
Periodica Mathematica Hungarica (2020) 81:134–148
https://doi.org/10.1007/s10998-020-00333-2

Arithmetic properties of polynomials

Yong Zhang1 · Zhongyan Shen2

Published online: 17 March 2020
© Akadémiai Kiadó, Budapest, Hungary 2020

Abstract
First, we prove that the Diophantine system

f (z) = f (x) + f (y) = f (u) − f (v) = f (p) f (q)

has infinitely many integer solutions for f (X) = X(X+a)with nonzero integers a ≡ 0, 1, 4
(mod 5). Second, we show that the above Diophantine system has an integer parametric
solution for f (X) = X(X + a) with nonzero integers a, if there are integers m, n, k such
that{

(n2 − m2)(4mnk(k + a + 1) + a(m2 + 2mn − n2)) ≡ 0 (mod (m2 + n2)2),

(m2 + 2mn − n2)((m2 − 2mn − n2)k(k + a + 1) − 2amn) ≡ 0 (mod (m2 + n2)2),

where k ≡ 0 (mod 4) when a is even, and k ≡ 2 (mod 4) when a is odd. Third, we get that
the Diophantine system

f (z) = f (x) + f (y) = f (u) − f (v) = f (p) f (q) = f (r)

f (s)

has a five-parameter rational solution for f (X) = X(X + a) with nonzero rational number
a and infinitely many nontrivial rational parametric solutions for f (X) = X(X + a)(X + b)
with nonzero integers a, b and a �= b. Finally, we raise some related questions.
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Arithmetic properties of polynomials 135

1 Introduction

The kth n-gonal number is given by

Pn
k = k((n − 2)(k − 1) + 2)

2
.

For n = 3, P3
k = k(k + 1)/2 are called triangular numbers. In 1968, Sierpiński [14] showed

that there are infinitely many triangular numbers which at the same time can be written as
the sum, difference, and product of other triangular numbers. For n = 4, P4

k = k2, it is easy
to show that (4m2 + 1)2 is the sum, difference, and product of squares (see [1]), from the
identify (4m2 + 1)2 = (4m)2 + (4m2 − 1)2 = (8m4 + 4m2 + 1)2 − (8m4 + 4m2)2 and there
are infinitely many composite numbers of the form 4m2 + 1 (for example, if m = 5 j + 1,
4m2+1 is divisible by 5). In 1986, Hirose [10] proved that for n = 5, 6, 8, there are infinitely
many n-gonal numbers which at the same time can be written as the sum, difference, and
product of other n-gonal numbers. The cases with n = 7 and n ≥ 9 are still open.

Some authors proved similar results for the sum and the difference only, such as Hansen
[8] for n = 5, O′Donnell [11,12] in cases of n = 6, 8, Hindin [9] for n = 7, and Ando [1] in
the general case. In 1982, Eggan et al. [7] showed that for every n there are infinitely many
n-gonal numbers that can be written as the product of two other n-gonal numbers. In 2003,
Beardon [2] studied the integer solutions (n, a, b, c, d) of the Diophantine system

P(n) = P(a) + P(b) = P(c) − P(d), P(a)P(b)P(c)P(d) �= 0,

where P is a quadratic polynomial with integer coefficients. Some related information on
n-gonal numbers could be found in [6, p.1–p.39].

The Diophantine equations about the product or sum of two other polynomials were
studied by many authors, we can refer to [15–22] and the references in there.

A natural question is to consider the integer solutions of the Diophantine system

f (z) = f (x) + f (y) = f (u) − f (v) = f (p) f (q), (1.1)

where f (X) is a polynomial with rational coefficients and deg f ≥ 2.
By the theory of Pellian equation, we have the following result.

Theorem 1.1 For f (X) = X(X+a)with nonzero integers a ≡ 0, 1, 4 (mod 5),Diophantine
system (1.1) has infinitely many integer solutions (z, x, y, u, v, p, q).

By the method of Theorem 1.1, we can get the same result for a = 2, 3 (see Remark 2.2),
but we couldn’t give a complete proof for the cases a ≡ 2, 3 (mod 5). Motivated by the
solutions of Theorem 1.1, we obtain the following result by the method of undetermined
coefficients.

