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Abstract Leta, b, ¢, m be positive integers such thata + b = 22 |a,2tcandm > 1.
In this paper we prove that if ¢ | m and m > 36¢3logc, then the equation (am?® 4+ 1)* +
(bm? = 1)¥ = (cm)? has only the positive integer solution (x, y, z)=(1, 1, 2).

Keywords Exponential diophantine equation - Existence of primitive divisor of Lucas and
Lehmer numbers - Application of BHV theorem

Mathematics Subject Classification 11D61

1 Introduction

In recent years, many papers investigated pure ternary exponential diophantine equations
(see [6-15]).
Leta, b, ¢, m be positive integers such that

a+b:c‘2,2|a,2fc,m>1. (1.1
In this paper we discuss the equation
(am® +1)" + (bm* —1)" = (em)*, x,y,z €N, (1.2)

In 2012, Terai [13] proved that if (a, b, ¢) = (4, 5, 3), then (1.2) has only the solution
(x, y, z) = (1, 1, 2) under some conditions. Recently, Wang et al. [17] improved that for
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(a, b, ¢) = (4, 5, 3) and 3 + m. Then (1.2) has only the solution (x, y, z) = (I, 1, 2).In
this paper we prove a general result as follows:

Theorem 1.1 If ¢ | m and m > 36¢3 log c, then (1.2) has only the solution (x, y, z) =
(1, 1, 2).

As a direct consequence we get:

Corollary 1.2 If (a, b, ¢) = (4, 5, 3) and 3 | m and m > 1068, then (1.2) has only the
solution (x, y, z) = (1, 1, 2).

Thus, combining the result of [17] and our corollary we get that (1.2) is basically solved
for (a, b, ¢) =4, 5, 3).

2 Preliminaries

For any nonnegative integer n, let F,, and L, be the n-th Fibonacci and Lucas number,
respectively.

Lemma 2.1 ([3]). The equation
F,=X* n XeN.

has only the solutions (r, X) = (1, 1), (2, 1) and (12, 12).
For any positive integer D, let h(—4 D) denote the class number of positive binary quadratic
forms of discriminant —4D.

Lemma 2.2 ([4], Theorems 11.4.3, 12.10.1 and 12.14.3]).
4

h(—4D) < ~v/Dlog (26'\/D) .
T

Let D, Dj, D;, kbe positive integers such that min {D, Dy, Dy} > 1, ged (D1, Dy) =
1, 21k and ged(D, k) = ged (D1, D2, k) =1.
Lemma 2.3 ([5], Theorems 1 and 2]). If the equation
X>4+DY?*=k% ged(X, Y)=1,Z>0, X,Y,Z€Z 2.1)
has solutions (X, Y, Z), then every solution (X, Y, Z) of (2.1) can be expressed as
Z =1Z7Zjt, t €N,
X+ ¥V/=D =i (X1 +1V=D) ki ko (1, -1},
where X1, Y1, Z are positive integers satisfying X% + DY12 = k*', ged(Xy, Y1) = 1and
h(—4D) = 0(mod Zy).
Lemma 2.4 ([5], Lemma 1]). For a fixed solution (X, Y, Z) of the equation
D\ X>+DyY? =K%, ged(X, Y)=1,Z>0, X,Y,Z < Z, (2.2)
there exists a unique positive integer / such that
l = DX+ DY, 0 <l <k,

where «, B are integers with BX —aY = 1.
The positive integer [ defined as in Lemma 2.4 is called the characteristic number of the
solution (X, Y, Z) and is denoted by < X, Y, Z >.
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Lemma 2.5 ([5], Lemma6)).If < X, Y, Z >=1, then D1X = —[Y (modk).

For a fixed positive integer [y, if (2.2) has a solution (Xo, Yo, Zo) with < Xo, Yo, Zo >=
1y, then the set of all solutions (X, Y, Z) of (2.2) with < X, Y, Z >= +ly(modk) is called
a solution class of (2.2) and is denote by S(/p).

Lemma 2.6 ([5], Theorems 1 and 2]). For any fixed solution class S(lp) of (2.2), there exists
a unique solution (X1, Y1, Z1) € S(lp) such that X; > 0,Y; > 0 and Z; < Z, where Z
runs through all solutions (X, Y, Z) € S(lp). The solution (X1, Y1, Z) is called the least
solution of S(lp). Every solution (X, Y, Z) € S(lp) can be expressed as

