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Abstract We solve the equation of the title for q = 3 and, partially, for q = 2. These are
the only prime values of q for which there exist integer solutions. Our arguments are based
upon off-diagonal Padé approximation to the binomial function.
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1 Introduction

Polynomial–exponential equation arise naturally (and, at times, somewhat unnaturally) in
a wide variety of mathematical settings. The rather curious equation of the title has been
considered by a variety of authors (see e.g [3,6,7,12]) as an example of perhaps the simplest
class of polynomials–exponential Diophantine equations whose solutions are in some sense
classifiable via the Subspace Theorem of Wolfgang Schmidt, but not, apparently, by simpler
means. Recent work [4,8] solving equations of the shape

1 + Aa + Bb = yq (1.1)

via local methods, appears unable to treat the equation of the title (indeed, the techniques of
[4] and [8] both require that A �≡ B (mod 2)). As far as we are aware, the title equation is
the only case of (1.1) with max{A, B} ≤ 6 that remains unsolved. Regrettably, this paper is
unable to completely rectify this fault.

Strong partial results are already available in the literature. Indeed, a very special case of
a theorem of Corvaja and Zannier [5] (based upon the aforementioned Subspace Theorem)
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388 M. A. Bennett

implies that, for fixed exponent q , the title equation has at most finitely many solutions.
Further, work of the author with Bugeaud and Mignotte (Theorem 3 of [3]) implies that the
equation of the title has no solutions unless we have q ∈ {2, 3, 6}. This latter result depends
fundamentally upon bounds for linear forms in 2-adic and complex logarithms. In the paper
at hand, wewill appeal to explicit off-diagonal Padé approximations to the function (1+z)1/q

to (partially) treat these remaining cases. We prove the following.

Theorem 1.1 The equation
1 + 2a + 6b = y2 (1.2)

has only the solutions (a, b, y) = (1, 1, 3) and (3, 3, 15) in nonnegative integers with a ≤ b.
The equation

1 + 2a + 6b = y3 (1.3)

has only the solutions (a, b, y) = (0, 1, 2) and (9, 3, 9) in nonnegative integers.

This resolves a problem of Luca [9] (corresponding to the special case of Eq. (1.2) with
a = b). We note that the only other known solutions to Eq. (1.2) (in the remaining case
a > b) are with (a, b, y) = (1, 0, 2) and (9, 3, 27). We strongly suspect that they are the
only ones.

We will actually prove something somewhat stronger than Theorem 1.1 (in the case of
Eq. (1.2).

Proposition 1.2 If there exist nonnegative integers a, b and y satisfying (1.2), then either
(a, b, y) = (1, 0, 2), (1, 1, 3) or (3, 3, 15), or a and b are positive and we have

a/b ∈ (1.349, 4.250) ∪ (6.166, 9.943).

Again, it is likely that this last condition can be replaced by (a, b, y) = (9, 3, 27).

2 The square case: Proposition 1.2

In this section, we will restrict our attention to (1.2). If b = 0 in this equation, it is straight-
forward to show that a = 1, corresponding to (a, b, y) = (1, 0, 2). Similarly, there are no
solutions with a = 0. If b = 1, then we have a solution (a, b, y) = (1, 1, 3) and, modulo
4, no others. For b ≥ 2, we find that, modulo 9, a ≡ 3 (mod 6), whereby, modulo 7, b is
also odd. We will therefore suppose, for the remainder of this section, that a and b are odd
integers (with 3 | a) and min{a, b} ≥ 3.

Our starting point will be some “off-the-shelf” results from explicit Diophantine approx-
imation (though we will have need of more specialized ones later). From Corollary 1.7 of
[1], we have, for a and b odd, that

∣
∣y2 − 2a

∣
∣ > 20.26a and

∣
∣
∣y2 − 6b

∣
∣
∣ > 60.27b, (2.1)

unless, in the first case, (y, a) = (±3, 3) or (±181, 15). A short calculation thus allows us
to conclude that either (a, b) = (3, 3) or (9, 3), or that min{a, b} > 10, whereby, from (2.1),

b <
2

0.54

log (1 + 2a)

log 6
< 1.433 a and a <

2

0.52

log
(

1 + 6b
)

log 2
< 9.943 b. (2.2)

We therefore have that
a/b ∈ (0.697, 9.943) . (2.3)
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The polynomial–exponential equation 1 + 2a + 6b = yq 389

To sharpen this conclusion, we will begin by supposing that a ≤ b, whereby wemay write
y = (−1)δ + k · 2a−1, for k an integer and δ ∈ {0, 1}. It follows that

(−1)δk + k2 · 2a−2 = 1 + 2b−a3b.