Theorem 1.2 For f (X) = X(X + a) with nonzero integers a, if there are integers m, n, k
such that{

(n2 − m2)(4mnk(k + a + 1) + a(m2 + 2mn − n2)) ≡ 0 (mod (m2 + n2)2),

(m2 + 2mn − n2)((m2 − 2mn − n2)k(k + a + 1) − 2amn) ≡ 0 (mod (m2 + n2)2),

where k ≡ 0 (mod 4) when a is even, and k ≡ 2 (mod 4) when a is odd. Then Diophantine
system (1.1) has an integer parametric solution.
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136 Y. Zhang, Z. Shen

By some computer-aided computation, for 1 ≤ a ≤ 100 we can find integers m, n, k
satisfying the above congruences. It seems that for any given nonzero integer a, there exists
such integers m, n, k. However, we cannot prove it.

To study the integer solutions of Diophantine system (1.1) seems difficult for general
polynomials f (X) with deg f ≥ 3, so we turn to consider the rational parametric solutions
of the Diophantine system

f (z) = f (x) + f (y) = f (u) − f (v) = f (p) f (q) = f (r)

f (s)
. (1.2)

For reducible quadratic polynomials we prove the following statement.

Theorem 1.3 For f (X) = X(X + a) with nonzero rational number a, Diophantine system
(1.2) has a five-parameter rational solution.

For reducible cubic polynomials, by the theory of elliptic curves, we have:

Theorem 1.4 For f (X) = X(X + a)(X + b) with nonzero integers a, b and a �= b, Dio-
phantine system (1.2) has infinitely many rational parametric solutions.

2 The proofs of theorems

Proof of Theorem 1.1. (1) The cases a ≡ 0, 1 (mod 5). Let us start with the equation f (z) =
f (p) f (q), where f (X) = X(X + a). We can use the Runge’s method [13] to study the
integer solutions of it. Write q = p + k for some integer k, then we obtain

(2z + a)2 = 4p(p + a)(p + k)(p + k + a) + a2.

The polynomial part of the Puiseux expansion of√
4p(p + a)(p + k)(p + k + a) + a2

is given by 2p2 + 2(a + k)p + ak. If there exists a large integer solution, then

2z + a = 2p2 + 2(a + k)p + ak.

We get in this case that a2(k + 1)(k − 1) = 0, that is k = ±1. Hence, q = p ± 1. If k = 1,
then we obtain the solutions z = p2 + (a + 1)p, or −p2 + (−a − 1)p − a. If k = −1, then
we get z = p2 + (a − 1)p − a, or −p2 + (−a + 1)p.

Let us deal with the equation f (z) = f (x) + f (y), where z = p2 + (a + 1)p (we only
consider this solution, the other should work in a similar way). We obtain

(2(p2 + (a + 1)p) + a)2 = (2x + a)2 + (2y + a)2 − a2.

Take y = x + b for some integer b. It follows that

(2(p2 + (a + 1)p) + a)2 − 2(2x + a + b)2 = 2b2 − a2.

Let X = 2(p2 + (a + 1)p) + a, Y = 2x + a + b, we get the Pellian equation

X2 − 2Y 2 = 2b2 − a2. (2.1)

It is easy to provide infinitely many integer solutions by the formula

X + Y
√
2 = (1 + √

2)2m+1(a + b
√
2), m ∈ Z. (2.2)
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Arithmetic properties of polynomials 137

When m = 0, it yields the trivial solution with x = 0. When m = 1, we get

2x + a + b = 5a + 7b, 2(p2 + (a + 1)p) + a = 7a + 10b,

then x = 2a + 3b and

b = p2 + (a + 1)p − 3a

5
.

Here b need to be an integer, which is in the cases when a ≡ 0 (mod 5), p ≡ 0, 4 (mod 5),
or a ≡ 1 (mod 5), p ≡ 1, 2 (mod 5).

Up to now we constructed infinitely many integer solutions of the equations

f (z) = f (x) + f (y) = f (p) f (q),

so it remains to consider the case f (z) = f (u) − f (v), where z = p2 + (a + 1)p. Let
v = u − c for some integer c. Then f (z) = c(2u + a − c), a linear equation in u. Hence,

u = z2 + az + c2 − ac

2c
.

As a solution, fix p = 2c and we obtain

u = (4c2 + 2ac + a + 4c)(2c + a) + a + 5c

2
,

v = (4c2 + 2ac + a + 4c)(2c + a) + a + 3c

2
,

z = 2c(2c + a + 1).

