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Abstract It is well-known that the Shannon entropies of some parameterized probability
distributions are concave functions with respect to the parameter. In this paper we consider a
family of such distributions (including the binomial, Poisson, and negative binomial distrib-
utions) and investigate their Shannon, Rényi, and Tsallis entropies with respect to complete
monotonicity.
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1 Introduction

Let c ∈ R, Ic := [
0,− 1

c

]
if c < 0, and Ic := [0,+∞) if c ≥ 0.

As usual, for α ∈ R and k ∈ N0 the binomial coefficients are defined by

(
α
k

) := α(α − 1) . . . (α − k + 1)

k! if k ∈ N, and
(
α
0

) := 1.

Let n > 0 be a real number such that n > c if c ≥ 0, or n = −cl with some l ∈ N if
c < 0.

For k ∈ N0 and x ∈ Ic define

p[c]
n,k(x) := (−1)k

(− n
c

k

)
(cx)k(1 + cx)−

n
c −k, if c �= 0,

p[0]
n,k(x) := lim

c→0
p[c]
n,k(x) = (nx)k

k! e−nx .
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Details and historical notes concerning these functions can be found in [3,7,21] and the
references therein. In particular,

d

dx
p[c]
n,k(x) = n

(
p[c]
n+c,k−1(x) − p[c]

n+c,k(x)
)

. (1.1)

Moreover,
∞∑

k=0

p[c]
n,k(x) = 1; (1.2)

∞∑

k=0

kp[c]
n,k(x) = nx, (1.3)

so that
(
p[c]
n,k(x)

)

k≥0
is a parameterized probability distribution. Its associated Shannon

entropy is

Hn,c(x) := −
∞∑

k=0

p[c]
n,k(x) log p[c]

n,k(x),

while the Rényi entropy of order 2 and the Tsallis entropy of order 2 are given, respectively,
by (see [18,20])

Rn,c(x) := − log Sn,c(x); Tn,c(x) := 1 − Sn,c(x),

where

Sn,c(x) :=
∞∑

k=0

(
p[c]
n,k(x)

)2
, x ∈ Ic.

The cases c = −1, c = 0, c = 1 correspond, respectively, to the binomial, Poisson, and
negative binomial distributions. For other details see also [15,16].

In this paper we investigate the above entropies with respect to the complete monotonicity.

2 Shannon entropy

2.1 Let’s start with the case c < 0.

Hn,−1 is a concave function; this is a special case of the results of [19]; see also [6,8,9] and
the references therein.

Here we shall determine the signs of all the derivatives of Hn,c.

Theorem 2.1 Let c < 0. Then, for all k ≥ 0,

H (2k+2)
n,c (x) ≤ 0, x ∈

(
0,−1

c

)
, (2.1)

H (2k+1)
n,c (x) =

{≥ 0 x ∈ (0,− 1
2c ],≤ 0 x ∈ [− 1

2c ,− 1
c ).

(2.2)

Proof We have n = −cl with l ∈ N. As in [10], let us represent log (l!) by integrals:

log (l!) =
∫ ∞

0

(
l − 1 − e−ls

1 − e−s

)
e−s

s
ds =

∫ 1

0

(
1 − (1 − t)l

t
− l

)
dt

log (1 − t)
. (2.3)
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Now using (1.2), (1.3) and (2.3) we get

Hn,c(x) = Hl,−1(−cx) = −l
[
(−cx) log (−cx) + (1 + cx) log (1 + cx)

]

+
∫ 1

0

−t

log (1 − t)

(1 + cxt)l + (1 − t − cxt)l − 1 − (1 − t)l

t2
dt.

It is a matter of calculus to prove that

H ′′
n,c(x) = cl

(
1

x
− c

1 + cx

)

+ c2l(l − 1)
∫ 1

0

−t

log (1 − t)

[
(1 + cxt)l−2 + (1 − t − cxt)l−2

]
dt,

and for k ≥ 0

H (2k+2)
n,c (x) = cl(2k)!

(
1

x2k+1 −
(

c

1 + cx

)2k+1
)

+ l(l − 1) . . . (l − 2k − 1)c2k+2

×
∫ 1

0

−t

log (1 − t)

[
(1 + cxt)l−2k−2 + (1 − t − cxt)l−2k−2

]
t2kdt.

For 0 < t < 1 we have

0 <
−t

log (1 − t)
< 1, (2.4)

so that

H (2k+2)
n,c (x) ≤ cl(2k)!

(
1

x2k+1 −
(

c

1 + cx

)2k+1
)

+ l(l − 1) . . . (l − 2k − 1)c2k+2

×
∫ 1

0

[
(1 + cxt)l−2k−2 + (1 − t − cxt)l−2k−2

]
t2kdt. (2.5)

Repeated integration by parts yields
∫ 1

0
(1 + cxt)l−2k−2t2kdt ≤ (2k)!