Since b < 1.433a and a > 10, we have that b − a < a − 2 and so

3b − k2 · 22a−b−2 = 3b − 2
(

k · 2a− b+3
2

)2 = (−1)δk − 1

2b−a

is an integer. We note that

k ≤ y + 1

2a−1 <
6b/2 + 2

2a−1 ,

whence ∣
∣
∣
∣
3b − 2

(

k · 2a− b+3
2

)2
∣
∣
∣
∣
<

6b/2 + 3

2b−1 < 3 · (3/2)b/2. (2.4)

If, on the other hand, we have a > b, then we may write

y = (−1)δ + k · 2b−1,

for k ∈ N and δ ∈ {0, 1}, and so
(−1)δk + k2 · 2b−2 = 2a−b + 3b (2.5)

and

3b − 2
(

k · 2 b−3
2

)2 = (−1)δk − 2a−b. (2.6)

If we suppose further that 2a ≤ 6b/2, then y < 1 + 6b/2 and so

k ≤ y + 1

2b−1 <
2 + 6b/2

2b−1 ,

whereby
∣
∣
∣
∣
3b − 2

(

k · 2 b−3
2

)2
∣
∣
∣
∣
<

2 + 6b/2

2b−1 + (3/2)b/2 < 4 · (3/2)b/2. (2.7)

Combining (2.4) and (2.7), it follows that, in all cases where 2a ≤ 6b/2, we have
∣
∣
∣3b − 2T 2

∣
∣
∣ < 4 · (3/2)b/2, (2.8)

for T an integer (and b odd). If, however, 6b/2 < 2a < 6b, we have that y ≤ √
2 6b/2 and so,

from (2.6) and the fact that b > 10,
∣
∣
∣
∣
3b − 2

(

k · 2 b−3
2

)2
∣
∣
∣
∣
< 3 · (3/2)b/2 + 2a−b. (2.9)

Our immediate goal will be to show that inequality (2.8) is never satisfied, at least provided
b ≥ 8, and that inequality (2.9) cannot hold for “small” values of a. We note that, from a
result of Ridout [11], given ε > 0, we have, writing b = 2b0 + 1, that

∣
∣
∣
∣

√

3/2 − T

3b0

∣
∣
∣
∣
	ε 3−(1+ε)b0

and hence there exists a constant c(ε) > 0 such that
∣
∣
∣3b − 2T 2

∣
∣
∣ > c(ε) 3(1−ε)b/2, (2.10)
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390 M. A. Bennett

for b odd and T ∈ Z. In particular, there are at most finitely many solutions to (2.8). For
our purposes, however, we require an effective, explicit lower bound (of necessity, somewhat
weaker than (2.10). We prove the following.

Proposition 2.1 If b and T are nonnegative integers, with b ≥ 7 odd, then
∣
∣
∣3b − 2T 2

∣
∣
∣ > 1.274b.

Proof To derive this result, let us begin by defining, for n1 and n2 nonnegative integers,
polynomials in Q[z]

Pn1,n2(z) =
n1∑

k=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)

zk (2.11)

and

Qn1,n2(z) =
n2∑

k=0

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)

zk . (2.12)

These are, up to scaling, the [n1, n2]-Padé approximants to (1+ z)1/2 and satisfy the relation

Pn1,n2(z) − (1 + z)1/2 Qn1,n2(z) = zn1+n2+1 En1,n2(z), (2.13)

where

En1,n2(z) = (−1)n2 �(n2 + (q + 1)/q)

�(−n1 + 1/q)�(n1 + n2 + 2)
F(n1 + (q − 1)/q, n2 + 1, n1 + n2 + 2,−z),

and F is the hypergeometric function

F(a, b, c,−z) = 1 − a · b
1 · c z + a · (a + 1) · b · (b + 1)

1 · 2 · c · (c + 1)
z2 − · · · .

