

Complete monotonicity of some entropies

Ioan Ra¸sa¹

Published online: 12 November 2016 © Akadémiai Kiadó, Budapest, Hungary 2016

Abstract It is well-known that the Shannon entropies of some parameterized probability distributions are concave functions with respect to the parameter. In this paper we consider a family of such distributions (including the binomial, Poisson, and negative binomial distributions) and investigate their Shannon, Rényi, and Tsallis entropies with respect to complete monotonicity.

Keywords Entropies · Concavity · Complete monotonicity · Inequalities

Mathematics Subject Classification 94A17 · 60E15 · 26A51

1 Introduction

Let $c \in \mathbb{R}$, $I_c := [0, -\frac{1}{c}]$ if $c < 0$, and $I_c := [0, +\infty)$ if $c \ge 0$. As usual, for $\alpha \in \mathbb{R}$ and $k \in \mathbb{N}_0$ the binomial coefficients are defined by

$$
\binom{\alpha}{k} := \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} \quad \text{if } k \in \mathbb{N}, \text{ and } \binom{\alpha}{0} := 1.
$$

Let $n > 0$ be a real number such that $n > c$ if $c \ge 0$, or $n = -c$ with some $l \in \mathbb{N}$ if $c < 0$.

For $k \in \mathbb{N}_0$ and $x \in I_c$ define

$$
p_{n,k}^{[c]}(x) := (-1)^k \binom{-\frac{n}{e}}{k} (cx)^k (1+cx)^{-\frac{n}{e}-k}, \text{ if } c \neq 0,
$$

$$
p_{n,k}^{[0]}(x) := \lim_{c \to 0} p_{n,k}^{[c]}(x) = \frac{(nx)^k}{k!} e^{-nx}.
$$

B Ioan Ra¸sa

ioan.rasa@math.utcluj.ro

¹ Department of Mathematics, Technical University of Cluj-Napoca, Memorandumului Street 28, 400114 Cluj-Napoca, Romania

Details and historical notes concerning these functions can be found in $[3,7,21]$ $[3,7,21]$ $[3,7,21]$ $[3,7,21]$ and the references therein. In particular,

$$
\frac{d}{dx}p_{n,k}^{[c]}(x) = n\left(p_{n+c,k-1}^{[c]}(x) - p_{n+c,k}^{[c]}(x)\right).
$$
\n(1.1)

Moreover,

$$
\sum_{k=0}^{\infty} p_{n,k}^{[c]}(x) = 1;
$$
\n(1.2)

$$
\sum_{k=0}^{\infty} k p_{n,k}^{[c]}(x) = nx,
$$
\n(1.3)

so that $\left(p_{n,k}^{[c]}(x) \right)_{k \geq 0}$ is a parameterized probability distribution. Its associated Shannon entropy is

$$
H_{n,c}(x) := -\sum_{k=0}^{\infty} p_{n,k}^{[c]}(x) \log p_{n,k}^{[c]}(x),
$$

while the Rényi entropy of order 2 and the Tsallis entropy of order 2 are given, respectively, by (see [\[18](#page-7-1)[,20\]](#page-7-2))

$$
R_{n,c}(x) := -\log S_{n,c}(x); \quad T_{n,c}(x) := 1 - S_{n,c}(x),
$$

where

$$
S_{n,c}(x) := \sum_{k=0}^{\infty} \left(p_{n,k}^{[c]}(x) \right)^2, \quad x \in I_c.
$$

The cases $c = -1$, $c = 0$, $c = 1$ correspond, respectively, to the binomial, Poisson, and negative binomial distributions. For other details see also [\[15](#page-7-3)[,16](#page-7-4)].

In this paper we investigate the above entropies with respect to the complete monotonicity.

2 Shannon entropy

2.1 Let's start with the case $c < 0$.

H_{n,−1} is a concave function; this is a special case of the results of [\[19](#page-7-5)]; see also [\[6](#page-6-2)[,8](#page-6-3)[,9\]](#page-6-4) and the references therein.

