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Abstract

This paper investigates the optimal dividend problem in a jump-diffusion risk model with
debit interest. In this model, the insurer could borrow money at a debit interest when the
surplus turns negative. However, when the negative surplus attains a certain critical level, the
business stops and absolute ruin happens at this moment. A sufficient condition under which
the optimal dividend strategy is of barrier type is given in such a risk model. The main result
relies on the smoothness of certain function arising from the dividend problem and we prove
that it is twice continuously differentiable by the probability argument. Finally, numerical
examples are given to illustrate the effects of the debit interest.

Keywords Absolute ruin - Barrier strategy - Debit interest - Hamilton—Jacobi—Bellman
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Mathematics Subject Classification 60J99 - 91B30

1 Introduction

Risk models under a dividend strategy have been discussed by many authors in the actuarial
literature. The Gerber—Shiu discounted penalty function, the expectation of the discounted
dividend paid until ruin, the distribution of the dividend payments, the asymptotic distribution
of the time of ruin and so on are the main concerned quantities. For the references on these
topics and results, see for example [1-12]. For example, Cai et al. [1] assumed that the
surplus earns investment income at a constant rate of credit interest. When the surplus is
negative, a higher rate of debit interest is applied. They showed how the expected discounted
value of the dividends and the optimal dividend barrier can be calculated. Dickson and
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Waters [2] showed how a discrete time risk model can be used to provide approximations
when analytic results are unavailable. Frostig [3] and Irbick [4] studied a risk model with
constant high dividend barrier and obtained some asymptotic distributions. Gerber and Shiu
[5] studied the joint distribution of the time of ruin, the surplus before the time of ruin, and
the deficit at the time of ruin by considering an expected discounted penalty involving these
three random variables. Gerber and Shiu [6] considered the optimal dividend problem in a
Brownian setting, while Kyprianou and Palmowski [7] and Renaud and Zhou [9] concerned
constant dividend barrier problems under Lévy risk models. Li and Garrido [8] considered
a Sparre Andersen risk process in the presence of a constant dividend barrier in which the
claim waiting times are generalized Erlang(n) distributed. Yuen, Wang and Li [10] studied the
classical surplus process with interest and a constant dividend barrier and derived an integro-
differential equation for the Gerber—Shiu expected discounted penalty function. Zhou [11]
first pointed out interesting connections between some previous results for this model and
those for spectrally negative Lévy processes for a risk model with a constant dividend barrier.
Zhu [12] investigated dividend optimization of an insurance corporation under a more realistic
model, which takes into consideration refinancing or capital injections.

Another actuarial quantity frequently concerned is the optimal dividend problem for the
insurance company. The classical optimal dividend problem is looking for the optimal divi-
dend strategy to maximize the expectation of the discounted dividends until the time of ruin.
De Finetti [13] firstly proposed this problem in a discrete-time model. He found that the
optimal dividend strategy must be a barrier strategy and the optimal level of the barrier could
be determined. In the classical risk model, Gerber [14] found that the optimal dividend strat-
egy is the so-called band strategy and simplified to a barrier strategy for exponentially claim
sizes. Using the viscosity solution approach from the stochastic control theory, Albrecher and
Thonhauser [15] proved that Gerber’s result is also correct in the classical risk model with
a constant interest. When the risk model is modeled by a Brownian motion with a positive
drift, Asmussen and Taksar [16] found that the optimal dividend strategy is a barrier strategy
when the dividend rate is unbounded. A recent survey of some classical contributions and
recent progress on this topic can be found in Albrecher and Thonhauser [17].

Barrier strategy is a candidate for the optimal dividend strategy in many risk models, but
it is not always optimal in general. For example, Azcue and Muler [18] gave an example
where the optimal strategy is not a barrier strategy. A natural question is when a barrier
strategy is optimal among all admissible dividend strategies. Avram et al. [19] investigated
this problem when the risk process is modeled by a spectrally negative Lévy process. They
proved the optimality of the barrier strategy if the valve function under the optimal barrier is
smooth enough and satisfies the variational inequality. Basing on [19], Loeffen [20] proved
that barrier strategy is optimal among all admissible strategies if the scale function is convex
or the Lévy measure has a complete monotone density. The risk process is still modeled by
the spectrally negative Lévy process in [20].