For our purposes, it is enough to note the following, combining Lemmata 3.1 and 4.1 of [1]:

Lemma 2.2 Suppose that z is a real number with |z| ≤ 1/2 and that n1 and n2 are positive
integers and α ≥ 3/2 a real number satisfying

0 ≤ αn1 − n2 < 2(α − 1). (2.14)

Define

r(α, z) = − 1

2z

(

(α + 1) + (α − 1)z −
√

((α + 1) + (α − 1)z)2 + 4z

)

and

Fα,z = (1 + zr(α, z))α

r(α, z) (1 − r(α, z))α
.

Then we have
∣
∣Pn1,n2(z)

∣
∣ < 2(α + 1)

(

Fα,z
)n1 (2.15)

and
∣
∣Pn1,n2(z) − (1 + z)1/2 Qn1,n2(z)

∣
∣ < (α + 1)2 |z|3−2α

(

|z|−(α+1) Fα,z

)−n1
. (2.16)
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The polynomial–exponential equation 1 + 2a + 6b = yq 391

Continuing with the proof of Proposition 2.1, let us write, given a nonzero integer s,
ν2(s) for the largest power of 2 dividing s. If s and t are nonzero integers, define ν2(s/t) =
ν2(s) − ν2(t). Then we have, given an integer n and a nonnegative integer k,

ν2

((
n ± 1/2

k

))

= −k −
∞
∑

j=1

[
k

2 j

]

, (2.17)

so that, in particular, 22k
(n±1/2

k

)

is an integer. If we substitute z = −1/243 into (2.13) (taking
advantage of the identity 35 − 1 = 2 · 112) and suppose that n2 > n1, then, multiplying by
22n2 · 35n2+2, the left hand side of (2.13) becomes

� = 22(n2−n1)35(n2−n1)+2Pn1,n2 −
√

2

3
· 11 Qn1.n2 , (2.18)

where

Pn1,n2 = 22n1 35n1 Pn1,n2

( −1

243

)

and

Qn1.n2 = 22n2 35n2 Qn1,n2

( −1

243

)

are integers. Let us, for future use, define Gn1,n2 = gcd(Pn1,n2 , Qn1,n2). It is important for
us (and somewhat nontrivial) that Gn1,n2 grows exponentially in the parameters n1 and n2.
Indeed,Gn1,n2 is divisible by all primes in certain intervals with lengths exceeding a constant
multiple of min{n1, n2} (see e.g. the proof of Proposition 5.2 of [1]). By the Prime Number
Theorem, this quantity is therefore at least exponentially large in min{n1, n2}.

Next, suppose that b is an odd, positive integer, say b = 2b0 + 1, and that T is an integer.
Set

ϒ = √

2/3 T − 3b0 .

We will begin by assuming that b ≥ 307,000. Choose positive integers n1 and n2 such that

n1 =
[
b

55

]

+ 1 and n2 =
[
13n1
2

]

,

where by [x]wemean the greatest integer not exceeding a real number x (so that, in particular,
n1 ≥ 5582). Then

5(n2 − n1) + 2 ≥ 55n1 − 1

2
≥ b

2

and hence 5(n2 − n1) + 2 ≥ b0. We may also readily observe that n1 and n2 satisfy (2.14)
with α = 6.5. We thus have

11 Qn1,n2ϒ + T� = 3b0
(

22(n2−n1)35(n2−n1)+2−b0 Pn1,n2T − 11 Qn1,n2

)

. (2.19)

The right hand side of this is an integer multiple of 3b0Gn1,n2 and is, in fact, nonzero. To see
this last point, observe that, from (2.17),

ν2

(

22n2
(
n1 − 1/2

k

))

= 2n2 − k −
∞
∑

j=1

[
k

2 j

]

,
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392 M. A. Bennett

for each 0 ≤ k ≤ n2, and, in particular, that

ν2

(

22n2
(
n1 − 1/2

k

))

≥ n2 + 1 −
∞
∑

j=1

[n2
2 j

]

,

for each k with 0 ≤ k ≤ n2 − 1, while

ν2

(

22n2
(
n1 − 1/2

n2

))

= n2 −
∞
∑

j=1

[n2
2 j

]

.