Here we shall determine the signs of all the derivatives of *Hn*,*c*.

Theorem 2.1 *Let* $c < 0$ *. Then, for all* $k \geq 0$ *,*

$$
H_{n,c}^{(2k+2)}(x) \le 0, \quad x \in \left(0, -\frac{1}{c}\right),\tag{2.1}
$$

$$
H_{n,c}^{(2k+1)}(x) = \begin{cases} \geq 0 & x \in (0, -\frac{1}{2c}], \\ \leq 0 & x \in [-\frac{1}{2c}, -\frac{1}{c}). \end{cases}
$$
 (2.2)

Proof We have $n = -c \cdot l$ with $l \in \mathbb{N}$. As in [\[10\]](#page-6-5), let us represent log (*l*!) by integrals:

$$
\log (l!) = \int_0^\infty \left(l - \frac{1 - e^{-ls}}{1 - e^{-s}} \right) \frac{e^{-s}}{s} ds = \int_0^1 \left(\frac{1 - (1 - t)^l}{t} - l \right) \frac{dt}{\log (1 - t)}.
$$
 (2.3)

 \circledcirc Springer

Now using [\(1.2\)](#page-1-0), [\(1.3\)](#page-1-0) and [\(2.3\)](#page-1-1) we get

$$
H_{n,c}(x) = H_{l,-1}(-cx) = -l [(-cx) \log (-cx) + (1+cx) \log (1+cx)] + \int_0^1 \frac{-t}{\log (1-t)} \frac{(1+cxt)^l + (1-t-cxt)^l - 1 - (1-t)^l}{t^2} dt.
$$

It is a matter of calculus to prove that

$$
H''_{n,c}(x) = cl\left(\frac{1}{x} - \frac{c}{1+cx}\right)
$$

+ $c^2l(l-1)\int_0^1 \frac{-t}{\log(1-t)} \left[(1+ext)^{l-2} + (1-t-cxt)^{l-2} \right] dt$,

and for $k \geq 0$

$$
H_{n,c}^{(2k+2)}(x) = cl(2k)! \left(\frac{1}{x^{2k+1}} - \left(\frac{c}{1+cx} \right)^{2k+1} \right)
$$

+ $l(l-1)...(l-2k-1)c^{2k+2}$
 $\times \int_0^1 \frac{-t}{\log(1-t)} \left[(1+cx t)^{l-2k-2} + (1-t-cxt)^{l-2k-2} \right] t^{2k} dt.$

For $0 < t < 1$ we have

$$
0 < \frac{-t}{\log\left(1 - t\right)} < 1,\tag{2.4}
$$

so that

$$
H_{n,c}^{(2k+2)}(x) \le cl(2k)! \left(\frac{1}{x^{2k+1}} - \left(\frac{c}{1+cx} \right)^{2k+1} \right)
$$

+ $l(l-1)...(l-2k-1)c^{2k+2}$

$$
\times \int_0^1 \left[(1+cxt)^{l-2k-2} + (1-t-cxt)^{l-2k-2} \right] t^{2k} dt.
$$
 (2.5)

Repeated integration by parts yields

$$
\int_0^1 (1+cxt)^{l-2k-2}t^{2k}dt \leq \frac{(2k)!}{(l-2)(l-3)\dots(l-2k-1)(cx)^{2k}} \int_0^1 (1+cxt)^{l-2}dt,
$$

and so

$$
\int_0^1 (1+cxt)^{l-2k-2} t^{2k} dt \le \frac{(2k)! \left[(1+cx)^{l-1} - 1 \right]}{(l-1)(l-2)\dots(l-2k-1)(cx)^{2k+1}}.
$$
(2.6)

Replacing *x* by $-\frac{1}{c} - x$ we obtain

$$
\int_0^1 (1 - t - \alpha x t)^{l - 2k - 2} t^{2k} dt \le \frac{(2k)! \left[1 - (-\alpha x)^{l - 1} \right]}{(l - 1)(l - 2) \dots (l - 2k - 1)(1 + \alpha x)^{2k + 1}}.
$$
(2.7)

From (2.5) , (2.6) and (2.7) it follows that

$$
H_{n,c}^{(2k+2)}(x) \le c l(2k)! \left[\frac{(1+cx)^{l-1}}{x^{2k+1}} - \frac{c^{2k+1}(-cx)^{l-1}}{(1+cx)^{2k+1}} \right] \le 0,
$$

and this proves [\(2.1\)](#page-1-2).