The model considered in this paper is a jump-diffusion risk model with debit interest, that
is, the insurer is allowed to borrow money at a debit interest when the surplus is negative.
Meanwhile, the insurer will repay the debts continuously from his premium income, and the
negative surplus may recover to a positive level. In this paper, we will discuss the optimality
of the barrier dividend strategy for this risk model. The risk process considered in this
paper is not a Lévy process and many powerful techniques from Lévy processes theory
can not be applied any more. We have to draw on other methods from Markov process
theory and conquer corresponding difficulties. The main result obtained in our paper relies
on the smoothness of certain function arising from the dividend problem. This function is
analogue for the so called scale function in the Lévy insurance process. Mainly exploiting
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the weak infinitesimal generator theory of Markov processes, we could prove that it is twice
continuously differentiable.

Our paper is organized as follows. In Sect. 2, we introduce our risk model and formulate
the optimal dividend problem. In Sect. 3, we aim to find the optimal barrier when dividends
are paid according to the barrier strategy. Certain function which plays an important role
in optimal dividend problem is proved to be twice continuously differentiable by the prob-
ability argument. A sufficient condition under which the barrier strategy is optimal among
all admissible dividend strategies is given in Sect. 4. Numerical examples are presented to
compare with the numerical results of the classical risk model perturbed by diffusion in order
to illustrate the effects of the debit interest in Sect. 5.

2 Risk model and problem formulation

Let {2, .#, IP} be a probability space with filtration {.%;} containing all objects defined in the
following. The surplus process of an insurance company before paying dividends is given
by

N()

t
R(t)zu-l-/ C(R(s))ds—ZZk+aW(z), t >0, 2.1
0 k=1

where u is the initial surplus, C(u) = ¢ foru > O and C(u) = ¢ + éu foru < 0,¢c > 0
is the constant premium rate, § > 0 represents the debit interest, {N(¢), t > 0} is a Poisson
precess with parameter A > 0, denoting the total number of claims of the insurance company.
X1, X2, ... independent of {N (), t > 0}, are positive i.i.d. random variables with common
distribution function P (x) = P(X < x) with P(0) = O and density function p(x).{W(¢),t >
0} is a standard Brownian motion independent of {N (¢), t > 0} and { X}, k=1,2---}.0 >0
is the dispersion parameter.

The risk model (2.1) is a jump diffusion risk model with debit interest. Gerber and Yang
[21] considered the absolute ruin problems for this model. When o = 0, the surplus can
never become positive once it is below —c/§ and the first time the surplus jumps below —c/§
is called the absolute ruin time. When o > 0, as [21] have pointed out, the surplus could
bounced back from below —c/§ because of oscillation. Nevertheless, they still use the term
absolute ruin when the surplus attains or falls down the level —c/§. Let

T =inf{t >0, R(t) < —c/8}.

We call 7 is the time of absolute ruin for risk model (2.1).

Now we turn to the optimal dividend problem for the insurance company. Let a dividend
strategy m = {L},t > 0} be a non-decreasing, left continuous .%;-adapted process with
L§_ = 0. LT represents the total dividends the company has paid until time # under the
dividend strategy 7. Then the surplus process becomes

t N(t)
R;’=u+/ C(RT)ds =Y Zy+oW() =L}, t >0. 2.2)
0

k=1

Denote t” the corresponding absolute ruin time.
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Our ultimate goal is the maximization of the expectation of the discounted dividends until
the time of absolute ruin. We define the value function under the strategy 7 by

T

1 T
Vo (u) = E[/ e PlALT|RY =u] =E" [/ e PlaLm
0 0

where 8 > 0 is the discounted rate. As usual we assume that ) < < § in this paper. By
definition we see that V; (1) = 0 for u < —c/8.

