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Abstract Let a, b, c, m be positive integers such that a + b = c2, 2 | a, 2 � c and m > 1.
In this paper we prove that if c | m and m > 36c3 log c, then the equation (am2 + 1)x +
(bm2 − 1)y = (cm)z has only the positive integer solution (x, y, z)=(1, 1, 2).
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1 Introduction

In recent years, many papers investigated pure ternary exponential diophantine equations
(see [6–15]).

Let a, b, c, m be positive integers such that

a + b = c2, 2 | a, 2 � c, m > 1. (1.1)

In this paper we discuss the equation
(
am2 + 1

)x + (
bm2 − 1

)y = (cm)z, x, y, z ∈ N. (1.2)

In 2012, Terai [13] proved that if (a, b, c) = (4, 5, 3), then (1.2) has only the solution
(x, y, z) = (1, 1, 2) under some conditions. Recently, Wang et al. [17] improved that for
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(a, b, c) = (4, 5, 3) and 3 � m. Then (1.2) has only the solution (x, y, z) = (1, 1, 2). In
this paper we prove a general result as follows:

Theorem 1.1 If c | m and m > 36c3 log c, then (1.2) has only the solution (x, y, z) =
(1, 1, 2).

As a direct consequence we get:

Corollary 1.2 If (a, b, c) = (4, 5, 3) and 3 | m and m > 1068, then (1.2) has only the
solution (x, y, z) = (1, 1, 2).

Thus, combining the result of [17] and our corollary we get that (1.2) is basically solved
for (a, b, c) = (4, 5, 3).

2 Preliminaries

For any nonnegative integer n, let Fn and Ln be the n-th Fibonacci and Lucas number,
respectively.

Lemma 2.1 ([3]). The equation

Fn = X2, n, X ∈ N.

has only the solutions (n, X) = (1, 1), (2, 1) and (12, 12).
For anypositive integer D, leth(−4D)denote the class number of positive binary quadratic

forms of discriminant −4D.

Lemma 2.2 ([4], Theorems 11.4.3, 12.10.1 and 12.14.3]).

h (−4D) <
4

π

√
D log

(
2e

√
D

)
.

Let D, D1, D2, k be positive integers such that min {D, D1, D2} > 1, gcd (D1, D2) =
1, 2 � k and gcd(D, k) = gcd (D1, D2, k) = 1.

Lemma 2.3 ([5], Theorems 1 and 2]). If the equation

X2 + DY 2 = kz, gcd(X, Y ) = 1, Z > 0, X, Y, Z ∈ Z (2.1)

has solutions (X, Y, Z), then every solution (X, Y, Z) of (2.1) can be expressed as

Z = Z1t, t ∈ N,

X + Y
√−D = λ1

(
X1 + λ2Y1

√−D
)t

, λ1, λ2 ∈ {1,−1} ,

where X1, Y1, Z1 are positive integers satisfying X2
1 + DY 2

1 = kz1 , gcd(X1, Y1) = 1 and
h(−4D) ≡ 0(modZ1).

Lemma 2.4 ([5], Lemma 1]). For a fixed solution (X, Y, Z) of the equation

D1X
2 + D2Y

2 = kz, gcd(X, Y ) = 1, Z > 0, X, Y, Z ∈ Z, (2.2)

there exists a unique positive integer l such that

l = D1αX + D2βY, 0 < l < k,

where α, β are integers with βX − αY = 1.
The positive integer l defined as in Lemma 2.4 is called the characteristic number of the

solution (X, Y, Z) and is denoted by < X, Y, Z >.
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Lemma 2.5 ([5], Lemma 6]). If < X, Y, Z >= l, then D1X ≡ −lY (modk).
For a fixed positive integer l0, if (2.2) has a solution (X0, Y0, Z0)with< X0, Y0, Z0 >=

l0, then the set of all solutions (X, Y, Z) of (2.2) with < X, Y, Z >≡ ±l0(mod k) is called
a solution class of (2.2) and is denote by S(l0).