It follows from (2.12) that

ν2(Qn1,n2) = n2 −
∞
∑

j=1

[n2
2 j

]

≤ log n2
log 2

and hence, since this is strictly smaller than 2(n2 − n1),

ν2
(

11 Qn1,n2ϒ + T�
) = ν2(Qn1,n2),

whereby 11 Qn1,n2ϒ + T� �= 0. We thus have
∣
∣11Qn1,n2ϒ + T�

∣
∣ ≥ 3b0 Gn1,n2 . (2.20)

On the other hand, if we suppose that
∣
∣
∣3b − 2T 2

∣
∣
∣ ≤ 3b/2,

say, then, 3b0 < T < 2 · 3b0 and so, from Lemma 2.2,

|T �| < 22n2−1 · 52 · 3b0+5n2+54−37.5n1 F−n1
6.5,−1/243,

whence, since n2 ≤ 13n1+1
2 ,

|T �| < 213n1 · 52 · 3b0+56.5−5n1 F−n1
6.5,−1/243.

From F6.5,−1/243 = 18.943966 . . ., it follows that

|T �| < 52 · 3b0+56.5 1.779561n1 . (2.21)

On the other hand, appealing to Proposition 5.2 of [1], we have that

Gn1,n2 ≥ e−19.408 1.807n1

and so, since n1 ≥ 5582,

|T �| <
1

2
3b0 Gn1,n2 . (2.22)

We thus have, from (2.20), that

∣
∣Qn1,n2ϒ

∣
∣ ≥ 1

22
3b0 Gn1,n2 ≥ 1

22
e−19.408 1.807n1 3b0 . (2.23)

From (2.21) and the fact that T > 3b0 , we have

|�| < 52 · 356.5 1.779561n1
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The polynomial–exponential equation 1 + 2a + 6b = yq 393

and so, since
√

2

3
· 11 ∣

∣Qn1.n2

∣
∣ ≤ 22(n2−n1)35(n2−n1)+2

∣
∣Pn1,n2

∣
∣ + |�| ,

applying Lemma 2.2,
∣
∣Qn1.n2

∣
∣ ≤ e63.1 · 1.779561n1 + 469 · e47.6573n1 < 470 · e47.6573n1 .

With (2.23), this implies that

|ϒ | > e−28.7 e−47.066n1 3b0 .

Since n1 < b
55 + 1, we thus have

|ϒ | > e−76.32 1.35858−b.

Now we write
∣
∣
∣3b − 2T 2

∣
∣
∣ = 3|ϒ |

(√

2/3 T + 3b0
)

,

so that
∣
∣
∣3b − 2T 2

∣
∣
∣ >

(√
3 + √

2
)

3b/2 e−76.32 1.35858−b,

i.e.
∣
∣
∣3b − 2T 2

∣
∣
∣ > e−75.18 1.2748979b > 1.274b,

where the last inequality is a consequence of the fact that b ≥ 307000.
To check the desired inequality for odd values of b with 7 ≤ b < 307000 is a routine

matter; one can simply verify it by brute force for small values of b and otherwise search
for long strings of zeros or twos in the ternary expansion of

√
3/2 (the reader is directed

to [1], in particular to Lemma 9.1 of [1] and the remarks following it, for details of such a
computation). The fact that we find none completes the proof of Proposition 2.1. ��

Applying Proposition 2.1 to (2.7), it follows that b ≤ 35; we find no new solutions to
(1.2) with 10 < b ≤ 35 and 2a ≤ 6b/2. Assuming next that 6b/2 < 2a < 6b, if we suppose
further that a ≤ 1.349b, then, from Proposition 2.1 and inequality (2.4),

3 · (3/2)b/2 + 20.349b > 1.274b

and so b ≤ 94. Again, a short check confirms the absence of new solutions to (1.2) and hence
that a/b > 1.349. With (2.3), we thus have

a/b ∈ (1.349, 9.943) . (2.24)

To complete the proof of Proposition 1.2, it remains to show that there are no solutions
to Eq. (1.2) with a/b ∈ [4.250, 6.166] and min{a, b} > 10. Suppose that we have such a

solution. Then 2a > 1000 · 6b, whereby k < 1.1 · 2 a−2b
2 and we have, from (2.5),

∣
∣
∣2a−2b+2 − k2

∣
∣
∣ =

∣
∣(−1)δk − 3b

∣
∣

2b−2 < 9 · max{2 a
2 −2b, (3/2)b}.