We call a strategy 7 admissible if the absolute ruin does not occur by a dividend pay-out,
thatis, LT, — LT < R fort < t7. Let I1 be the set of all admissible dividend strategies.
We aim to find an admissible policy 7* € IT to maximize V (u), i.e. we are looking for the
value function

V(u) = sup Vi (u), 2.3)

well

and to find an optimal policy 7 * from IT that satisfies V (u) = V= (u) forall u > —c/$.

3 Optimal barrier under the barrier strategies

It is assumed in this section that dividends are paid according to barrier strategies and we aim
to find the optimal barrier. Now let us consider the barrier strategy ), = {Ltb, t > 0} under
the barrier b, where Lﬁ’ = (Supg<s<; R(s) —b) v O for t > 0. It can be seen that 7, € II.
Denote Rj(t) the surplus at time 7 and Vj(u) the value function under the barrier dividend
strategy p.

For a given barrier b > 0, let T, = inf{t > 0, R(t) = b} denote the first hitting time
of the surplus process {R(t),t > 0}, T, = oo if the set is empty. We denote L(u; b) to
be the expected present value of a payment of 1 due at the time when the surplus process
{R(1), t > 0} reaches the level b for the first time, provided that absolute ruin has not occurred
in the meantime. Then the function L (u; b) can be expressed as

L(u; b) = E*[e P 1(T}, < 1)] (3.1
for —c/8 < u < b. By the strong Markov property of the process {R(t), t > 0}, we have
L(uisuz) = L(uisup)L(uzsuz), —c/8 <uy <up <uz <b.

This identity has also been pointed out by Gerber et al. [22] where L(u1; u3) is replaced by
C(uy, us) there.
Let f(«) be a nonnegative increasing function such that

L(u; b) = M —c/§ <u <b. (3.2)

)
As in [22] we can get V(1) = L(u; b)Vy(b) for —c/8 < u < b and the left derivative
of Vp(u) at u = bis Vj(b—) = 1. Thus 1 = L' (b—;b)Vy(b). For —c/8 < u < b,

) 1 () ;
Vb(u) = Ty CT=b) — o) Then we obtain

f-/(") , —c/§ <u <D,
Vy(u) = { /'® - (3.3)
u—>b+ Vyb), u=>b.
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It can be seen that f(u) plays an important role in studying the optimal dividend problems.
Our main result in Sect. 4 relies on the properties of f (u). First, we prove the smoothness of
f(u) in Theorem 3.3.

The result of Theorem 3.3 relies on the following lemmas.

Lemma3.1 [f —c/§ < u < b, then lim BIL=0) — 0, that is, P(Ty < €|R(0) = u) =
e—0+
PU(T, < &) = o(e) (e — 0+).

—u

Proof For(0 < ¢ < bzc , it follows from the definition of 7} that

t
0<PTp <e) <P* (max {/ C(R(s))ds—}—oW(t)} > b—u)
0

0<t<e

t
<P (max / C(R(s))ds + 0max oW(t) >b— u)
0 <t<e

O<t<e

§]P’“<max oW(t) zb—u—cs)

0<t<e
" b—u-—ce
=P max W(t) > —— ). (3.4)
O<t<e o

It can be seen that

P* (maxg<; <, W (1) > 2212 P (maxo<<e W(t) = %2%)

lim o < lim o 3.9
e—>0+ & e—>0+ &
Since
b— 2 o
P (max W) > u) = —/ e_)‘z/2 dx,
0<r<e 20 2 Jb=u
20/
using L'Hospital’s rule, we get
P* (max W(t) > bx
fim D maxoz=e WO 2 51 (3.6)
e—>0+ &
From (3.4), (3.5) and (3.6), the result lim,_, o+ 2= = ( follows. O

From the general theory of Markov processes, see for example Dynkin [23], we get the
following lemma.