According to the other variables we have

p = 2c,

q = 2c + 1,

x = 2a + 3(4c2 + 2ac − 3a + 2c)

5
,

y = 2a + 4(4c2 + 2ac − 3a + 2c)

5
.

To get integral values of x, y, u, v, we need the following conditions:

a ≡ c (mod 2)

and

4c2 + 2ac − 3a + 2c ≡ 0 (mod 5).

(i) Case a ≡ 0 (mod 5), p ≡ 0, 4 (mod 5). From the second condition we have

c ≡ 0, 2 (mod 5).

From the first condition we get

a ≡ 0 (mod 10), c ≡ 0, 2 (mod 10),

and

a ≡ 5 (mod 10), c ≡ 5, 7 (mod 10).
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138 Y. Zhang, Z. Shen

For a ≡ 0 (mod 10), take c = 10t, or 10t + 2, where t is an integer parameter, we have

b = 80t2 + 4t + 4at − 3a

5
or 80t2 + 36t + 4 + 4at + a

5
∈ Z.

For a ≡ 5 (mod 10), put c = 10t + 5, or 10t + 7, we get

b = 80t2 + 84t + 22 + 4at + 7a

5
or 80t2 + 116t + 42 + 4at + 11a

5
∈ Z.

(ii) Case a ≡ 1 (mod 5), p ≡ 1, 2 (mod 5). From the second condition we have

c ≡ 1, 3 (mod 5).

As above, for a ≡ 1 (mod 10), take c = 10t +1, or 10t +3, where t is an integer parameter,
we have

b = 80t2 + 20t + 1 + 4at + 1 − a

5
, or 80t2 + 52t + 8 + 4at + 2 + 3a

5
∈ Z.

For a ≡ 6 (mod 10), put c = 10t + 6, or 10t + 8, we get

b = 80t2 + 100t + 31 + 4at + 1 + 9a

5
, or 80t2 + 132t + 54 + 4at + 2 + 13a

5
∈ Z.

(2) Case a ≡ 4 (mod 5). Let us note that Pellian equation (2.1) has another family of
integer solutions

X + Y
√
2 = (1 + √

2)2m+1(−a + b
√
2), m ∈ Z. (2.3)

When m = 1, we get

2x + a + b = −5a + 7b, 2(p2 + (a + 1)p) + a = −7a + 10b,

then x = −3a + 3b and

b = p2 + (a + 1)p + 4a

5
.

Here b need to be an integer, which is in the cases when a ≡ 0 (mod 5), p ≡ 0, 4 (mod 5),
or a ≡ 4 (mod 5), p ≡ 2, 3 (mod 5). We only consider the case a ≡ 4 (mod 5) in the
following.

As in part (1), taking p = 2c − 1 in z = p2 + (a + 1)p gives

z = (2c − 1)(2c + a),

x = −3a + 3(4c2 + 2ac + 3a − 2c)

5
,

y = −3a + 4(4c2 + 2ac + 3a − 2c)

5
,

u = (4c2 + 2ac − a − 4c)(2c + a) + a + 5c

2
,

v = (4c2 + 2ac − a − 4c)(2c + a) + a + 3c

2
,

p = 2c − 1,

q = 2c.
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Arithmetic properties of polynomials 139

To get integral values of x, y, u, v, we need the conditions

a ≡ c (mod 2)

and

4c2 + 2ac + 3a − 2c ≡ 0 (mod 5).

If a ≡ 4 (mod 5), p ≡ 2, 3 (mod 5), from the second condition we have

c ≡ 2, 4 (mod 5).

As above, we can take c = 10t+2, or 10t+4 for a ≡ 4 (mod 10), and c = 10t+7, or 10t+9
for a ≡ 9 (mod 10), where t is an integer parameter.

Combining (1) and (2) completes the proof of Theorem 1.1. 	