If 2
a
2 −2b > (3/2)b, then (2.1) implies that

9 · 2 a
2 −2b > 20.26(a−2b+2),
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394 M. A. Bennett

whence

2 log 3 + 0.24 a log 2 > 0.52 log 2 + 1.48 b log 2,

i.e.

a >
37

6
b − 11.05.

We thus have a > 6.166b for all b ≥ 16575, a contradiction. Once again, smaller values of
b fail to lead to new solutions. If, on the other hand, 2

a
2 −2b ≤ (3/2)b, then (2.1) yields

9 · (3/2)b > 20.26(a−2b+2),

whereby

2 log 3 + b (log(3/2) + 0.52 log 2) > 0.52 log 2 + 0.26 a log 2,

and so

a < 4.2499b + 1.84 ≤ 4.25b,

where the last inequality holds for b ≥ 18400. Another short calculation finishes the proof
of Proposition 1.2.

3 An ineffective approach to Eq. (1.2)

Before we proceed with our treatment of Eq. (1.3), we will indicate how ineffective results
from Diophantine approximation imply finiteness for Eq. (1.2) (as mentioned earlier, this
follows immediately from work of Corvaja and Zannier [5]). Such results can be used to
bound the number of solutions to (1.2), but not their size. Specifically, we will show how
such a conclusion follows from only the one-dimensional version of Schmidt’s Subspace
Theorem, which, in the strength we require, dates back to Ridout [11]. Taking Proposition
1.2 as our starting point, given a nonzero integer b0 and ε > 0, we have from [11] the
inequality

∣
∣
∣
∣

√
6 − k · 2b0

3b0

∣
∣
∣
∣
	ε 3

−
(
log(3/2)
log 3 +ε

)

b0

and hence, writing b = 2b0 + 1, the existence of a constant c(ε) > 0 such that
∣
∣
∣3b − k2 · 2b−2

∣
∣
∣ > c(ε) 3

(

1− log(3/2)
2 log 3 −ε

)

b
.

From (2.5), it follows that
∣
∣
∣2a−b − (−1)δk

∣
∣
∣ > c(ε) 3

(

1− log(3/2)
2 log 3 −ε

)

b
.

Choosing ε suitably small, this implies, with Proposition 1.2, that there are at most finitely
many solutions to (1.2) with a < 2.29b. Assuming a ≥ 2b, then, we may rewrite (2.5) as

3b − 2b−2
(

2a−2b+2 − k2
)

= (−1)δk.

Again appealing to Ridout [11], this time in the form considered by Mahler [10], we have
∣
∣
∣ 3b − 2b−2

(

2a−2b+2 − k2
)∣
∣
∣ 	ε 2(1−ε)b.
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The polynomial–exponential equation 1 + 2a + 6b = yq 395

Since k  2
a
2 −b, it follows that there are at most finitely many solutions to (1.2), with, say,

a < 3.9b.
Finally, for 3.9b ≤ a < 9.943b, we write, as in the preceding section,

∣
∣
∣2a−2b+2 − k2

∣
∣
∣ =

∣
∣(−1)δk − 3b

∣
∣

2b−2  max
{

2
a
2 −2b, (3/2)b

}

and compare this inequality to the lower bound
∣
∣
∣2a−2b+2 − k2

∣
∣
∣ 	ε max 2(1−ε)( a

2 −b)

coming from [11]. Taking, say, ε = 1/4 implies the desired inequality, with at most finitely
many exceptions.

4 The cubic case

To complete the proof of Theorem 1.1, we must treat Eq. (1.3). Let us suppose that there
exist nonnegative integers a, b and y satisfying (1.3). If b = 0, then we reach a contradiction,
modulo 4. If b = 1, then, modulo 7, we necessarily have that 3 | a, say a = 3a0, whereby

y3 − 23a0 = 7,

and so (a, b, y) = (0, 1, 2). We may thus assume that b ≥ 2 so that, modulo 32 · 7, 3 | a
(whence b is odd and 3 | y).