Lemma3.2 If {X(t),t > 0} is a right continuous Feller process, then {X(t),t > 0} is a
strong Markov process. Moreover, suppose that A is its weak infinitesimal operator and
P(A) is the domain of A. If h(x) € 2(A), then Ah(x) is continuous.

Theorem 3.3 Assume that the distribution function P(x) has a continuous density function
p(x)on [0, +00), then f(u) is twice continuously differentiable on (—c/§, +00) and satisfies
the integro-differential equation

u+c/s

2
%f”(u) + Cu) f'(u) + k/o fu—=ypMdy—G+p)fu)=0. (37
Proof Select an arbitrary b > 0, then f(u) = f(b)L(u;b), —c/§ < u < b. If we can

prove that L(u; b) is twice continuously differentiable in u on (—c/8, b) and satisfies the
integro-differential equation (3.7), then the results for f(u) follows since b is arbitrary.
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Let

Y(t):{R(t)’ t <t ATy, Z(t):{y(t)’ t<é&,
d1, t>1t ATy, 02, t>E&.

where 01 and 0, are two death states, £ is an exponential random variable with parameter j
and is independent of the stochastic process {Y (¢),t > 0}. {Z(¢), t > 0} is a twice killing
process for {R(¢),t > 0}. The process {Z(t),t > 0} is a homogeneous strong Markov
process, see Chapter 3 of Blumenthal and Getoor [24]. Let </ denote the weak infinitesimal
generator of the process {Z(¢),t > 0} and @(JZZ) be the domain of <. If h(u) € @(JZ?), we
have

E*[R(Z(1)] — h(u)
1

Th(u) = lim
o2 u+c/s
= 7”[(”) + Cw)h'(u) + k/(.) h(u—y)p(y)dy — (A + B)h(u).

for —c/6 < u < b.
Considering an infinitesimal time interval [0, d¢], from Lemma 3.1 and the convention
that L(0;,b) =0,i =1, 2, we get
E“[L(Rp(dt); b)] = E"[L(Rp(dt); b)1(T) < dt)] + E“[L(Ry(dt); b)1(T, > dt)]
= E“[L(R(d?t); b)1(T}, > dt)] + o(dt)
= E"[L(R(dt); b)] — E*[L(R(dt); D)L(Tp < dt)] + o(dt)
= E*[L(R(d1); b)] + o(dr).

Similarly, we have
E“[L(R(dt); b)] = E“[L(R(dt); b)1(T, < dr)] + E"[L(R(dr); H)I(Tp > dr)]

= EY[L(Y(dt); H)I(Tp > dt)] + o(dt)
=E"[L(Y(dr); b)] — E"[L(Y (dr); b)1(Tp < dr)] + o(dr)
= E*[L(Y (dr); b)] + o(dr). (3.8)

Since
E“[L(R(d1); b)] = P L(u; b) + o(dr),

we conclude from (3.8) that
EY[L(Y (dt); b)] = P L(u; b) + o(dt). (3.9)

Denote
E*[L(Z(dt); b)] — L(u; b)
dr '

h = li
L) = jim,
It follows from (3.9) that

. EBY[L(Z(dt); b)] — L(u; b) . E*[ePUL(Y(dt); b)] — L(u; b)
lim = lim =

0.
dt—0 dr dt—0 dr

So we have hy (u) = 0, that is, i (1) is bounded and continuous. We also have

lim E“[h; (Z(dt))] = hy(u).
dt—0
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By the definition of the weak infinitesimal generator of Markov processes (see, for example,
Dynkin [23]), we know that L(u; b) € (<) and

2
TL(u; b) = %L;’(u; b) + C(u)L), (u: b)

u+c/é
+>»/0 L(u—y;b)p(y)dy — (A + B)L(u; b) (3.10)

for —c/8 < u < b. It follows from Lemma 3.2 that JL (u; b) is continuous, that is, L(u; b)
is twice continuously differentiable in u on (—c/3, b).
From (3.10) and 27 (1) = 0, we get for —c/§ < u < b that

o2 utc/s
TLZ(M; b) + C(u)L! (u; b) + )»/ L(u—y;b)p(y)dy — (A + B)L(u; b) = 0.
0

This ends the proof. O

Now let us define the operator

o2 u+c/s
) = % ¢+ Cwgw+ [ gu=p0dy - g,
0
Remark 3.4 Using the operator <7, Eq. (3.7) can be rewritten as

(o —B)f(u) =0, u > —c/s.

