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Abstract Letm be a positive integer, and let p be a prime with p = 1 (mod 4). Then we show
that the exponential Diophantine equation Bpm? —D* + (p(p —3)m? + 1) = (pm)? has
only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. As a corollary,
we derive that the exponential Diophantine equation (15m% = D* + (10m2 + 1)Y = (5m)?
has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary
methods and Baker’s method.

Keywords Exponential Diophantine equation - Integer solution - Lower bound for linear
forms in two logarithms
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1 Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The exponential Dio-
phantine equation
a* + b’ =t (1.1)

in positive integers x, y, z has been actively studied by a number of authors. This field has a
rich history. Using elementary methods such as congruences, the quadratic reciprocity law
and the arithmetic of quadratic (or cubic) fields, we can completely solve most of Eq. (1.1)
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for small values of @, b, c. (cf. Nagell [16], Hadano [7] and Uchiyama [22].) It is known that
the number of solutions (x, y, z) is finite, and all solutions can be effectively determined by
means of Baker’s method for linear forms in logarithms.

JesSmanowicz [8] conjectured thatifa, b, c are Pythagorean numbers, i.e., positive integers
satisfying a?+b? = ¢2, then (1.1) has only the positive integer solution (x, y, z) = (2, 2, 2).
As an analogue of JeSmanowicz’ conjecture, the first author proposed thatif a, b, ¢, p, g, r are
fixed positive integers satisfying a? + b4 = ¢" with a, b, ¢, p, q,r > 2 and ged(a, b) = 1,
then (1.1) has only the positive integer solution (x, y, z) = (p, g, r) except for a handful of
triples (a, b, ¢). These conjectures have been proved to be true in many special cases. They
however, are still unsolved in general. (cf. [6,11,12,14,15,18,20]).

In the previous paper Terai [19], the first author showed that if m is a positive integer with
1 <m <20 o0rm # 3 (mod 6), then the Diophantine equation

Am? + D" + 5Gm® — 1)¥ = Bm)* (1.2)

has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary
methods and Baker’s method. Su-Li [17] proved that if m > 90 and m = 3 (mod 6), then
Eq. (1.2) has only the positive integer solution (x, y, z) = (1, 1,2) by means of a result
of Bilu—Hanrot—Voutier [3] concerning the existence of primitive prime divisors in Lucas-
numbers. Recently, Bert6k [1] has completely solved the remaining cases 20 < m < 90 and
m = 3 (mod 6) via the help of exponential congruences. (cf. Berték-Hajdu [2].) In [13] and
[21], we also showed that the Diophantine equations

m* + D + (em® = 1)¥ = (am)* with 1+ ¢ = a?,

(12m* + D* + (13m* — 1)* = (5m)*

have only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions, respec-
tively.
In this paper, we consider the exponential Diophantine equation

@Gpm® = D + (p(p = 3m* +1)” = (pm)° (1.3)
with m positive integer and p prime . Our main result is the following:

Theorem 1.1 Let m be a positive integer with m #% 0 (mod 3). Let p be a prime with
p = 1 (mod 4). Moreover, suppose that if m = 1 (mod 4), then p < 3784. Then Eq. (1.3)
has only the positive integer solution (x, y,z) = (1, 1, 2).

In particular, for p = 5, we can completely solve Eq. (1.3) without any assumption on m.
The proof is based on applying a result on linear forms in p-adic logarithms due to Bugeaud
[5] to Eq. (1.3) with m = 0 (mod 3).

Corollary 1.2 The exponential Diophantine equation
15m* = 1" + 10m?* + 1)¥ = (5m)* (1.4)

has only the positive integer solution (x, y, z) = (1, 1, 2).