(l − 2)(l − 3) . . . (l − 2k − 1)(cx)2k

∫ 1

0
(1 + cxt)l−2dt,

and so ∫ 1

0
(1 + cxt)l−2k−2t2kdt ≤ (2k)! [(1 + cx)l−1 − 1

]

(l − 1)(l − 2) . . . (l − 2k − 1)(cx)2k+1 . (2.6)

Replacing x by − 1
c − x we obtain

∫ 1

0
(1 − t − cxt)l−2k−2t2kdt ≤ (2k)! [1 − (−cx)l−1

]

(l − 1)(l − 2) . . . (l − 2k − 1)(1 + cx)2k+1 . (2.7)

From (2.5), (2.6) and (2.7) it follows that

H (2k+2)
n,c (x) ≤ cl(2k)!

[
(1 + cx)l−1

x2k+1 − c2k+1(−cx)l−1

(1 + cx)2k+1

]
≤ 0,

and this proves (2.1).
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It is easy to verify that H (2k+1)
n,c

(− 1
2c

) = 0. Since H (2k+2)
n,c ≤ 0, it follows that H (2k+1)

n,c is
decreasing, and this implies (2.2). 	

2.2 Consider the case c = 0

Hn,0 is the Shannon entropy of the Poisson distribution. The derivative of this function is
completely monotonic: see, e.g., [2, p. 2305]. For the sake of completeness we insert here a
short proof.

Theorem 2.2 H ′
n,0 is completely monotonic, i.e.,

(−1)k H (k+1)
n,0 (x) ≥ 0, k ≥ 0, x > 0. (2.8)

Proof Note that Hn,0(y) = H1,0(ny); so it suffices to investigate the derivatives of H1,0(x).
According to [10, (2.5)],

H1,0(x) = x − x log x +
∫ ∞

0

e−t

t

(
x − 1 − exp (x(e−t − 1))

1 − e−t

)
dt

= x − x log x −
∫ 1

0

(
x − 1 − e−sx

s

)
ds

log (1 − s)
.

It follows that

H ′
1,0(x) = − log x −

∫ 1

0

(
1 − e−sx) ds

log (1 − s)

and for k ≥ 1,

H (k+1)
1,0 (x) = (−1)k

(
(k − 1)!

xk
+

∫ 1

0
ske−sx ds

log (1 − s)

)
. (2.9)

By using (2.4) we get
∫ 1

0

ske−sx

log (1 − s)
ds ≥ −

∫ 1

0
sk−1e−sxds

= −
∫ x

0

tk−1

xk
e−t dt ≥ −

∫ ∞

0

1

xk
tk−1e−t dt

= − (k − 1)!
xk

.

Combined with (2.9), this proves (2.8) for k ≥ 1. In particular, we see that Hn,0 is concave
and non-negative on [0,+∞); it follows that H ′

n,0 ≥ 0 and so (2.8) is completely proved.
	


2.3 Let now c > 0

Theorem 2.3 For c > 0, H ′
n,c is completely monotonic.

Proof Since Hm,c(y) = Hm
c ,1(cy), it suffices to study the derivatives of Hn,1(x).

By using (1.2), (1.3) and

log A =
∫ ∞

0

e−x − e−Ax

x
dx, A > 0,
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we get

Hn,1(x) = n ((1 + x) log (1 + x) − x log x) +
∫ ∞

0

e−ns − e−s

s(1 − e−s)

(
1 − (1 + x − xe−s)−n) ds

= n ((1 + x) log (1 + x) − x log x) +
∫ 1

0

1 − (1 − t)n−1

t log (1 − t)

(
1 − (1 + t x)−n) dt.

It follows that, for j ≥ 1,

1

n
H ( j+1)
n,1 (x) = (−1) j−1( j − 1)!

(
(x + 1)− j − x− j

)

+ (−1) j−1(n + 1)(n + 2) . . . (n + j)

×
∫ 1

0

−t

log (1 − t)

[
1 − (1 − t)n−1] (1 + xt)−n− j−1t j−1dt.

Using again (2.4), we get

(−1) j−1 1

n
H ( j+1)
n,1 (x) ≤ ( j − 1)!

(
(x + 1)− j − x− j

)
+ (n + 1)(n + 2) . . . (n + j)

×
∫ 1

0

[
1 − (1 − t)n−1] (1 + xt)−n− j−1t j−1dt

= u(x) + v(x),

where

u(x) := ( j − 1)!
(x + 1) j

− (n + 1)(n + 2) . . . (n + j)
∫ 1

0
t j−1(1 − t)n−1(1 + xt)−n− j−1dt,

v(x) := (n + 1)(n + 2) . . . (n + j)
∫ 1

0
t j−1(1 + xt)−n− j−1dt − ( j − 1)!

x j
.