Remark 3.5 From (3.2) we know that Vj (1) = % for —c/8 < u < b. It follows from

Theorem 3.3 that V},(«) is twice continuously differentiable and satisfies

o2
2

for —c/8 < u < b.

u+c/s
V() + Cu) Vi) + /0 Vol — y)p(») dy — O+ B)Vp(u) = 0. (3.11)

By Remark 3.4, Eq. (3.11) can be written as
(o —B)Vp(u) =0, —c/85<u<hb. (3.12)

Remark 3.6 Foru > —c/8,let b — oo, then we can see that V(1) — 0. It can be seen from
(3.3) that f'(b) — o0 as b — .

Put B=1{b >0, f'(b) < f'(u)forallu > 0}. For by, by € B, it can be verified that
Vp, () < Vi, (u) if by < by. Denote b* = sup B3, then b* is the optimal barrier under the
barrier dividend strategies. From Remark 3.6 we know that b* < oo.

7+ is a candidate of the optimal dividend strategy among the admissible dividend strate-
gies set I1. In next section, we will prove that it is indeed optimal among IT if some conditions
are satisfied. Throughout the rest of this paper, we assume that the distribution function P (x)
has a continuous density function p(x) on [0, +00).

4 Optimality of barrier strategy

In this section, we will prove that m,+ is optimal among all admissible strategies in IT under
certain conditions. Our main tool is from the stochastic control theory. Using the dynamic
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programming approach described in Fleming and Soner [25], we see that if V (u) is twice
continuously differentiable, then V satisfies the Hamilton—Jacobi—Bellman (HJB) equation

max{(«Z — B)V(u), 1 = V'w)} =0, u> —c/s. “4.1)
Lemma 4.1 If f(u) is convex for u > b*, then (o — B)Vpx(u) < 0, u > b*.
Proof For any u > b*, b* < z < u, similarly as in (3.12), we get

2 z+c/8
TV +CW Vi@ + fo Va(z = )pO0)dy — O+ BVu(@) = 0. (42)

Then
o2

z+c/8
Vi) + C@Vi )+ 2 /0 Vi (2 — y)p) dy — 4+ B)Vie (2)

2
- %(v,;; — V@) + C)(V)e — V) (2)

z+c/8
- /\/0 (Vor = Vi) —y)p(y)dy — (A + B)(Vix — Vi) (2)
0.2
= T(Véi — V@ + Cu)(Vye — Vi)(2)
- A/O [(Vr — Vi)(@) — (Vpr — Vi) (z — »)]p(y) dy

= BV — Vi)(2) 4.3)
Since f(u) is convex for u > b*, we get
')
S (u)

Vi = VD) =1 >0, b*<y<u (4.4)

If y < b*, then

! /
SO >0, y<b 4.5)
oY fuw)
In fact, f(u) is increasing in u, so f/(u) > 0. This fact together with the definition of b*
gives (4.5).

From (4.4) and (4.5), we know that (Vpx — V;,)(2) — (Vpx — V)(z — y) > 0.

It follows from the optimality of m+ that (Vp+ — V,,)(z) > 0. Then from (4.3), we get

(Vpe = VD () =

o? I / wte/d
TV + V) + 2 fo Ve (z = () dy — G+ B) Vi )
02 " " / /
=5 Vr =V, )(@) + C@ (Ve = V() (4.6)
Letting z 1 u in both sides of (4.6), we get
o2 24c/s
jvb; (2) + C() Ve (2) + Af Ve (z — y)p(y)dy — (A + B) Vi (2)
0
2
< 11%11[%(%;; — V) + C@)(V — V)(2)] < 0.
ZTu
This ends the proof. O
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Lemma4.2 If f(u) is convex foru > b*, then Vj is a classical solution to the HIB equation
4.1).