Lemma 2.6 ([5], Theorems 1 and 2]). For any fixed solution class S(l0) of (2.2), there exists
a unique solution (X1, Y1, Z1) ∈ S(l0) such that X1 > 0, Y1 > 0 and Z1 ≤ Z , where Z
runs through all solutions (X, Y, Z) ∈ S(l0). The solution (X1, Y1, Z1) is called the least
solution of S(l0). Every solution (X, Y, Z) ∈ S(l0) can be expressed as

Z = Z1t, 2 � t, t ∈ N,

X
√
D1 + Y

√−D2 = λ1

(
X1

√
D1 + λ2Y1

√−D2

)t
, λ1, λ2 ∈ {1,−1}.

Lemma 2.7 ([2], Theorem 2]). Let (X1, Y1, Z1) be the least solution of S(l0). If (2.2)
has a solution (X, Y, Z) ∈ S(l0) satisfying X > 0 and Y = 1, then Y1 = 1. Further, if
(X, Z) �= (X1, Z1), then one of the following conditions is satisfied:

(i) D1X2
1 = 1

4 (k
Z1 ± 1), D2 = 1

4 (3k
Z1 ∓ 1), (X, Z) = (X1|D1X2

1 − 3D2|, 3Z1).
(ii) D1X2

1 = 1
4 F3r+3ε, D2 = 1

4 L3r , kZ1 = F3r+ε, (X, Z) = (X1|D2
1X

4
1 − 10D1D2X2

1 +
5D2

2 |, 5Z1), where r is a positive integer, ε ∈ {1,−1}.
Let α, β be algebraic integers. If α +β and αβ are nonzero coprime integers and α

β
is not

a root of unity, then (α, β) is called a Lucas pair. Further, let A = α + β and C = αβ. Then
we have

α = 1

2

(
A + λ

√
B

)
, β = 1

2

(
A − λ

√
B

)
, λ ∈ {1,−1}, (2.3)

where B = A2 − 4C . We call (A, B) the parameters of the Lucas pair (α, β). Two Lucas
pairs (α1, β1) and (α2, β2) are equivalent if

α1
α2

= β1
β2

= ±1. Given a lucas pair (α, β), one
defines the corresponding sequence of Lucas numbers by

Ln (α, β) = αn − βn

α − β
, n = 0, 1, . . . . (2.4)

For equivalent Lucas pairs (α1, β1) and (α2, β2), we have Ln(α1, β1) = ±Ln(α2, β2)

(n = 0, 1, . . .). A prime p is called a primitive divisor of Ln(α, β)(n > 1) if

p | Ln(α, β), p � BL1(α, β) . . . Ln−1(α, β).

ALucas pair (α, β) such that Ln(α, β) has no primitive divisors will be called an n-defective
Lucas pair. Further, a positive integer n is called totally non-defective if no Lucas pair is n-
defective.

Lemma 2.8 ([1], Theorem 1.4]). If n > 30, Then n is totally non-defective.

Lemma 2.9 ([16]). Let n satisfy 4 < n ≤ 30 and n �= 6. Then, up to equivalence, all
parameters of n-defective Lucas pairs are given as follows:

(i) n = 5, (A, B) = (1, 5), (1, −7), (2, −40), (1, −11), (1, −15), (12, −76),
(12, −1364).

(ii) n = 7, (A, B) = (1, −7), (1, −19).
(iii) n = 8, (A, B) = (2, −24), (1, −7).
(iv) n = 10, (A, B) = (2, −8), (5, −3), (5, −47).
(v) n = 12, (A, B) = (1, 5), (1, −7), (1, −11), (2, −56), (1, −15), (1, −19).
(vi) n ∈ {13, 18, 30}, (A, B) = (1, −7).
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3 Proof of theorem

We now assume that (x, y, z) is a solution of (1.2) with (x, y, z) �= (1, 1, 2). Since c | m,
we have cm | m2, and by (1.2), we get

gcd
(
am2 + 1, cm

) = gcd
(
bm2 − 1, cm

) = gcd
(
am2 + 1, bm2 − 1

) = 1. (3.1)

Since m > 1 and z > 2, by (1.2), we have 0 ≡ (cm)z ≡ (am2 + 1)x + (bm2 − 1)y ≡
1 + (−1)y(modm2) and

2 � y. (3.2)

Further, since z ≥ 3, by (1.2) and (3.2), we get 0 ≡ (cm)z ≡ (am2 +1)x + (bm2 −1)y ≡
(ax + by)m2(modm3) and