Example 2.1 When a = 1, c = 10t + 1, then for f (X) = X(X + 1) Diophantine system
(1.1) has an integer parameter solution:

z = 400t2 + 120t + 8,

x = 240t2 + 72t + 5, y = 320t2 + 96t + 6,

u = 8000t3 + 4000t2 + 665t + 36, v = 8000t3 + 4000t2 + 655t + 35,

p = 20t + 2, q = 20t + 3,

where t is an integer parameter. There are solutions not covered by the above solutions, such
as

(z, x, y, u, v, p, q) =(3, 2, 2, 6, 5, 1, 2), (8, 5, 6, 13, 10, 2, 3),

(15, 5, 14, 26, 21, 3, 4), (15, 5, 14, 41, 38, 3, 4),

(48, 29, 38, 66, 45, 6, 7), (48, 29, 38, 81, 65, 6, 7),

(80, 30, 74, 91, 43, 8, 9), (80, 30, 74, 94, 49, 8, 9).

It seems to be difficult to determine the complete integer solutions of Diophantine system
(1.1) for f (X) = X(X + a) with fixed a.

Remark 2.2 It’s worth to note that we have other possibilities to obtain integer solutions if
a �≡ 0, 1, 4 (mod 5). When we apply the same idea using the other family of solutions with
z = −p2 + (−a − 1)p − a, p2 + (a − 1)p − a, or −p2 + (−a + 1)p for m = 1, we do
not obtain new cases of solutions.

To cover more classes one has to go in these directions. Whenm = 2, from formula (2.2),
we have

2x + a + b = 29a + 41b, 2(p2 + (a + 1)p) + a = 41a + 58b,

then x = 14a + 20b and

b = p2 + (a + 1)p − 20a

29
.

To make b be an integer, we get

a ≡ 0, 2, 3, 5, 6, 8, 10, 11, 15, 19, 23, 24, 26, 28 (mod 29).
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140 Y. Zhang, Z. Shen

As in Theorem 1.1, fix p = 2c in z = p2 + (a + 1)p and we obtain

z = 2c(2c + a + 1),

x = 14a + 20
4c2 + 2ac − 20a + 2c

29
,

y = 14a + 21
4c2 + 2ac − 20a + 2c

29
,

u = (4c2 + 2ac + a + 4c)(2c + a) + a + 5c

2
,

v = (4c2 + 2ac + a + 4c)(2c + a) + a + 3c

2
,

p = 2c,

q = 2c + 1.

To get integral values of x, y, u, v, we need the following conditions:

a ≡ c (mod 2)

and

4c2 + 2ac − 20a + 2c ≡ 0 (mod 29).

For a = 2, take c = 58t + 46, or 58t + 54, then

b = 4(29t + 25)(4t + 3), or 4(t + 1)(116t + 103) ∈ Z.

For a = 3, take c = 58t + 3, or 58t + 53, then

b = 16t(29t + 4), or 16(t + 1)(29t + 25) ∈ Z.

Similar congruences can be obtained for other values of m, and combining these systems
via the Chinese remainder theoremwould cover almost all classes. However, it seems difficult
to cover all integers a ≡ 2, 3 (mod 5).

Note that Pellian equation (2.1) has integer solutions given by

X + Y
√
2 = (1 + √

2)2m+1(±a ± b
√
2), m ∈ Z,

which including formulas (2.2) and (2.3). When m = 1, 2, 3, 4, 5, by applying the method
of proof of Theorem 1.1 we are not able to handle the case a = 83 in the range 1 ≤ a ≤ 100.
However, we can show that the approach of Theorem 1.2 solves this case in Example 2.3.

We try to generalize the formulas obtained in Example 2.1 and give the proof of Theo-
rem 1.2.

Proof of Theorem 1.2. First, we study the equation f (z) = f (p) f (q) for f (X) = X(X +a).

Take

p = At + k, q = At + k + 1,

then we have

z = (At + k)(At + k + a + 1).

Second, we consider the equation f (z) = f (u) − f (v). Let

u = Bt3 + Ct2 + Dt + E, v = Bt3 + Ct2 + Ft + G,
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then

(At + k)(At + k + a)(At + k + 1 + a)(At + k + 1)

= (Dt − Ft + E − G)(2Bt3 + 2Ct2 + Dt + Ft + E + G + a).

To determinate the coefficients of u, v, by themethod of undetermined coefficients, we obtain

A4 = 2B(D − F),

2A3(a + 2k + 1) = 2BE − 2BG + 2CD − 2CF,

A2(a2 + 6ak + 6k2 + 3a + 6k + 1) = 2CE − 2CG + D2 − F2,

A(a + 2k + 1)(2ak + 2k2 + a + 2k) = 2DE + Da − 2FG − Fa,

k(k + 1)(a + k + 1)(a + k) = (E − G)(E + a + G).