2 Preliminaries

In order to obtain an upper bound for a solution y of Pillai’s equation ¢* — bY = a under
some conditions, we need a result on lower bounds for linear forms in the logarithms of two
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algebraic numbers. We will introduce here some notations. Let a1 and «» be real algebraic
numbers with |o;| > 1 and |a2| > 1. We consider the linear form

A =Dbylogay — by logay,

where b and b, are positive integers. As usual, the logarithmic height of an algebraic number
« of degree n is defined as

n

1 .
h(a) = — | log|ag| + z log max {1, |a(/)|}
n ;
j=1
where g is the leading coefficient of the minimal polynomial of « (over Z) and (a‘) <j<n
are the conjugates of «. Let A; and A, be real numbers greater than 1 with

1 il 1
log A; > max ’h(ai), | Oi(m, E] )
fori € {1, 2}, where D is the degree of the number field Q(«1, o) over Q. Define
, by by

" Dlog A, + Dlog Ay~
We choose to use a result due to Laurent [[10], Corollary 2] with m = 10 and C, = 25.2.

Proposition 2.1 (Laurent [10]) Let A be given as above, with ay > 1 and ay > 1. Suppose
that a1 and ay are multiplicatively independent. Then

10 1\
log|A| > —25.2 D* (max [log b’ +0.38, 7]) log Ay loglog As.

Next, we shall quote a result on linear forms in p-adic logarithms due to Bugeaud [5].
Here we consider the case where y; = y» = 1 in the notation from [5, p. 375].

Let p be an odd prime. Let a1 and a, be non-zero integers prime to p. Let g be the least
positive integer such that

ord,(af —1) > 1, ordp(af —1)>1,

where we denote the p-adic valuation by ord, (- ). Assume that there exists a real number E
such that

1/(p—1) < E <ordp(af —1).
We consider the integer
A= af‘ — aé’z,
where b and b, are positive integers. We let A and A; be real numbers greater than 1 with
log A; > max{log|a;|, Elogp} (i =1,2),
and we put b’ = by /log Ay + by/log A;.

Proposition 2.2 (Bugeaud [5]) With the above notation, if a| and a> are multiplicatively
independent, then we have the upper estimate

36.1
ord,(A) < E37g

(l(;g ST (max{log b" + log(E log p) + 0.4, 6E log p, 5})2 log A1 log As.
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3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.
Let (x, y, z) be a solution of (1.3). Taking (1.3) modulo p implies that (—1)* + 1 =
0 (mod p). Hence x is odd.

3.1 The case where m is even
Using a congruence method, we ca easily show that if m is even, then Eq. (1.3) has only the
positive integer solution (x, y, z) = (1, 1, 2).

Lemma 3.1 If m is even, then Eq. (1.3) has only the positive integer solution (x,y,z) =
(1,1, 2).

Proof If z < 2, then (x,y,z) = (1, 1,2) from (1.3). Hence we may suppose that z > 3.
Taking (1.3) modulo m3 implies that

—143pm?x + 1+ p(p — 3)m>y = 0 (mod m?),
SO
3px + p(p —3)y =0 (mod m),

which is impossible, since x is odd and m is even. We therefore conclude that if m is even,
then Eq. (1.3) has only the positive integer solution (x, y, z) = (1, 1, 2). ]

3.2 The case where m is odd with m % 0 (mod 3)

Lemma 3.2 Ifm is odd with m # 0 (mod 3), then x = 1.

Proof Suppose that x > 2. We show that this will lead to a contradiction. The proof is

devided into two cases: Case 1: m = 1 (mod 4), Case2: m = 3 (mod 4)

Case 1: m = 1 (mod 4). Then, taking (1.3) modulo 4 implies that 3* = 1 (mod 4), so y is even.
On the other hand, taking (1.3) modulo 3, together with our assumption m # 0 (mod 3),

implies that

(=" + (=1)Y = (pm)* # 0 (mod 3), (3.1)
which contradicts the fact that x is odd and y is even. Hence we obtain x = 1.
3pm? — 1
Case 2: m = 3 (mod 4). Then (Lz) = 1and (Lz) = -1,
p(p —3)m*+1 p(p—3)m*+1

where ( f) denotes the Jacobi symbol. Indeed,
*
( 3pm? — 1 )_(3pm2+p(p—3)m2)_( pm? )—l
p(p=3m*+1) ' pp-3m>+1 ) \p(p-3ym2+1)