(ax + by) ≡ 0(modm). (3.3)

Notice that 2 | a, 2 � c and 2 � b by (1.1). We see from (3.2) and (3.3) that 2 � ax + by
and

2 � m. (3.4)

So we have
2 � cm, 2 � am2 + 1, 2 | bm2 − 1. (3.5)

We first consider the case of 2 | x . Then, by (3.2), the equation

X2 + (bm2 − 1)Y 2 = (cm)Z , gcd(X, Y ) = 1, Z > 0, X, Y, Z ∈ Z (3.6)

has the solution
(X, Y, Z) =

(
(am2 + 1)

x
2 , (bm2 − 1)

y−1
2 , z

)
. (3.7)

By (3.1) and (3.5), applying Lemma 2.3 to (3.6) and (3.7), we have

z = Z1t, t ∈ N, (3.8)
(
am2 + 1

) x
2 + (

bm2 − 1
) y−1

2
√
1 − bm2 = λ1

(
X1 + λ2Y1

√
1 − bm2

)t
,

λ1, λ2 ∈ {1,−1}, (3.9)

where X1, Y1, Z1 are positive integers satisfying

X2
1 + (

bm2 − 1
)
Y 2
1 = (cm)Z1 , gcd (X1, Y1) = 1, (3.10)

h
(−4(bm2 − 1)

) ≡ 0 (modZ1) . (3.11)

If 2 | t , let

X2 + Y2
√
1 − bm2 =

(
X1 + λ2Y1

√
1 − bm2

) t
2
. (3.12)

By Lemma 2.3, X2 and Y2 are integers satisfying

X2
2 + (

bm2 − 1
)
Y 2
2 = (cm)

Z1 t
2 = (cm)

z
2 , gcd (X2, Y2) = 1. (3.13)

Substitute (3.12) into (3.9), we have (am2 + 1)
x
2 + (bm2 − 1)

y−1
2

√
1 − bm2 = λ1(X2 +

Y2
√
1 − bm2)2 and

(
bm2 − 1

) y−1
2 = 2λ1X2Y2. (3.14)
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By (3.1) and (3.13), we get gcd
(
X2, bm2 − 1

) = 1. Therefore, we see from (3.14) that

|X2| = 1, |Y2| = 1

2
(bm2 − 1)

y−1
2 . (3.15)

Substitute (3.15) into (3.13), we get

1 + 1

4
(bm2 − 1)y = (cm)

z
2 . (3.16)

Since z > 2, we have z
2 ≥ 2. By (3.2) and (3.16), we get 0 ≡ (cm)

z
2 ≡ 1+ 1

4 (bm
2 − 1)y ≡

1 − 1
4 ≡ 3

4 (modm2) and m2 | 3, a contradiction. So we have

2 � t. (3.17)

Let
α = X1 + Y1

√
1 − bm2, β = X1 − Y1

√
1 − bm2. (3.18)

By (3.10) and (3.18), we have α + β = 2X1, α − β = 2Y1
√
1 − bm2, αβ = (cm)Z1 and

α
β
satisfies (cm)Z1( α

β
)2 − 2

(
X2
1 − (bm2 − 1)Y 2

1

)
( α
β
) + (cm)Z1 = 0. It implies that (α, β)

is a Lucas pair with parameters

(A, B) = (
2X1, −4(bm2 − 1)Y 2

1

)
. (3.19)

Further, let Ln(α, β) (n = 0, 1, . . .) be the corresponding Lucas numbers. By (2.3), (3.9)
and (3.18), we have

(bm2 − 1)
y−1
2 = Y1

∣∣∣∣
αt − β t

α − β

∣∣∣∣ = Y1|Lt (α, β)|. (3.20)

We see from (3.19) and (3.20) that the Lucas number Lt (α, β) has no primitive divisors.
Therefore, by Lemmas 2.8 and 2.9, we get from (3.17) and (3.19) that

t ≤ 3. (3.21)

By (3.8), (3.11) and (3.21), we have

z ≤ 3h
(−4(bm2 − 1)

)
. (3.22)

Applying Lemma 2.2 to (3.22), we get

z <
12

π

√
bm2 − 1 log

(
2e

√
bm2 − 1

)
. (3.23)