Proof From Remark 3.5, we know V() is twice continuously differentiable on (—c/§, b*).
By the optimality of 77+, we get V. (b*—) = V. (b*+) = land V. (b*—) = V. (b*+) = 0.
So Vp«(u) is twice continuously differentiable on (—c/§, 00).

It follows from Remark 3.5 that

(o — B)Vpx(u) =0, —c/8 <u < b*. 4.7

By the definition of b*, we get

!’
P s <u < bt 4.8)
1)
It follows from (4.7) and (4.8) that V= (u) is a classical solution to the HIB equation (4.1)
when —c/8§ < u < b*.

For u > b*, we get from Lemma 4.1 that

Vi (u) =

(o — B)Vpx(u) <0, u>b". (4.9)
It can be easily verified that
Vie(u) =1, u>b* (4.10)
It follows from (4.9) and (4.10) that Vj+ (1) is a classical solution to the HIB equation (4.1)
when u > b*.

From the above discussions, we know that Vj« () is a classical solution to the HIB equation
(4.1) whenu > —c/8. ]

Theorem 4.3 If f(u) is convex for u > b*, we have Vp«(u) = V (u) foru > —c/8 and hence
Ty is the optimal dividend strategy in TI.

Proof Letr € ITbeany admissible strategy. Applying the Itd formulatoe A7)V (RT, ),
we get

e PNV (R ) = Vi ()

tATT

tATT 02
= / e—ﬂS[TV,;;(R;T_) + C(RT_)Vy(RY_) — BVp+(RT_)1ds
0
AT
+o / e PV, (RT_)dW;
0

tATT -
— / e PV (RT)dLT
0

+ > e P [Vpr (RT) = Vi (RT)]
0<s<tAt™, R]_#RT
+ > e P [Vpe (RTL) = Ve (RD)]. @.11)

3 T
O<s<tAt™, RT#R{,
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Note that R7_ # RT occurs due to the jump of a claim and

17N 4
> e P Ve (RT) — Vi (RT)] — A f e hs

0<s<tAt™, R]_#RT¥ 0
RT+¢/8
x / Vie (RT_ — y)p(y)dy — Vi (R™) | ds
0

is a martingale with expectation zero.
We know that R} # R, occurs due to the jump of dividend pay-out, then R}, — R} =
—(L}, —L7)and

> e P [V (RT,) — Vi (RD)]

¥
O<s<tAt™, R{, #R}

LT
=— > e P /O V/. (R — y)dy

b
O<s<tnt™, LT, #LT

It follows from V. > 1 that

AT
- / e PV (RT)ALT + > e PS[Vie (RT,) — Vi (RT)]
0 O<s<tAT™, RF#R],
tATT
<- / e Parr — > e AT~ L)
0 O<s<IATT, LT, ALT
tATT
=— / e PsdLr. (4.12)
0

Plugging (4.12) into (4.11), we get
e—ﬁ(t/\r”) Vi (R;T/\.[n) — Vi (1)

IATT 2
< /0 e s [% Vi (RT_) + C(RT_) Vi (RT) — ﬂVh*(Rj,[)] ds

tAT™

tATT
+o /O e PV (RF)d Wy — /0 e PdLT

+ > e PV (RT) — Ve (RT)]. (4.13)

O<s<tAt™, R]_#R7T
Therefore taking expectations on both sides of (4.13), we obtain
E“[e™ PNV (R, )]

tATT
< Vps(u) — E* /0 e PsdLr

INT 02
+ E* / e P [7 Véi(Rfﬁ) + C(Rff)Vé*(Rff)
0
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RT +c/8
—(A+ B)Vp(RT) + Afo Vi« (R{_ — ) p(y) dy} ds

tAT,

(AT, T
= Vpe(u) +E* / e P (o — B)Vir (RT_) ds — E" / e PdLT.  (4.14)
0

0

It follows from Lemma 4.2 that Vp«(u) is a classical solution to the HIB equation (4.1) and
then the second term on the right-hand side in (4.14) is non-positive. The left-hand side of
(4.14) is also non-positive, so