We shall prove that u(x) ≤ 0 and v(x) ≤ 0, x > 0. Let us remark that
∫ 1

0
t j−1(1 − t)n−1(1 + xt)−n− j−1dt ≥

∫ 1

0
t j−1(1 − t)n(1 + xt)−n− j−1dt, (2.10)

and integration by parts yields
∫ 1

0

t j−1(1 − t)n

(1 + xt)n+ j+1 dt = j − 1

(n + 1)(x + 1)

∫ 1

0

t j−2(1 − t)n+1

(1 + xt)n+ j+1 dt.

Applying repeatedly this formula we obtain
∫ 1

0

t j−1(1 − t)n

(1 + xt)n+ j+1 dt = ( j − 1)!
(n + 1)(n + 2) . . . (n + j)

1

(x + 1) j
. (2.11)

Now (2.10) and (2.11) imply u(x) ≤ 0.
Using again integration by parts we get

∫ 1

0
t j−1(1 + xt)−n− j−1dt ≤ j − 1

(n + j)x

∫ 1

0
t j−2(1 + xt)−n− j dt

≤ · · · ≤ ( j − 1)!
(n + 1)(n + 2) . . . (n + j)

1

x j
,

which shows that v(x) ≤ 0.
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We conclude that
(−1) j−1H ( j+1)

n,1 (x) ≤ 0, j ≥ 1, x > 0. (2.12)

In particular, (2.12) shows that Hn,1 is concave on [0,+∞); it is also non-negative, which
means that H ′

n,1 ≥ 0. Combined with (2.12), this shows that H ′
n,1 is completely monotonic,

and the proof is finished. 	

Remark 2.4 (2.11) can be obtained alternatively by using the change of variables y = (1 −
t)/(1 + xt) and the properties of the Beta function. An alternative proof of the inequality
v(x) ≤ 0 follows from
∫ 1

0
t j−1(1 + xt)−n− j−1dt ≤ 1

x j−1

∫ ∞

0

(xt) j−1

(1 + xt)n+ j+1 dt

= 1

x j

∫ ∞

0

s j−1

(1 + s) j+n+1 ds = 1

x j
B( j, n + 1) = 1

x j

( j − 1)!n!
(n + j)! .

Corollary 2.5 The following inequalities are valid for x > 0 and c ≥ 0:

log
x

cx + 1
≤

∞∑

k=0

p[c]
n+c,k(x) log

k + 1

ck + n
≤ log

nx + 1

ncx + n
. (2.13)

In particular, for c = 0 and n = 1,

log x ≤
∞∑

k=0

e−x x
k

k! log (k + 1) ≤ log (x + 1).

Proof We have seen that H ′
n,c(x) ≥ 0. An application of (1.1) yields

H ′
n,c(x) = n

(

log
1 + cx

x
+

∞∑

k=0

p[c]
n+c,k(x) log

k + 1

n + ck

)

.

This proves the first inequality in (2.13); the second is a consequence of Jensen’s inequality
applied to the concave function log t . 	


3 Rényi entropy and Tsallis entropy

The following conjecture was formulated in [13]:

Conjecture 3.1 Sn,−1 is convex on [0, 1].
Th. Neuschel [11] proved that Sn,−1 is decreasing on

[
0, 1

2

]
and increasing on

[ 1
2 , 1

]
. The

conjecture and Neuschel’s result can also be found in [5].
A proof of the conjecture was given by G. Nikolov [12], who related it to some new

inequalities involving Legendre polynomials. Another proof can be found in [4].
Using the important results of Elena Berdysheva [3], the following extension was obtained

in [17]:

Theorem 3.2 [17, Theorem 9] For c < 0, Sn,c is convex on
[
0,− 1

c

]
.

A stronger conjecture was formulated in [14] and [17]:

Conjecture 3.3 For c ∈ R, Sn,c is logarithmically convex, i.e., log Sn,c is convex.
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This was validated for c ≥ 0 by U. Abel, W. Gawronski and Th. Neuschel [1], who proved
a stronger result:

Theorem 3.4 [1] For c ≥ 0, the function Sn,c is completely monotonic, i.e.,

(−1)m
(

d

dx

)m

Sn,c(x) > 0, x ≥ 0,m ≥ 0.

Consequently, for c ≥ 0, Sn,c is logarithmically convex, and hence convex.

Summing up, for the Rényi entropy Rn,c = − log Sn,c and Tsallis entropy Tn,c = 1− Sn,c

we have the following

Corollary 3.5 (i) Let c ≥ 0. Then Rn,c is increasing and concave, while T ′
n,c is completely

monotonic on [0,+∞).
(ii) Tn,c is concave for all c ∈ R.

Proof (i) Apply Theorem 3.4.
(ii) For c < 0, apply Theorem 3.2. For c ≥ 0, Theorem 3.4 shows that Sn,c is convex, so that

Tn,c is concave.
	


Remark 3.6 As far as we know, Conjecture 3.3 is still open for c < 0, so that the concavity
of Rn,c, c < 0, remains to be investigated.

Acknowledgements The author is grateful to the referee for valuable comments and very constructive sug-
gestions. In particular, the elegant alternative proofs presented in Remark 2.4 were kindly suggested by the
referee.
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