Z=17Zit, 21t, t €N,
t
XVDi +¥Y=D; = (X1v/Dy +)»2Y1x/—D2) g e {1 -1

Lemma 2.7 ([2], Theorem 2]). Let (X1, Yi, Z;) be the least solution of S(ly). If (2.2)
has a solution (X, Y, Z) € S(lp) satisfying X > 0 and Y = 1, then Y| = 1. Further, if
(X, Z) # (X1, Z1), then one of the following conditions is satisfied:
(i) DiX{=3G“ +1), Dy =Gk T 1), (X, Z) = (X1ID1X] —3Ds], 3Z)).
(i) DiX{ = {F343¢, D2 = 3L3,, k' = Farpe, (X, Z) = (X1|D7X{ — 10D D2 X7 +
5D§|, 5Z1), where r is a positive integer, ¢ € {1, —1}.
Let «, B be algebraic integers. If « + B and «f8 are nonzero coprime integers and % is not

aroot of unity, then (¢, B) is called a Lucas pair. Further, let A = o 4+ 8 and C = «f. Then
we have

a:%(A—i—)m/E),ﬁ:%(A—)m/E),)\e{l,—l}, 2.3)

where B = A2 — 4C. We call (A, B) the parameters of the Lucas pair («, B). Two Lucas
pairs (o1, B1) and (o2, B2) are equivalent if g—; = ’% = *1. Given a lucas pair (o, ), one
defines the corresponding sequence of Lucas numbers by
ot — ﬂn
a—p
For equivalent Lucas pairs (¢, B1) and (o2, B2), we have L, («y, f1) = =L, (x2, B2)
(n=0, 1,...). A prime p is called a primitive divisor of L, («, B)(n > 1) if

plLn(e, B), pt BLi(a, B)...Ly—1(c, B).

A Lucas pair (¢, B) suchthat L, (e, B) has no primitive divisors will be called an n-defective
Lucas pair. Further, a positive integer n is called totally non-defective if no Lucas pair is n-
defective.

Ly (e, p) = ,n=0,1,.... (2.4)

Lemma 2.8 ([1], Theorem 1.4]). If n > 30, Then n is totally non-defective.

Lemma 2.9 ([16]). Let n satisfy 4 < n < 30 and n # 6. Then, up to equivalence, all
parameters of n-defective Lucas pairs are given as follows:

() n=35 (A, B)=(1,5), (I, =7), (2, —40), (1, —11), (1, —15), (12, —76),
(12, —1364).

(i) n=7, (A, B)=(, =7), (1, —19).

(iii) n =8, (A, B) = (2, —24), (1, —7).

(iv) n =10, (A, B) = (2, —8), (5, =3), (5, —47).

v) n=12, (A, B)=(1, 5), (1, =7), (1, —11), (2, —=56), (1, —15), (1, —19).

(vi) n e {13, 18, 30}, (A, B) = (1, —7).
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3 Proof of theorem

We now assume that (x, y, z) is a solution of (1.2) with (x, y, z) # (1, 1, 2). Since c | m,
we have cm | m?, and by (1.2), we get

ged (am? + 1, em) = ged (bm? — 1, cm) = ged (am® + 1, bm* —1) = 1. (3.1)

Since m > 1 and z > 2, by (1.2), we have 0 = (cm)* = (am® + D* + (bm? — 1)) =
1 + (=1)¥(modm?) and
21y. (3.2)
Further, since z > 3, by (1.2) and (3.2), we get 0 = (cm)* = (am?®+1)* + (bm? —1)Y =
(ax + by)mz(modm3) and
(ax + by) = 0(modm). 3.3)

Notice that 2 | a, 2 { ¢ and 2 1 b by (1.1). We see from (3.2) and (3.3) that 2 { ax + by
and
2¢m. (3.4)

So we have
2tem, 2tam® +1, 2 | bm* — 1. (3.5)

We first consider the case of 2 | x. Then, by (3.2), the equation
X2 4+ (bm*> = DY? = (em)?, ged(X, V) =1, Z>0, X,Y,Z€ Z (3.6)

has the solution i
(X, Y, Z) = ((am2+ D3, Bpm? =1, z). 3.7

By (3.1) and (3.5), applying Lemma 2.3 to (3.6) and (3.7), we have

2=2Zit, 1 €N, (3.8)

x =1
(am® + 1) + (bm? 1) 7 V1 — bm? = M (X1 + 2201 —bmz)t,
o € {1, -1, (3.9)

where X1, Yj, Z; are positive integers satisfying

X1+ (bm? = 1) Y} = (em)®, ged (X1, Y1) = 1, (3.10)
h (—4(bm* — 1)) = 0(modZ,). (3.11)

If2 | 1, let
Xz + Yav/1 — bm? = (X1 Tyl —me)j. (3.12)

By Lemma 2.3, X» and Y, are integers satisfying
Zyt

X3+ (bm® = 1)Y? = (cm) = (em)?, ged (Xa, Ya) = 1. (3.13)

Substitute (3.12) into (3.9), we have (am? + 1)2 + (bm? — 1)%\/1 —bm? = M (X2 +
Y1 — bm?)? and

y—

(bm* —1)7 =211 XaY>. (3.14)
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By (3.1) and (3.13), we get gcd (X2, bm? — 1) = 1. Therefore, we see from (3.14) that
1 2 ¥l
|X2] =1, |Y2|=§(bm -7, (3.15)
Substitute (3.15) into (3.13), we get
1 2
1+Z(bm2— 1) = (em)2. (3.16)