Go=5ms1) = Gotrst) Go=e1)
p(p=3m2+1)  \p(p—3m>+1) \p(p—3)m?+1

3 (p(p—S)m2+1) (p(p—3)m2+1)
p m

and

= —l!

since m = 3 (mod 4) and p = 1 (mod 4). In view of these, z is even from (1.3).
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Taking (1.3) modulo 4 implies that 3¥ = (pm)* = 3* = 1 (mod 4), since z is even. Hence
y is even. Similarly, (3.1) also leads to a contradiction. We therefore obtain x = 1. O

3.3 Pillai’s equation ¢* — bY = a

From Lemma 3.2, it follows that x = 1 in (1.3), provided that m is odd with m s 0 (mod 3).
If y < 2, then we obtain y = 1 and z = 2 from (1.3). From now on, we may suppose that
y > 3. Hence our theorem is reduced to solving Pillai’s equation

¢ —b'=a (3.2)

with y > 3, where a = 3pm? —1, b= p(p —3)m*+ 1 and c = pm.
We now want to obtain a lower bound for y.

Lemma3.3 y > m* — 2.
Proof Since y > 3, Eq. (3.2) yields the following inequality:
(pm)* = 3pm® — 1+ (p(p = Hm? +1)° > (pm)*.
Hence z > 4. Taking (3.2) modulo p?m* implies that
3pm® — 141+ p(p —3)ym*> =0 (mod p*m*),
so3+ (p—3)y =0 (mod pmz). Hence we have

2 P 2 3 2
—3 = — _2,
p_3(pm ) p_3m P >m

as desired. ]

y =z

We next want to obtain an upper bound for y.
Lemma 3.4 y < 2521logec.
Proof From (3.2), we now consider the following linear form in two logarithms:
A =zloge—ylogh (>0).

Using the inequality log(1 + ¢) < ¢ for ¢ > 0, we have

ct a a
O<A:log(b—y):10g(l+ﬁ) <b—y. (3.3)
Hence we obtain
log A <loga — ylogb. (3.4)

On the other hand, we use Proposition 2.1 to obtain a lower bound for A. It follows from
Proposition 2.1 that
logA > —25.2 (max {logh’' +0.38,10})> (logh) (logc), (3.5)

y + Z
logc  logh’
We note that »¥t! > ¢?. Indeed,

where b’ =

P =b(F—a)—cF = (b -1 —ab> p(p—3)m? - p’m?
—@pm* = D)(p(p = 3Hm* + 1) > 0.
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2 1
Hence b’ < + .
logc
Put M = ] Y . Combining (3.4) and (3.5) leads to
ogc

1 2
yvlogb < loga +25.2 (max [log (ZM + 17) + 0.38, 10]) (logb) (logc),
ogc

SO
M < 1+25.2 (max {log QM + 1) +0.38, 10})?,

since logc = log(pm) > log5 > 1. We therefore obtain M < 2521. This completes the
proof of Lemma 3.4. O

We are now in a position to prove Theorem 1.1. It follows from Lemmas 3.3, 3.4 that
m? —2 < 2521 log(pm). (3.6)

We want to obtain an upper bound for p and then one for m. We first show that if m =
3 (mod 4), then p < 3784. Recall that z is even for the case m = 3 (mod 4), as seen in the
proof of Lemma 3.2. Put z = 2Z with Z positive integer. Now Eq. (3.2) can be written as

% = b =c* —b.