(2.4)

In order to find a solution of (2.4), let B = A3, E − G = k
2 , then

F = D − A

2
, G = E − k

2
.

Put B, F,G into (2.4), and solve it for C, D, E, we get

C = A2(2a + 3k + 2),

D = A(a2 + 4ak + 3k2 + 3a + 4k) + 5A

4
,

E = (ak + k2 + a + 2k)(a + k) + 2a + 5k

4
.

Hence,

u =A3t3 + A2(2a + 3k + 2)t2 +
(
A(a2 + 4ak + 3k2 + 3a + 4k) + 5A

4

)
t

+ (ak + k2 + a + 2k)(a + k) + 2a + 5k

4
,

v =A3t3 + A2(2a + 3k + 2)t2 +
(
A(a2 + 4ak + 3k2 + 3a + 4k) + 3A

4

)
t

+ (ak + k2 + a + 2k)(a + k) + 2a + 3k

4
.

At last, we study the equation f (z) = f (x) + f (y). Put

x = Ht2 + I t + J , y = Kt2 + Lt + M,

then

(At + k)(At + k + a)(At + k + 1 + a)(At + k + 1)

= (H2 + K 2)t4 + (2I H + 2K L)t3 + (2H J + Ha + 2KM + Ka + L2 − I 2)t2

+ (2I J + 2LM + La + I a)t + J 2 + Ja + M2 + Ma.
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To determinate the coefficients of x, y, by themethod of undetermined coefficients, we obtain

A4 = H2 + K 2,

2A3(a + 2k + 1) = 2I H + 2K L,

A2(a2 + 6ak + 6k2 + 3a + 6k + 1) = 2H J + Ha + 2KM + Ka + L2 − I 2,

A(a + 2k + 1)(2ak + 2k2 + a + 2k) = 2I J + 2LM + La + I a,

k(k + 1)(a + k + 1)(a + k) = J 2 + Ja + M2 + Ma.

(2.5)

Solve the first equation of (2.5), we get an integer parametric solution

A = n2 + m2, H = 4nm(n2 − m2), K = m4 − 6m2n2 + n4,

where n > m are integer parameters. Take A, H , K into the second, third and fourth equations
of (2.5), and solve them for I , L, M, then

I = 4nm(n2 − m2)(a + 2k + 1)

n2 + m2 ,

L = (m4 − 6m2n2 + n4)(a + 2k + 1)

n2 + m2 ,

M = 4nm(n2 − m2)J + (m2 + n2)2k2 + (m2 + n2)2(a + 1)k + 2amn(m2 + 2mn − n2)

m4 − 6m2n2 + n4
.

Put M into the firth equation of (2.5), we have

J = (n2 − m2)(4mnk(k + a + 1) + a(m2 + 2mn − n2))

(n2 + m2)2
.

Hence,

M = (m2 + 2mn − n2)((m2 − 2mn − n2)k(k + a + 1) − 2amn)

(n2 + m2)2
.

So

x = 4nm(n2 − m2)t2 + 4nm(n2 − m2)(a + 2k + 1)

n2 + m2 t

+ (n2 − m2)(4mnk(k + a + 1) + a(m2 + 2mn − n2))

(n2 + m2)2
,

y = (m4 − 6m2n2 + n4)t2 + (m4 − 6m2n2 + n4)(a + 2k + 1)

n2 + m2 t

+ (m2 + 2mn − n2)((m2 − 2mn − n2)k(k + a + 1) − 2amn)

(n2 + m2)2
.

According to the other variables, we have

p = (n2 + m2)t + k,

q = (n2 + m2)t + k + 1,

u = (n2 + m2)3t3 + (n2 + m2)2(2a + 3k + 2)t2 + (
n2 + m2)(a2 + 4ak

+3k2 + 3a + 4k) + 5(n2 + m2)

4

)
t + (ak + k2 + a + 2k)(a + k) + 2a + 5k

4
,
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v = (n2 + m2)3t3 + (n2 + m2)2(2a + 3k + 2)t2 + (
(n2 + m2)(a2 + 4ak

+3k2 + 3a + 4k) + 3(n2 + m2)

4

)
t + (ak + k2 + a + 2k)(a + k) + 2a + 3k

4
.