² Springer

It is easy to verify that $H_{n,c}^{(2k+1)}(-\frac{1}{2c}) = 0$. Since $H_{n,c}^{(2k+2)} \le 0$, it follows that $H_{n,c}^{(2k+1)}$ is decreasing, and this implies (2.2) .

2.2 Consider the case $c = 0$

 $H_{n,0}$ is the Shannon entropy of the Poisson distribution. The derivative of this function is completely monotonic: see, e.g., [\[2](#page-6-6), p. 2305]. For the sake of completeness we insert here a short proof.

Theorem 2.2 $H'_{n,0}$ is completely monotonic, i.e.,

$$
(-1)^{k} H_{n,0}^{(k+1)}(x) \ge 0, \quad k \ge 0, \quad x > 0.
$$
 (2.8)

Proof Note that $H_{n,0}(y) = H_{1,0}(ny)$; so it suffices to investigate the derivatives of $H_{1,0}(x)$. According to $[10, (2.5)]$ $[10, (2.5)]$,

$$
H_{1,0}(x) = x - x \log x + \int_0^\infty \frac{e^{-t}}{t} \left(x - \frac{1 - \exp(x(e^{-t} - 1))}{1 - e^{-t}} \right) dt
$$

= $x - x \log x - \int_0^1 \left(x - \frac{1 - e^{-sx}}{s} \right) \frac{ds}{\log(1 - s)}.$

It follows that

$$
H'_{1,0}(x) = -\log x - \int_0^1 \left(1 - e^{-sx}\right) \frac{ds}{\log\left(1 - s\right)}
$$

and for $k \geq 1$,

$$
H_{1,0}^{(k+1)}(x) = (-1)^k \left(\frac{(k-1)!}{x^k} + \int_0^1 s^k e^{-sx} \frac{ds}{\log(1-s)} \right). \tag{2.9}
$$

By using [\(2.4\)](#page-2-3) we get

$$
\int_0^1 \frac{s^k e^{-sx}}{\log(1-s)} ds \ge -\int_0^1 s^{k-1} e^{-sx} ds
$$

= $-\int_0^x \frac{t^{k-1}}{x^k} e^{-t} dt \ge -\int_0^\infty \frac{1}{x^k} t^{k-1} e^{-t} dt$
= $-\frac{(k-1)!}{x^k}$.

Combined with [\(2.9\)](#page-3-0), this proves [\(2.8\)](#page-3-1) for $k \ge 1$. In particular, we see that $H_{n,0}$ is concave and non-negative on [0, $+\infty$); it follows that $H'_{n,0} \ge 0$ and so [\(2.8\)](#page-3-1) is completely proved.

Ц

2.3 Let now *c >* **0**

Theorem 2.3 *For* $c > 0$ *,* $H'_{n,c}$ *is completely monotonic.*

Proof Since $H_{m,c}(y) = H_{\frac{m}{s},1}(cy)$, it suffices to study the derivatives of $H_{n,1}(x)$. By using [\(1.2\)](#page-1-0), [\(1.3\)](#page-1-0) and

$$
\log A = \int_0^\infty \frac{e^{-x} - e^{-Ax}}{x} dx, \quad A > 0,
$$

 \circledcirc Springer

we get

$$
H_{n,1}(x) = n((1+x)\log(1+x) - x\log x) + \int_0^\infty \frac{e^{-ns} - e^{-s}}{s(1 - e^{-s})} \left(1 - (1+x - xe^{-s})^{-n}\right) ds
$$