Further, since b < a + b = c2, by (3.23), we have

z <
12

π
cm log(2ecm). (3.24)

On the other hand, since 2 | x , if z = 3, then (cm)3 > (am2+1)x ≥ (am2+1)2 > a2m4,
whence we get c3 > a2m > m > 36c3 log c, a contradiction. It implies that z ≥ 4 and
0 ≡ (cm)z ≡ (am2 + 1)x + (bm2 − 1)y ≡ (ax + by)m2(modm4), whence we obtain
ax + by ≡ 0(modm2) and

ax + by ≥ m2. (3.25)

Since m > 36c3 log c, by (1.2), we have

z > x
log(am2 + 1)

log(cm)
> x, z > y

log(bm2 − 1)

log(cm)
> y. (3.26)
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Hence, by (3.25) and (3.26), we get

c2z = (a + b)z > ax + by ≥ m2. (3.27)

The combination of (3.24) and (3.27), we have

m <
12

π
c3 log(2ecm). (3.28)

But, since m > 36c3 log c, (3.28) is false. Thus, (1.2) has no solutions (x, y, z) with 2 | x .
Finally, we consider the case of 2 � x . Then, by (1.2) and (3.2), the equation
(
am2 + 1

)
X2 + (bm2 − 1)Y 2 = (cm)Z , gcd(X, Y ) = 1, Z > 0, X, Y, Z ∈ Z (3.29)

has the solution
(X, Y, Z) =

(
(am2 + 1)

x−1
2 , (bm2 − 1)

y−1
2 , z

)
. (3.30)

Let l = 〈(am2 + 1)
x−1
2 , (bm2 − 1)

y−1
2 , z〉. Since cm | m2, by Lemma 2.5, l satisfies

am2 + 1 ≡ (am2 + 1)
x+1
2 ≡ −l(bm2 − 1)

y−1
2 ≡ (−1)

y+1
2 l(modcm). (3.31)

On the other hand, since (x, y, z) �= (1, 1, 2), (3.29) has an other solution

(X, Y, Z) �= (1, 1, 2) . (3.32)

Let l0 = 〈1, 1, 2〉. Then we have
am2 + 1 ≡ −l0(modcm). (3.33)

Obviously, since z ≥ 2 for any solution (x, y, z) of (3.29), the least solution of S(l0) is

(X1, Y1, Z1) = (1, 1, 2) . (3.34)

Compare (3.31) and (3.33), we have l ≡ ±l0(modcm). It implies that the solution (3.30)
belongs to S(l0). Therefore, using Lemma 2.6, we get from (3.30) and (3.32) that

z = 2t, 2 � t, t ∈ N,

(am2 + 1)
x−1
2

√
am2 + 1 + (bm2 − 1)

y−1
2

√
1 − bm2

= λ1(
√
am2 + 1 + λ2

√
1 − bm2)t , λ1, λ2 ∈ {1,−1}. (3.35)

By (3.35), we have

(bm2 − 1)
y−1
2 = λ1λ2

t−1
2∑

i=0

(
t

2i + 1

)
(am2 + 1)

t−1
2 −i (1 − bm2)i . (3.36)

Further, since 2 | bm2 − 1 and 2 � (am2 + 1)t , we see from (3.36) that y = 1 and (bm2 −
1)

y−1
2 = 1. It implies that (3.30) is a solution of S(l0) satisfying X > 0, Y = 1 and

(X, Z) �= (X1, Z1) = (1, 2). Therefore, by Lemma 2.7, we get either

am2 + 1 = (am2 + 1)X2
1 = 1

4

(
(cm)2 ± 1

)
(3.37)

or
(cm)2 = (cm)Z1 = F3r+ε. (3.38)

When (3.37) holds, since c | m, we have 1 ≡ am2 + 1 ≡ 1
4

(
(cm)2 ± 1

) ≡ ± 1
4 (modc2).

But, since c2 ≥ 9, it is impossible. On the other hand, since cm > 1 and 2 � cm, by Lemma
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2.1, (3.38) is false. Thus, (1.2) has only the solution (x, y, z) = (1, 1, 2) with 2 � x . the
theorem is proved.
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