Suppose first that a > b, whereby

y = 1 + k · 2b,
for k an odd integer (with, necessarily, k ≡ 1 (mod 3)). It follows that

2a−b + 3b = 3k + 3k2 · 2b + k3 · 22b. (4.1)

If k = 1, we thus have

2a−b + 3b = 3 + 3 · 2b + 22b

and hence, if additionally a ≤ 3b − 1, then

22b−1 + 3b ≥ 3 + 3 · 2b + 22b

and so

3b ≥ 3 + 3 · 2b + 22b−1,

an immediate contradiction. If a = 3b,

3b−1 = 1 + 2b

whence b ≤ 3 (so that (a, b) ∈ {(6, 2), (9, 3)}). The latter of these corresponds to the solution
(a, b, y) = (9, 3, 9). If k = 1, we may therefore suppose, since 3 | a, that a ≥ 3b + 3.
Otherwise, we have k ≥ 7 so that, from (4.1), it is again easy to show that a ≥ 3b + 3. We
may thus write a = 3b + 3t for a positive integer t , whence (4.1) becomes

22b+3t + 3b = 3k + 3k2 · 2b + k3 · 22b,
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396 M. A. Bennett

i.e.

23t − k3 = 3k + 3k2 · 2b − 3b

22b
.

Since k is odd, the left-hand-side here is a nonzero integer and hence

3k2 − 3k + 1 ≤ ∣
∣23t − k3

∣
∣ ≤ 3k + 3k2 · 2b + 3b

22b
,

a contradiction unless k = 1 and b = 2 (in which case, a ≥ 8 contradicts (4.1).
It follows that we may assume that a ≤ b. If a = b, then the fact that 3 | a leads to an

immediate contradiction. We thus have a < b, so that y = 1 + k · 2a for an odd positive
integer k and we may write

1 + 2b−a3b = 3k + 3k2 · 2a + k3 · 22a . (4.2)

If b < 2a, then it follows that 2b−a | 3k − 1, so that, in particular, 3k − 1 ≥ 2b−a and hence

2b−a3b >
1

27
23b−a, i.e. 3b+3 > 22b,

whereby b ≤ 11. Since a < b < 2a, a short check reveals no solutions in this case.
It follows that b ≥ 2a. We will proceed by appealing to Diophantine consequences of

explicit lower bounds for rational approximation to 3
√
6. In particular, we will use Theorem

6.1 of [2] which implies the inequality
∣
∣A3 − 6B3

∣
∣ > max{|A|, |B|}0.65, (4.3)

valid for all nonzero integers A and B, provided (A, B) �= ±(467, 257). If b ≡ 0 (mod 3),
say b = 3b0, then

1 + 2a = y3 − 6b ≥
(

6b0 + 1
)3 − 63b0 > 3 · 62b/3,

a contradiction. We thus have b ≡ ±1 (mod 3), say b = 3b0 + 1 or b = 3b0 + 2, for b0 a
nonnegative integer. In the first case, we apply (4.3) with A = y and B = 6b0 to conclude
that

1 + 2a =
∣
∣
∣y3 − 6b

∣
∣
∣ > 60.65b0 = 60.65(b−1)/3,

while, in the latter case, we take A = 6b0+1 and B = y to find that

1 + 2a =
∣
∣
∣y3 − 6b

∣
∣
∣ >

1

6
60.65(b0+1) = 60.65(b+1)/3−1.

In either situation, we therefore have that

2b/2 ≥ 2a > 0.24 · 60.65b/3 − 1,

whereby b ≤ 34. Using that b ≥ 2a, we check quickly that no additional solutions accrue.
This concludes our proof.

It is perhaps worthwhile to observe that while inequality (4.3) is quite general (and suffi-
cient for our purposes), if we really wish to use the additional arithmetic data that either A
or B is a power of 6, then stronger inequalities may be obtained through arguments similar
to those given in [1] in the quadratic case. In particular, one may, for example, prove that

∣
∣
∣y3 − 6b

∣
∣
∣ > 60.35b,

provided the quantity on the left-hand-side is nonzero.
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