= $n((1+x)\log(1+x) - x\log x) + \int_0^1 \frac{1 - (1-t)^{n-1}}{t\log(1-t)} \left(1 - (1+tx)^{-n}\right) dt.$

It follows that, for $j \geq 1$,

$$
\frac{1}{n}H_{n,1}^{(j+1)}(x) = (-1)^{j-1}(j-1)!\left((x+1)^{-j} - x^{-j}\right) \n+ (-1)^{j-1}(n+1)(n+2)\dots(n+j) \n\times \int_0^1 \frac{-t}{\log(1-t)}\left[1 - (1-t)^{n-1}\right](1+xt)^{-n-j-1}t^{j-1}dt.
$$

Using again (2.4) , we get

$$
(-1)^{j-1} \frac{1}{n} H_{n,1}^{(j+1)}(x) \le (j-1)! \left((x+1)^{-j} - x^{-j} \right) + (n+1)(n+2) \dots (n+j)
$$

$$
\times \int_0^1 \left[1 - (1-t)^{n-1} \right] (1+xt)^{-n-j-1} t^{j-1} dt
$$

$$
= u(x) + v(x),
$$

where

$$
u(x) := \frac{(j-1)!}{(x+1)^j} - (n+1)(n+2)\dots(n+j)\int_0^1 t^{j-1}(1-t)^{n-1}(1+xt)^{-n-j-1}dt,
$$

$$
v(x) := (n+1)(n+2)\dots(n+j)\int_0^1 t^{j-1}(1+xt)^{-n-j-1}dt - \frac{(j-1)!}{x^j}.
$$

We shall prove that $u(x) \le 0$ and $v(x) \le 0$, $x > 0$. Let us remark that

$$
\int_0^1 t^{j-1} (1-t)^{n-1} (1+xt)^{-n-j-1} dt \ge \int_0^1 t^{j-1} (1-t)^n (1+xt)^{-n-j-1} dt, \qquad (2.10)
$$

and integration by parts yields

$$
\int_0^1 \frac{t^{j-1}(1-t)^n}{(1+xt)^{n+j+1}} dt = \frac{j-1}{(n+1)(x+1)} \int_0^1 \frac{t^{j-2}(1-t)^{n+1}}{(1+xt)^{n+j+1}} dt.
$$

Applying repeatedly this formula we obtain

$$
\int_0^1 \frac{t^{j-1}(1-t)^n}{(1+xt)^{n+j+1}} dt = \frac{(j-1)!}{(n+1)(n+2)\dots(n+j)} \frac{1}{(x+1)^j}.
$$
 (2.11)

Now [\(2.10\)](#page-4-0) and [\(2.11\)](#page-4-1) imply $u(x) \le 0$. Using again integration by parts we get

$$
\int_0^1 t^{j-1} (1+xt)^{-n-j-1} dt \le \frac{j-1}{(n+j)x} \int_0^1 t^{j-2} (1+xt)^{-n-j} dt
$$

$$
\le \cdots \le \frac{(j-1)!}{(n+1)(n+2)\dots(n+j)} \frac{1}{x^j},
$$

which shows that $v(x) \leq 0$.

² Springer

We conclude that

$$
(-1)^{j-1}H_{n,1}^{(j+1)}(x) \le 0, \quad j \ge 1, x > 0. \tag{2.12}
$$

In particular, (2.12) shows that $H_{n,1}$ is concave on $[0, +\infty)$; it is also non-negative, which means that $H'_{n,1} \geq 0$. Combined with [\(2.12\)](#page-5-0), this shows that $H'_{n,1}$ is completely monotonic, and the proof is finished. \Box

Remark 2.4 [\(2.11\)](#page-4-1) can be obtained alternatively by using the change of variables $y = (1$ t / $(1 + xt)$ and the properties of the Beta function. An alternative proof of the inequality $v(x)$ < 0 follows from

$$
\int_0^1 t^{j-1} (1+xt)^{-n-j-1} dt \le \frac{1}{x^{j-1}} \int_0^\infty \frac{(xt)^{j-1}}{(1+xt)^{n+j+1}} dt
$$