To get integral values of x, y, u, v, we can take t = 4(n2 + m2)T , where T is an integer
parameter, k ≡ 0 (mod 4) when a is even, and k ≡ 2 (mod 4) when a is odd and get the
following congruence conditions:{

(n2 − m2)(4mnk(k + a + 1) + a(m2 + 2mn − n2)) ≡ 0 (mod (m2 + n2)2),

(m2 + 2mn − n2)((m2 − 2mn − n2)k(k + a + 1) − 2amn) ≡ 0 (mod (m2 + n2)2).

This completes the proof of Theorem 1.2. 	

Example 2.3 When a = 83, f (X) = X(X + 83), take (m, n) = (1, 9), t = 328T , k =
4k1 + 2, then we have the conditions:{

46080k21 + 1013760k1 + 83680 ≡ 0 (mod 6724),

97216k21 + 2138752k1 + 1137700 ≡ 0 (mod 6724).

Solve these two congruences, we obtain

k1 ≡ 119, 1800, 1540, 3221, 3481, 4902, 5162, 6583 (mod 6724).

Then

k ≡ 478, 6162 (mod 6724).

If we set k = 6724S + 478, where S is an integer parameter, then for f (X) = X(X + 83)
Diophantine system (1.1) has an integer parametric solution:

z = 4(13448T + 3362S + 239)(13448T + 281 + 3362S),

x = 309841920T 2 + (154920960S + 11980800)T + 19365120S2 + 2995200S

+ 115000,

y = 653680384T 2 + (326840192S + 25276160)T + 40855024S2 + 6319040S

+ 242761,

u = 19456426971136T 3 + (14592320228352S + 1158878495232)T 2

+ (3648080057088S2 + 579439247616S + 22947647028)T + 304006671424S3

+ 72429905952S2 + 5736911757S + 151020156,

v = (53792T + 1123 + 13448S)(22606088S2 + 180848704ST + 361697408T 2

+ 3498161S + 13992644T + 134479),

p = 26896T + 6724S + 478,

q = 26896T + 6724S + 479.

By the parametrization of quadratic equation, we give the proof of Theorem 1.3 in the
following.

Proof of Theorem 1.3. For f (X) = X(X + a), let z = T , the first equation of Diophantine
system (1.2) reduces to

123
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T (T + a) = x(x + a) + y(y + a).

This can be parameterized by

x = −2T k + ak + a

k2 + 1
, y = − (k + 1)(T k + ak − T )

k2 + 1
,

where k is a rational parameter.
From T (T + a) = u(u + a) − v(v + a), we get

u = −T t2 + at2 − at + T

t2 − 1
, v = −2T t + at − a

t2 − 1
,

where t is a rational parameter.
For T (T + a) = p(p + a)q(q + a), put p = wT , then

T = −a(aqw + q2w − 1)

aqw2 + q2w2 − 1
, p = −aw(aqw + q2w − 1)

aqw2 + q2w2 − 1
,

where w is a rational parameter.
Take s = mr , from

T (T + a) = r(r + a)

s(s + a)
,

we obtain

r = −a(T 2m + Tam − 1)

T 2m2 + Tam2 − 1
, s = −am(T 2m + Tam − 1)

T 2m2 + Tam2 − 1
,

where m is a rational parameter.
Put

T = −a(aqw + q2w − 1)

aqw2 + q2w2 − 1

into x, y, u, v, r , s, then Diophantine system (1.2) has a five-parameter rational solution. 	

By the theory of elliptic curves, we provide the proof of Theorem 1.4.

Proof of Theorem 1.4. Toprove this theorem,we need to consider fourDiophantine equations.
The first one is

z(z + a)(z + b) = x(x + a)(x + b) + y(y + a)(y + b). (2.6)

Let z = T , and consider (2.6) as a cubic curve with variables x, y:

C1 : x(x + a)(x + b) + y(y + a)(y + b) − T (T + a)(T + b) = 0.

