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Abstract Letm be a positive integer, and let p be a primewith p ≡ 1 (mod 4).Thenwe show
that the exponential Diophantine equation (3pm2 − 1)x + (p(p − 3)m2 + 1)y = (pm)z has
only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. As a corollary,
we derive that the exponential Diophantine equation (15m2 − 1)x + (10m2 + 1)y = (5m)z

has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary
methods and Baker’s method.

Keywords Exponential Diophantine equation · Integer solution · Lower bound for linear
forms in two logarithms

Mathematics Subject Classification 11D61

1 Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The exponential Dio-
phantine equation

ax + by = cz (1.1)

in positive integers x, y, z has been actively studied by a number of authors. This field has a
rich history. Using elementary methods such as congruences, the quadratic reciprocity law
and the arithmetic of quadratic (or cubic) fields, we can completely solve most of Eq. (1.1)
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for small values of a, b, c. (cf. Nagell [16], Hadano [7] and Uchiyama [22].) It is known that
the number of solutions (x, y, z) is finite, and all solutions can be effectively determined by
means of Baker’s method for linear forms in logarithms.

Jeśmanowicz [8] conjectured that ifa, b, c are Pythagorean numbers, i.e., positive integers
satisfying a2+b2 = c2, then (1.1) has only the positive integer solution (x, y, z) = (2, 2, 2).
As an analogue of Jeśmanowicz’ conjecture, the first author proposed that if a, b, c, p, q , r are
fixed positive integers satisfying a p + bq = cr with a, b, c, p, q, r ≥ 2 and gcd(a, b) = 1,
then (1.1) has only the positive integer solution (x, y, z) = (p, q, r) except for a handful of
triples (a, b, c). These conjectures have been proved to be true in many special cases. They
however, are still unsolved in general. (cf. [6,11,12,14,15,18,20]).

In the previous paper Terai [19], the first author showed that ifm is a positive integer with
1 ≤ m ≤ 20 or m �≡ 3 (mod 6), then the Diophantine equation

(4m2 + 1)x + (5m2 − 1)y = (3m)z (1.2)

has only the positive integer solution (x, y, z) = (1, 1, 2). The proof is based on elementary
methods and Baker’s method. Su-Li [17] proved that if m ≥ 90 and m ≡ 3 (mod 6), then
Eq. (1.2) has only the positive integer solution (x, y, z) = (1, 1, 2) by means of a result
of Bilu–Hanrot–Voutier [3] concerning the existence of primitive prime divisors in Lucas-
numbers. Recently, Bertók [1] has completely solved the remaining cases 20 < m < 90 and
m ≡ 3 (mod 6) via the help of exponential congruences. (cf. Bertók-Hajdu [2].) In [13] and
[21], we also showed that the Diophantine equations

(m2 + 1)x + (cm2 − 1)y = (am)z with 1 + c = a2,

(12m2 + 1)x + (13m2 − 1)y = (5m)z

have only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions, respec-
tively.

In this paper, we consider the exponential Diophantine equation

(3pm2 − 1)x + (p(p − 3)m2 + 1)y = (pm)z (1.3)

with m positive integer and p prime . Our main result is the following:

Theorem 1.1 Let m be a positive integer with m �≡ 0 (mod 3). Let p be a prime with
p ≡ 1 (mod 4). Moreover, suppose that if m ≡ 1 (mod 4), then p < 3784. Then Eq. (1.3)
has only the positive integer solution (x, y, z) = (1, 1, 2).

In particular, for p = 5, we can completely solve Eq. (1.3) without any assumption on m.
The proof is based on applying a result on linear forms in p-adic logarithms due to Bugeaud
[5] to Eq. (1.3) with m ≡ 0 (mod 3).

Corollary 1.2 The exponential Diophantine equation

(15m2 − 1)x + (10m2 + 1)y = (5m)z (1.4)

has only the positive integer solution (x, y, z) = (1, 1, 2).

2 Preliminaries

In order to obtain an upper bound for a solution y of Pillai’s equation cz − by = a under
some conditions, we need a result on lower bounds for linear forms in the logarithms of two
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algebraic numbers. We will introduce here some notations. Let α1 and α2 be real algebraic
numbers with |α1| ≥ 1 and |α2| ≥ 1. We consider the linear form

� = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. As usual, the logarithmic height of an algebraic number
α of degree n is defined as

h(α) = 1

n

⎛
⎝log |a0| +

n∑
j=1

logmax
{
1, |α( j)|

}⎞
⎠ ,

where a0 is the leading coefficient of the minimal polynomial of α (over Z) and (α( j))1≤ j≤n

are the conjugates of α. Let A1 and A2 be real numbers greater than 1 with

log Ai ≥ max

{
h(αi ),

| logαi |
D

,
1

D

}
,

for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q. Define

b′ = b1
D log A2

+ b2
D log A1

.