= $\frac{1}{x^j} \int_0^\infty \frac{s^{j-1}}{(1+s)^{j+n+1}} ds = \frac{1}{x^j} B(j, n+1) = \frac{1}{x^j} \frac{(j-1)!n!}{(n+j)!}.$

Corollary 2.5 *The following inequalities are valid for* $x > 0$ *and* $c \ge 0$ *:*

$$
\log \frac{x}{cx+1} \le \sum_{k=0}^{\infty} p_{n+c,k}^{[c]}(x) \log \frac{k+1}{ck+n} \le \log \frac{nx+1}{ncx+n}.
$$
 (2.13)

In particular, for $c = 0$ *and* $n = 1$ *,*

$$
\log x \le \sum_{k=0}^{\infty} e^{-x} \frac{x^k}{k!} \log (k+1) \le \log (x+1).
$$

Proof We have seen that $H'_{n,c}(x) \geq 0$. An application of [\(1.1\)](#page-1-3) yields

$$
H'_{n,c}(x) = n \left(\log \frac{1+cx}{x} + \sum_{k=0}^{\infty} p_{n+c,k}^{[c]}(x) \log \frac{k+1}{n+ck} \right).
$$

This proves the first inequality in [\(2.13\)](#page-5-1); the second is a consequence of Jensen's inequality applied to the concave function $\log t$.

3 Rényi entropy and Tsallis entropy

The following conjecture was formulated in [\[13](#page-6-7)]:

Conjecture 3.1 *Sn*,−¹ *is convex on* [0, 1]*.*

Th. Neuschel [\[11](#page-6-8)] proved that $S_{n,-1}$ is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$. The conjecture and Neuschel's result can also be found in [\[5\]](#page-6-9).

A proof of the conjecture was given by G. Nikolov [\[12\]](#page-6-10), who related it to some new inequalities involving Legendre polynomials. Another proof can be found in [\[4\]](#page-6-11).

Using the important results of Elena Berdysheva [\[3\]](#page-6-0), the following extension was obtained in [\[17\]](#page-7-6):

Theorem 3.2 [\[17,](#page-7-6) Theorem 9] *For c* < 0, $S_{n,c}$ *is convex on* $[0, -\frac{1}{c}]$ *.*

A stronger conjecture was formulated in [\[14](#page-6-12)] and [\[17](#page-7-6)]:

Conjecture 3.3 *For* $c \in \mathbb{R}$ *,* $S_{n,c}$ *is logarithmically convex, i.e.,* $\log S_{n,c}$ *is convex.*

This was validated for $c \ge 0$ by U. Abel, W. Gawronski and Th. Neuschel [\[1\]](#page-6-13), who proved a stronger result:

Theorem 3.4 [\[1\]](#page-6-13) *For c* \geq 0*, the function* $S_{n,c}$ *is completely monotonic, i.e.,*

$$
(-1)^m \left(\frac{d}{dx}\right)^m S_{n,c}(x) > 0, \quad x \ge 0, m \ge 0.
$$

Consequently, for $c \geq 0$ *,* $S_{n,c}$ *is logarithmically convex, and hence convex.*

Summing up, for the Rényi entropy $R_{n,c} = -\log S_{n,c}$ and Tsallis entropy $T_{n,c} = 1 - S_{n,c}$ we have the following

Corollary 3.5 (i) Let $c \ge 0$. Then $R_{n,c}$ is increasing and concave, while $T'_{n,c}$ is completely *monotonic on* $[0, +\infty)$.

(ii) $T_{n,c}$ *is concave for all* $c \in \mathbb{R}$ *.*

Proof (i) Apply Theorem [3.4.](#page-6-14)

(ii) For $c < 0$, apply Theorem [3.2.](#page-5-2) For $c \ge 0$, Theorem [3.4](#page-6-14) shows that $S_{n,c}$ is convex, so that *Tn*,*^c* is concave.