By the method described in [4, p. 477], using Magma [3], C1 is birationally equivalent to the
elliptic curve

E1 : Y 2 = X3 − 432(a2 − ab + b2)2X − 314928T 6 − 629856(a + b)T 5

− 314928(a2 + 4ab + b2)T 4 + 23328(a + b)(4a2 − 37ab + 4b2)T 3

+ 1164(8a4 − 4a3b − 51a2b2 − 4ab3 + 8b4)T 2 + 46656ab(2a − b)(a − 2b)

× (a + b)T − 1728(a2 − 4ab + b2)(a2 + 2ab − 2b2)(2a2 − 2ab − b2).
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The map ϕ1 : C1 → E1 is

X = 12(3(a2 − ab + b2)(x + y) + 27T (T + a)(T + b) − 2(a + b)(a2 − 4ab + b2))

2a + 2b + 3x + 3y
,

Y = 108(3T + 2a − b)(3T + 2a + 2b)(3T − a + 2b)(x − y)

2a + 2b + 3x + 3y
,

and its inverse map ϕ−1
1 : E1 → C1 is

x = −6(a + b)X + 972T (T + a)(T + b) − 72(a + b)(a2 − 4ab + b2) + Y

18(X − 12a2 + 12ab − 12b2)
,

y = −6(a + b)X + 972T (T + a)(T + b) − 72(a + b)(a2 − 4ab + b2) − Y

18(X − 12a2 + 12ab − 12b2)
.

The discriminant of E1 is nonzero as an element of Q(T ), then E1 is smooth.
Note that the point (x, y) = (0, T ) lies on C1, by the map ϕ1, the corresponding point on

E1 is

W = (108T 2 + 36(a + b)T − 12a2 + 48ab − 12b2, −108(3T − b + 2a)(3T + 2b − a)T ).

By the group law, we have

[2]W =
(
12(9T 4 + 12(a + b)T 3 + (5a2 + 16ab + 5b2)T 2 + 6ab(a + b)T + 3a2b2)/T 2,

108(9T 6 + 21(a + b)T 5 + (16a2 + 41ab + 16b2)T 4

+ 2(a + b)(2a2 + 13ab + 2b2)T 3 + 2ab(4a2 + 11ab + 4b2)T 2

+ 6a2b2(a + b)T + 2a3b3)/T 3
)

.

An easy computation reveals that the remainder of the division of the numerator by the
denominator of the X -th coordinate of [2]W with respect to T is equal to

(72a2b + 72ab2)T + 36a2b2

and thus is nonzero as an element ofQ(T ) provided ab �= 0. By a generalization of Nagell–
Lutz theorem (see [5, p.268]), [2]W is of infinite order on E1, then there are infinitely many
Q(T )-rational points on E1.

For m = 2, 3, . . . , compute the points [m]W on E1, next calculate the corresponding
point ϕ−1

1 ([m]W ) = (xm, ym) on C1. Then we get infinitely many Q(T )-rational solutions
(x, y) of (2.6).

The second one is

z(z + a)(z + b) = u(u + a)(u + b) − v(v + a)(v + b). (2.7)

Take z = T , and consider (2.7) as a cubic curve with variables u, v:

C2 : u(u + a)(u + b) − v(v + a)(v + b) − T (T + a)(T + b) = 0.
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As (2.6), C2 is birationally equivalent with the elliptic curve

E2 : V 2 = U 3 − 432(a2 − ab + b2)2U − 314928T 6 − 629856(a + b)T 5

− 314928(a2 + 4ab + b2)T 4 − 629856ab(a + b)T 3 − 314928a2b2T 2

+ 3456(a2 − ab + b2)3.

The map ϕ2 : C2 → E2 is

U = 12((a2 − ab + b2)(u − v) + 9T (T + a)(T + b))

u − v
,

V = 324T (T + a)(T + b)(2a + 2b + 3u + 3v)

u − v
,

and its inverse map ϕ−1
2 : E2 → C2 is

u = −6(a + b)U + V + 72(a3 + b3) + 972T (T + a)(T + b)

18(U − 12a2 + 12ab − 12b2)
,

v = −6(a + b)U + V + 72(a3 + b3) − 972T (T + a)(T + b)

18(U − 12a2 + 12ab − 12b2)
.

The discriminant of E2 is nonzero as an element of Q(T ), then E2 is smooth.
It is easy to see that the point (u, v) = (T , 0) lies onC2, by the map ϕ2, the corresponding

point on E2 is

W ′ = (108T 2 + 108(a + b)T + 12a2 + 96ab + 12b2,

324(T + a)(T + b)(3T + 2a + 2b)).