Theny > Z.If y = Z, then we obtain y = Z = 1. If y > Z, then we consider a “gap”
between the trivial solution (y, Z) = (1, 1) and (possibly) another solution (y, Z).
From a + b = ¢? and a + b¥ = ¢?%, consider the following two linear forms in two

logarithms:
Ag =2logc —1logh (>0), A=2Zlogc— ylogh (> 0).
Then
yAo— A =2(y—Z)logc >2logec,
SO
2 1
> —logc.
y Ao gc
2
By Lemma 3.4, we have v logc < 25121ogc. Hence
0
2 3pm? — 1 3pm?
—— < Ag =log < =10g(1+i)<£= P < P
2521 b b b p(p—3)m?+1 p(p —3)m?
3
=53

Consequently we obtain p < 3784. When m = 1 (mod 4),we could not prove that z is even
in Lemma 3.2. We therefore suppose that if m = 1 (mod 4), then p < 3784. In any case,
(3.6) yields m < 183.

From (3.3), we have the inequality
logh =z

loge y

a

< —F >
ybY logc
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1
< 5
2y?

logb
which implies that lOg <

oge Yy

. . . o
continued fraction expansion to i.
logc

. Z . . .
since y > 3. Thus — is a convergent in the simple
y

On the other hand, if Pr is the r-th such convergent, then

qdr
logh  ps 1
S0 S
loge ¢ (ar41+2)q?
. . . logb L Z  pr
where a,1 is the (r 4 1)-st partial quotient to Tosc (see e.g. Khinchin [9]). Put — = —.
ogc y qr
Note that ¢, < y. It follows, then, that
bYlogc b? logc
ary)] > —— —2> —— =2, (3.7
ay agr

Finally, we checked by Magma [4] that for each p < 3784 with p = 1 (mod 4), inequality
(3.7) does not hold for any r with g, < 25211log(pm) in the range 3 < m < 183. This
completes the proof of Theorem 1.1.

4 Proof of Corollary 1.2

Let (x, y, z) be a solution of (1.4). By Theorem 1.1, we may suppose that m = 0 (mod 3).
Recall that x is odd. Here, we apply Proposition 2.2. For this, we set p := 3, aj := 10m? +
l,ay :=1—15m?2, by := v, by :=x, and

A= (10m? + 1) — (1 — 15m>)~.

Then we may take g = 1, E = 2, A| = 10m? + 1, Ay := 15m> — 1. Hence we have

36.1
< W(max{log b +log(2log3) + 0.4, 1210g3})” log(10m? + 1) log(15m> — 1),
og

y X
here b’ := )
where log(15m2 — 1) + log(10m?2 + 1)

this leads to a contradiction. Taking (1.4) modulo m*, we find

Suppose that z > 4. We will observe that

15x + 10y = 0 (mod m?).

M

In particular, we find M := max{x, y} > m2/25. Therefore, since z > M and b’ < Togm*

we find

M 2
M <3.1 (max ’log (17) +log(21log3)+0.4, 1210g3l) log(10m>+1) log(15m>—1).
ogm
4.1
If m > 3450, then
M 2
M <3.1 (log (l—> + log(2log 3) + 0.4) log(10m? + 1) log(15m* — 1).
ogm

Since m? < 25M, the above inequality gives

M < 3.1 (log M — log(log 3450) + 1.19) log(250M + 1) log(375M — 1).
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We therefore obtain M < 105186, which contradicts the fact that M > m?> /25 > 476100.
If m < 3450, then inequality (4.1) gives

2

’% < 5391og(10m? + 1) log(15m> — 1).

This implies m < 2062. Hence all x, y and z are also bounded. It is not hard to verify by
Magma [4] that there is no (m, x, y, z) under consideration satisfying (1.4). We conclude
z < 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). This completes the proof
of Corollary 1.2.

Remark In the same way as in the proof of Corollary 1.2, we can completely solve “the
remaining case” m = 0 (mod 3) of Eq. (1.2), which is shown by Su-Li [17] and Bert6k [1].
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