 \Box

Remark 3.6 As far as we know, Conjecture [3.3](#page-5-3) is still open for $c < 0$, so that the concavity of $R_{n,c}$, $c < 0$, remains to be investigated.

Acknowledgements The author is grateful to the referee for valuable comments and very constructive suggestions. In particular, the elegant alternative proofs presented in Remark [2.4](#page-5-4) were kindly suggested by the referee.

References

- 1. U. Abel, W. Gawronski, Th Neuschel, Complete monotonicity and zeros of sums of squared Baskakov functions. Appl. Math. Comput. **258**, 130–137 (2015)
- 2. J.A. Adell, A. Lekuona, Y. Yu, Sharp bounds on the entropy of the Poisson Law and related quantities. IEEE Trans. Inf. Theory **56**, 2299–2306 (2010)
- 3. E. Berdysheva, Studying Baskakov–Durrmeyer operators and quasi-interpolants via special functions. J. Approx. Theory **149**, 131–150 (2007)
- 4. I. Gavrea, M. Ivan, On a conjecture concerning the sum of the squared Bernstein polynomials. Appl. Math. Comput. **241**, 70–74 (2014)
- 5. H. Gonska, I. Ra¸sa, M.-D. Rusu, Chebyshev-Grüss-type inequalities via discrete oscillations, Bull. Acad. Stiinte Repub. Mold. Mat., 1, (74), 63–89; [arXiv:1401.7908](http://arxiv.org/abs/1401.7908) (2014)
- 6. P. Harremoës, Binomial and Poisson distributions as maximum entropy distributions. IEEE Trans. Inf. Theory **47**, 2039–2041 (2001)
- 7. M. Heilmann, *Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren* (Universität Dortmund, Habilitationsschrift, 1992)
- 8. E. Hillion, Concavity of entropy along binomial convolutions. Electron. Commun. Prob. **17**, 1–9 (2012)
- 9. E. Hillion, O. Johnson, A proof of the Shepp–Olkin entropy concavity conjecture, [arXiv:1503.01570v1](http://arxiv.org/abs/1503.01570v1) (2015)
- 10. C. Knessl, Integral representations and asymptotic expansions for Shannon and Rényi entropies. Appl. Math. Lett. **11**, 69–74 (1998)
- 11. Th. Neuschel, Unpublished manuscript (2012)
- 12. G. Nikolov, Inequalities for ultraspherical polynomials. Proof of a conjecture of I. Raşa. J. Math. Anal. Appl. **418**, 852–860 (2014)
- 13. I. Rașa, Unpublished manuscripts (2012)
- 14. I. Raşa, Special functions associated with positive linear operators, [arxiv:1409.1015v2](http://arxiv.org/abs/1409.1015v2) (2014)
- 15. I. Ra¸sa, Rényi entropy and Tsallis entropy associated with positive linear operators, [arxiv:1412.4971v1](http://arxiv.org/abs/1412.4971v1) (2014)
- 16. I. Raşa, Entropies and the derivatives of some Heun functions, $arxiv:1502.05570v1$ (2015)
- 17. I. Rasa, Entropies and Heun functions associated with positive linear operators. Appl. Math. Comput. **268**, 422–431 (2015)
- 18. A. Rényi, On measures of entropy and information,*Fourth Berkeley Symposium on Mathematical Statistics and Probability* (University of California Press, Berkeley, 1961), pp. 547–561
- 19. L.A. Shepp, I. Olkin,*Entropy of the sum of independent Bernoulli random variables and of the multinomial distribution* (Proceedings of Contributions to Probability, New York, 1981)
- 20. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. **52**, 479–487 (1988)
- 21. M. Wagner, *Quasi-Interpolaten zu genuinen Baskakov–Durrmeyer–Typ Operatoren* (Shaker Verlag, Aachen, 2013)