—lim N(n) =2,andfor0 < g < % the sequence (N(n))?:]
is not Iéq)—convergent (see [4], [Th.2.2]),
VIL. The sequences (lo‘gfg;n )zozz and (1o§gzl(gg)n )Zozz are not ng)—convergent forall0 < g <
1 (see [2], [Th.12]),
VIII. The sequences (log log / (")) and (k)g log f*(n) ) are notIc(q)—convergent forall0 < g <1

loglogn loglogn
(see [2], [Th.13, Th.14]).

In what follows, we will improve and sharpen all statements [-VIII via the best conver-
gences one can obtain from the ideals in (3) that are within Z,, Z<,.

The next theorem, which is readily implied by Theorem 2.3 and [2], [Th.8], gives State-
ment [ using Theorem 2.1 and Lemma 1.1. We will, however, provide another simpler proof
based on Lemma 3.5:

Theorem 4.1 We have

Proof Take a small ¢ > 0, and the largest prime pg for which ﬁ > ¢. Then <e

1
log p
whenever p > po, so if n € N is such that p|n for some prime p > po, then n > p" Tt
follows that

h(n) h(n) 1
< = <e,
logn ~ log p"®™  logp
thus,
h&) h(k)
n¢{ke Togt }_{keN ﬁ—oﬂ ]_AE.

This implies A, C D(2,3,5, ..., po), so, by Lemma 3.5 and the hereditary property, A, €
To. O

Statement II has the following strengthening:

Theorem 4.2 We have
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132 J.T.Téthetal.

Proof Let0 < ¢ < @. Then, according to (2), we have

o).
logn —

Agz{neN:

We will show that A, € Z_: every positive integer n can be uniquely represented as n = ab?,
where a is a square-free number. Hence H(a) = 1 and H(n) € {H(b%), H(b?) + 1}. For
any n € Nwehave n = p{' -+ pf* > 2™ and from this

logn

H <
(n) < log2’

If n € A, then for n = ab? we get

H (ab? Hb)+1  logh* 1
logn = log(ab?) < 2@ _ HOD 1 _logh” 1
&

- e ~ elog2

thus,

logh? 1

AggB:[neN:n:abz, logab? < —87 4 a,beN}.

elog2 ¢

Furthermore, if n € B, then
1 —¢log?2
loga < ﬂlogbz—i—
og?2

which is equivalent to

log?2 2 1 2 log2
q 1—¢elog2 < beel slogZ and so @ !—¢log2 < ab elfslogZ,

therefore,

B = {n eN:n=ab?anda < 2n1_81°g2} .
Ifn e B,and n = ab? < x for x > 2, thena < 2x'7¢19¢2 apnd p < \/% Consequently,

l le—slogZ 1
B(x) < [ NS 2% < x<1+/1 Edt)

a<2x! "”1"%2 a<2x1-el
log2
< ﬁ(l +2(v2x!-elog2 — 1)) <2V2x!

hence, for x > 2, we have

Au(x) < 2425175

log 2

Using g = 1and arbitrary § € (0, e=~) in Theorem 3.3, the above estimate gives A, € 7.

]
The next result strengthens statement III.

Theorem 4.3 For any prime number p, we have

T -lim(log p) T p(")
n
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Proof Let 0 < ¢ < 1. Then, according to (2), we have

Ac={n>1: (logp)ap(n) > e}.
logn
We have
© .
A. = JAL
i=0
where

Al={neA,:n=pu where ptu} (i=0,1,2...).
Clearly, AL N A] = @ fori # j,andif n € AL, then

a,n i cl—e
D0 ogpy—— s e thus,u < piCT.

1
(log p) logn ilogp+logu

In case x > 2, this implies that
Aé(x)s#{u:ul%sufx} =#[u:u'ff §x] < x!-e,

hence

; 1
Aa(x): Z Aé(_x)< ngxl—s.

Using ¢ = 1 — ¢ in Theorem 3.1 and using Theorem 2.1, the above estimate gives

Ag €Z<i—s CLo.

The statements IV, V, VI are consequences of the following result.

Theorem 4.4 We have
(i) Z_1-limy(n) = 1.
(ii) Z_1-limt(n) = 1.

(iii) I; lim N(n) = 2.

(S STE N

Proof (i) Let 0 < ¢ < 1. Then, according to (2), we have A, = {n € N : |[y(n) — 1| > ¢}.
Clearly,

o0
AcCH={a":a.beN\(}} = J{n*:n=23.}
k=2

Given some x € N, x > 22, thereisak € N\ {1} with 28 < x < 2! Thenk < igi;, and

logx

k
Hx) <) Yx<x

n=2

)

log2

thus, for all x > 4,
logx 1
log 2"

[T

Ag(x) <
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134 J.T.Téthetal.

Forgq = % in Theorem 3.1, we get A, € Is%'

(i1) Similar to 1).

(iii) Let 0 < ¢ < 1. Then, according to (2), we have A, = {n e N: |[N(n) — 2| > &}. If
we take H = {1,2} UM, where M = {n € N: N(n) > 2}, then A, C H. It was proved in
[1] that M (x) = O(4/x), thus, there is a ¢ > 0 so that for all x > 2,

Ae(x) < H(x) < cx?.

By Theorem 3.1, A, € I<% follows. O

Remark 4.5 We note that the set Z; containing all subsets of N with zero asymptotic density
forms an admissible ideal. The corresponding Z;-convergence is the wellknown statistical
convergence. The following results were proved in [14] and [13]:

w(n) Q(n)
—— =7y lim ——— =
loglogn loglogn

Z4-lim

log1
im 108 og f(n) _7

logl *
7,1 i 08 1og /7 ()

=1+log2.
loglogn d loglogn +log

‘We note that IL(.I) C 1.

If Ic(.q)—lim x, = L is false for every 0 < g < 1, then (x,) does not Z_,-converge for any
q,%0A; ={n e N:|x, — L| > &} ¢ I, whenever 0 < g < 1; thus, A(A;) = 11is the
only option. Then by Statements VII and VIII it follows that for all ¢ > 0 and for every n,
an € {w(n), Qm)}, and b, € {f(n), f*(n)} we have

W 2({neN: |y — 1 ze}) =1,

(ii) k({n eN:|lglehs () 1 10g2)| > g}) — 1.

As a consequence, say of i) for @, = w(n), we have that if

{neN ﬂ—l‘

: >8|={n1<n2<~~<nk<...},
loglogn

then

k
lim sup =1.
k—oo lOgng
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