Since z > 2, we have % > 2.By (3.2) and (3.16), we get 0 = (cm)% =1+ %(bm2 — 1) =
1-— % = %(modmz) and m? | 3, a contradiction. So we have

2¢tt. (3.17)
Let
a=X|+YV1—-bm? B=X| —-Y VI —bm? (3.18)

By (3.10) and (3.18), we have o + 8 = 2X, a — B = 2V 1 — bm?, aff = (cm)%" and
§ satisfies (cm)% (%)2 —2(X3 — (bm* — 1)Y}) () + (em)?' = 0. It implies that (o, B)
is a Lucas pair with parameters

(A, B) = (2X1, —4(bm* — DY}). (3.19)
Further, let L, (a, B) (n = 0, 1,...) be the corresponding Lucas numbers. By (2.3), (3.9)
and (3.18), we have

v—1 al — B!
bm*>* =17 =Y,

= Yi|Li(a, B)I. (3.20)

We see from (3.19) and (3.20) that the Lucas number L;(«, B) has no primitive divisors.
Therefore, by Lemmas 2.8 and 2.9, we get from (3.17) and (3.19) that

t <3. (3.21)
By (3.8), (3.11) and (3.21), we have
7 < 3h (—4(m?* - 1)). (3.22)
Applying Lemma 2.2 to (3.22), we get
12
7 < —+/bm? —1log (26\/bm2 - 1) . (3.23)
bid
Further, since b < a + b = ¢2, by (3.23), we have
12
7z < —cmlog(2ecm). (3.24)
b
On the other hand, since 2 | x, if z = 3, then (cm)? > (am? +1)* > (am?+1)? > a’>m*,
whence we get ¢ > a’m > m > 36¢> logc, a contradiction. It implies that z > 4 and

0 = (ecm)? = (am? + D* + (bm? — 1)Y = (ax + by)m?(modm®), whence we obtain
ax + by = 0(modm?) and

ax + by > m?. (3.25)
Since m > 36¢3 log ¢, by (1.2), we have
1 241 log(bm? — 1
Z xiog(am +1) , 7og( m ) > y. (3.26)
log(cm) log(cm)
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Hence, by (3.25) and (3.26), we get
’z=(a+b)z > ax + by > m>. (3.27)
The combination of (3.24) and (3.27), we have

12 4
m < —c” log(Recm). (3.28)
b4

But, since m > 36¢> log ¢, (3.28) is false. Thus, (1.2) has no solutions (x, y, z) with 2 | x.
Finally, we consider the case of 2 { x. Then, by (1.2) and (3.2), the equation
(am* +1) X* + (bm* = DY? = (em)?, ged(X, Y) =1, Z>0, X, Y, Z e Z (3.29)
has the solution

(X. Y. Z) = ((am2+ DT, bm? =17, z). (3.30)

Let! = ((am? + 1)'7, (bm? — HT, z). Since cm | m?, by Lemma 2.5, [ satisfies

am® + 1= (@m?® + )3 = —1m® = )T = (=1)'F I(modem). (3.31)
On the other hand, since (x, y, z) # (1, 1, 2), (3.29) has an other solution
X, Y, 2)#1, 1, 2). (3.32)
Letly = (1, 1, 2). Then we have
am® + 1 = —ly(modcm). (3.33)

Obviously, since z > 2 for any solution (x, y, z) of (3.29), the least solution of S(/p) is
X1, Y, Z)=(, 1, 2). (3.34)

Compare (3.31) and (3.33), we have | = +lp(modcm). It implies that the solution (3.30)
belongs to S(lp). Therefore, using Lemma 2.6, we get from (3.30) and (3.32) that

z=2t, 2¢tt,t €N,
(am® + 1) Vam? + 1 + (om* — 1)'T V1 = bm?
= M Vam? + 14 2ov/1 = bm2)!, 1, ko € {1, —1). (3.35)
By (3.35), we have

-1
y— T — . .
(bm? — 1) = Ahg (2i ’+ 1) (@m?® + 1) T ~I(1 = bm?). (3.36)
i=0

Further, since 2 | bm? — 1 and 2 t (am?> + 1)t, we see from (3.36) that y = 1 and (bm> —

1)% = 1. It implies that (3.30) is a solution of S(lp) satisfying X > 0, ¥ = 1 and
(X, Z) # (X1, Z1) = (1, 2). Therefore, by Lemma 2.7, we get either

am® +1 = (am* + DX = — ((cm)* £ 1) (3.37)

1

4
or

(em)® = (em)”! = Fae. (3.38)

When (3.37) holds, since ¢ | m, we have 1 = am? + 1 = 1 ((cm)? £ 1) = £1(modc?).

But, since ¢ > 9, it is impossible. On the other hand, since cm > 1 and 2 t cm, by Lemma
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2.1, (3.38) is false. Thus, (1.2) has only the solution (x, y, z) = (1, 1, 2) with 2 { x. the
theorem is proved.
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