AT
E“ / e P ALT < Vi (u). (4.15)
0

Letting t — oo in (4.15),

T
E“ / e PSALT < Vi (u).
0
This ends the proof. O

Remark 4.4 From Theorem 3.3, we know that f(u) is twice continuously differentiable on
(—c/8, +00) once p(x) is continuous on [0, +00). Moreover, if f(x) is convex for u > b*
then we can guarantee the optimality of barrier strategy.

Remark 4.5 When § — 0 then —¢/8 — —o0. Then ruin or absolute ruin will never occur
and this is not a realistic case. When § — 400, then —c/§ — 0. Then our risk model reduces
to the classical risk model perturbed by diffusion which belong to the classes of spectrally
negative Lévy process. In this case, f(u) in Theorem 4.3 play the role of scale function in
Loeffen [20].

5 Numerical examples

In this section, we present two numerical examples to give some intuitive interpretations
of the results, and make numerical comparisons with the results of the classical risk model
perturbed by diffusion.

Example 5.1 Assume that the claim sizes are exponentially distributed with parameter p > 0,
thatis, P(y) =1 —e™?Y, y > 0. When —¢/§ < u < 0, Eq. (3.7) becomes

2 u+c/s
%f"(u) + (¢ 4 8u) f'(u) + )»/0 fu—y)pe™?dy — (L +p)f(u) =0. (5.1)

When u > 0, Eq. (3.7) becomes
o2 u+tc/s
jf”(u) +ef () + kf fu—y)pe " dy — (A +B)f(u) = 0. (5.2)
0
Applying the operator (j—u + p) to Eq. (5.1), we get

o’ " Gzp " ’
7f (u) + <T +C+5M)f u)+[plc+du)y+6—A—Blf (u) —Bpfm) =0.

(5.3)
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Fig. 1 fl/ (u) when § = 0.05 (red line) and fz/(u) when § = 0.08 (blue line). (Color figure online)

With the boundary conditions f(—c/8) = 0, f(0) =1, f”(—c/8) = 0, Eq. (5.3) can be
determined.
Applying the operator (% + p) to Eq. (5.2), we get

02 " 0-210 " /
7f (u) + (T +o)f )+ (pc—A—=p)f (u)—Bpfu)=0. 5.4

It can be verified that there exist three characteristic roots of Eq. (5.4) A1, A2 and A3. So the
general solution of Eq. (5.4) can be expressed as

fu) = kM + kpe* 4+ kze™*,  u > 0. (5.5)

From Theorem 3.3 we know that f (u) is twice continuously differentiable on (—c/§, 00), so
ki, ky and k3 can be determined by the conditions: f(0+) = f(0—) =1, f/(0+) = f'(0—)
and f"(0+) = f"(0-).

Letc=1,2=05,p=1,8 =0.02, 0 =0.3. We consider two cases: § = 0.05 and
8 =0.08.»™ = 1.18 when § = 0.05 and b* = 2.71 when § = 0.08. Intuitively, the higher the
debit interest, the higher the optimal dividend barrier. In Fig. 1, we plot the function f”(u),
where we denote fl/(u) in the case § = 0.05 and f2’ (u) in the case § = 0.08. The abscissa of
point A is 1.18 and the abscissa of point B is 2.71. From Fig. 1 we can see that the function
f{(w) is increasing in u after A and f;(u) is increasing in u after B. So we conclude that the
barrier dividend strategy at b* = 1.18 in the case § = 0.05 and the barrier dividend strategy
at b* = 2.71 in the case § = 0.08 are both optimal among all dividend strategies.