By the group law, we get

[2]W ′ =
(
12(81T 4 + 108(a + b)T 3 + (45a2 + 144ab + 45b2)T 2 + (12a3 + 54a2b

+ 54ab2 + 12b3)T + 4a4 + 4a3b + 27a2b2 + 4ab3 + 4b4)/(3T + 2a + 2b)2,

− 324(81T 6 + 135(a + b)T 5 + (54a2 + 189ab + 54b2)T 4 − (12a3 − 18a2b

− 18ab2 + 12b3)T 3 − (8a4 + 68a3b + 66a2b2 + 68ab3 + 8b4)T 2 − 6ab

× (a + b)(4a2 + 5ab + 4b2)T − 6a2b2(2a2 + ab + 2b2))/(3T + 2a + 2b)3
)

.

Using the same method as above, there are infinitely manyQ(T )-rational solutions (u, v)

of (2.7).
The third one is

z(z + a)(z + b) = p(p + a)(p + b)q(q + a)(q + b). (2.8)

Put z = T , q(q + a)(q + b) = Q and consider (2.8) as a cubic curve with variables T , p:

C3 : T (T + a)(T + b) − Qp(p + a)(p + b) = 0.

As (2.6), C3 is birationally equivalent to the elliptic curve

E3 : Y 2 = X3 − 432(a2 − ab + b2)2Q2X + 432Q2(27a2b2(a − b)2Q2

+ 2(2a − b)2(a − 2b)2(a + b)2Q + 27a2b2(a − b)2).
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Because themap ϕ3 : C3 → E3 is complicated, we omit it. The discriminant of E3 is nonzero
as an element of Q(Q), then E3 is smooth.

Note that the point (T , p) = (−a,−a) lies onC3, by the map ϕ3, the corresponding point
on E3 is

W ′′ = (12(a2 + 2ab − 2b2)Q, −108ab(a − b)Q(Q + 1)).

By the group law, we get

[2]W ′′ =
(

− 12Q(2a2(a2 + 2ab − 2b2)Q2 − (8a4 + 4a3b − a2b2 − 6ab3 + 3b4)Q

+ 2a2(a2 + 2ab − 2b2))/((Q + 1)2a2),

108Q(a4b(a − b)Q4 − 2a2(2a4 + 3a3b − a2b2 − 4ab3 + 2b4)Q3

+ 2(a2 + ab − b2)(4a4 + a3b − 2ab3 + b4)Q2 − 2a2(2a4 + 3a3b − a2b2

− 4ab3 + 2b4)Q + a4b(a − b))/((Q + 1)3a3)

)
.

Using the same method as above, we have infinitely manyQ(Q)-rational solutions (T , p)
of (2.8).

The last one is

z(z + a)(z + b) = r(r + a)(r + b)

s(s + a)(s + b)
. (2.9)

Let z = T , and put t = T (T + a)(T + b). By (2.8), there are infinitely many Q(t)-rational
solutions (r , s) of (2.9). This completes the proof of Theorem 1.4. 	


3 Some related questions

In 1986, Hirose [10] conjectured that for n �= 4 if (n − 2)Pn
k − (n − 4) = 2Pn

l , then
Pn
Pn
k

= Pn
k P

n
l can be expressed as the sum and difference of two other n-gonal numbers. It

is difficult to prove it. Following this idea, for n = 12, we find an example:

P12
215666848 = P12

33841736 + P12
212995132

= P12
2907011822107606 − P12

2907011822107598

= P12
6568P

12
14686.

For general n-gonal numbers, the following question is still open.

Question 3.1 Are there infinitely many n-gonal numbers, except n = 3, 4, 5, 6, 8, which at
the same time can be written as the sum, difference, and product of other n-gonal numbers?

In Theorem 1.1, we give infinitely many quadratic polynomials f (X) ∈ Q[X ] such that
Diophantine system (1.1) has infinitely many integer solutions, but it seems difficult to solve
the following question.

Question 3.2 Does there exist a polynomial f (X) ∈ Q[X ] with deg f ≥ 3 such that Dio-
phantine system (1.1) or (1.2) has infinitely many integer solutions?

For polynomials f (X) ∈ Q[X ] with deg f ≥ 4, we have

Question 3.3 Does there exist a polynomial f (X) ∈ Q[X ] with deg f ≥ 4 such that Dio-
phantine system (1.1) or (1.2) has a nontrivial rational solution?
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