When § — +o0, then —c¢/8 — 0 and the risk model becomes the classical risk model
perturbed by diffusion. The barrier dividend barrier b* is equal to 9.44733, and is larger than
that of the jump-diffusion risk model with debit interest. In Table 1, we give the numerical
values of Vp«(u) for the case § = 0.05, § = 0.08 and § = +o00 (+00 means the classical
risk model perturbed by diffusion). It can be seen that Vj«(u) is increasing as u increases and
becomes smaller as the debit interest becomes larger. The function Vj«(u) of the classical
risk model perturbed by diffusion is smaller than that of the jump-diffusion risk model with
debit interest.
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Fig. 2 fé(u) when § = 0.05 (red line) and fA{ (u) when 6 = 0.08 (blue line). (Color figure online)

Example 5.2 Assume that the claim size distribution is Erlang(2) distributed with parameter
n > 0, thatis, p(y) = n*ye™, y > 0. When —¢/8 < u < 0, Eq. (3.7) becomes
o2
2
When u > 0, Eq. (3.7) becomes

u+c/é
F W) + (¢ +8u) f' () + A/O [ —y)n*ye™ dy — (L + B) f (u) = 0.(5.6)

0.2 u+c/é ) i
Tf//(u) +cf (u) + ?»/0 flu—ymye ™ dy =+ B)fu) =0. (5.7)

Applying the operator I + 217;—“ + % to Eq. (5.6), we get

o2 2.2

T r@ 2 " n-o _ "

5 [P+ o +c+du) f(u) + [72 +2n(c +du) +25 — (A + ,8)] f"(u)

+ [0 (c + 8u) + 208 — 2n(h + B)1f' () — 0’ B f (w) = 0. (5.8)
With the boundary conditions f(—c/§) = 0, f(0) = 1, f"(—c/8) = 0, ”72f///(—c/8) +
8 —x—B)f'(—c/8) =0, Eq. (5.8) can be determined.

Applying the operator 7’1 + and—u + % to Eq. (5.7), we get

o2 o’
S 1Y@+ @e? o " + [T +2nc — O+ ﬁ)] Q)
+n*c = 2n0.+ BIf W) —n*Bf () =0. (5.9)

It can be verified there exist four characteristic roots of Eq. (5.9) A1, A2, A3 and X4. So the
general solution of Eq. (5.9) can be expressed as

) = kie*" 4 koe*? 4 kze™" + kge™, u > 0. (5.10)

From Theorem 3.3 we know f (u) is twice continuously differentiable on (—c/é, 00), so k1,

k> and k3 can be determined by the conditions: f(0+) = f(0—) = 1, f/(0+) = f/(0-),
F1(0+) = f"(0=) and " (0+) = £"(0-) + 2 (0.

Letc=2,A=0.5,n=1, =0.02,0 = 0.3. We also consider two cases: § = 0.05 and

8 =0.08.b* =2.22 whend = 0.05 and b* = 3.98 when § = 0.08. Intuitively, the higher the
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debit interest, the higher the optimal dividend barrier. In Fig. 1, we plot the function f”(u),
where we denote f3’(u) in the case § = 0.05 and fé( (u) in the case § = 0.08. The abscissa of
the point C is 2.22 and the abscissa of the point D is 3.98. From Fig. 2 we can see that the
function f;(u) is increasing in u after C and f4(u) is increasing in u after D. So we conclude
that the barrier dividend strategy at b* = 1.18 in the case § = 0.05 and the barrier dividend
strategy at b* = 2.71 in the case § = 0.08 are both optimal among all dividend strategies.

The barrier dividend barrier b* of the classical risk model perturbed by diffusion is equal
to 13.5895, and is larger than that of the jump-diffusion risk model with debit interest. In
Table 2, we give the numerical values of Vp+ («) for the case § = 0.05,5 = 0.08 and § = +o0.
It can be seen that Vp«(u) is increasing as u increases. Note that Vj+ (1) becomes smaller as
the debit interest becomes larger and Vj,« (1) of the classical risk model perturbed by diffusion
is the smallest. The conclusion is the same as that in Example 5.1.
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