We choose to use a result due to Laurent [[10], Corollary 2] with m = 10 and C2 = 25.2.

Proposition 2.1 (Laurent [10]) Let � be given as above, with α1 > 1 and α2 > 1. Suppose
that α1 and α2 are multiplicatively independent. Then

log |�| ≥ −25.2 D4
(
max

{
log b′ + 0.38,

10

D

})2

log A1 log log A2.

Next, we shall quote a result on linear forms in p-adic logarithms due to Bugeaud [5].
Here we consider the case where y1 = y2 = 1 in the notation from [5, p. 375].

Let p be an odd prime. Let a1 and a2 be non-zero integers prime to p. Let g be the least
positive integer such that

ordp(a
g
1 − 1) ≥ 1, ordp(a

g
2 − 1) ≥ 1,

where we denote the p-adic valuation by ordp( · ). Assume that there exists a real number E
such that

1/(p − 1) < E ≤ ordp(a
g
1 − 1).

We consider the integer

� = ab11 − ab22 ,

where b1 and b2 are positive integers. We let A1 and A2 be real numbers greater than 1 with

log Ai ≥ max{log |ai |, E log p} (i = 1, 2),

and we put b′ = b1/ log A2 + b2/ log A1.

Proposition 2.2 (Bugeaud [5]) With the above notation, if a1 and a2 are multiplicatively
independent, then we have the upper estimate

ordp(�) ≤ 36.1g

E3(log p)4
(
max{log b′ + log(E log p) + 0.4, 6E log p, 5})2 log A1 log A2.
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3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.
Let (x, y, z) be a solution of (1.3). Taking (1.3) modulo p implies that (−1)x + 1 ≡

0 (mod p). Hence x is odd.

3.1 The case where m is even

Using a congruence method, we ca easily show that if m is even, then Eq. (1.3) has only the
positive integer solution (x, y, z) = (1, 1, 2).

Lemma 3.1 If m is even, then Eq. (1.3) has only the positive integer solution (x, y, z) =
(1, 1, 2).

Proof If z ≤ 2, then (x, y, z) = (1, 1, 2) from (1.3). Hence we may suppose that z ≥ 3.
Taking (1.3) modulo m3 implies that

−1 + 3pm2x + 1 + p(p − 3)m2y ≡ 0 (mod m3),

so

3px + p(p − 3)y ≡ 0 (mod m),

which is impossible, since x is odd and m is even. We therefore conclude that if m is even,
then Eq. (1.3) has only the positive integer solution (x, y, z) = (1, 1, 2). �	
3.2 The case where m is odd with m �≡ 0 (mod 3)

Lemma 3.2 If m is odd with m �≡ 0 (mod 3), then x = 1.

Proof Suppose that x ≥ 2. We show that this will lead to a contradiction. The proof is
devided into two cases: Case 1: m ≡ 1 (mod 4), Case 2: m ≡ 3 (mod 4)
Case 1:m ≡ 1 (mod 4). Then, taking (1.3)modulo 4 implies that 3y ≡ 1 (mod 4), so y is even.

On the other hand, taking (1.3) modulo 3, together with our assumption m �≡ 0 (mod 3),
implies that

(−1)x + (−1)y ≡ (pm)z �≡ 0 (mod 3), (3.1)

which contradicts the fact that x is odd and y is even. Hence we obtain x = 1.

Case 2: m ≡ 3 (mod 4). Then

(
3pm2 − 1

p(p − 3)m2 + 1

)
= 1 and

(
pm

p(p − 3)m2 + 1

)
= −1,

where
(∗

∗
)
denotes the Jacobi symbol. Indeed,

(
3pm2 − 1

p(p − 3)m2 + 1

)
=

(
3pm2 + p(p − 3)m2

p(p − 3)m2 + 1

)
=

(
p2m2

p(p − 3)m2 + 1

)
= 1

and (
pm

p(p − 3)m2 + 1

)
=

(
p

p(p − 3)m2 + 1

) (
m

p(p − 3)m2 + 1

)

= −
(
p(p − 3)m2 + 1

p

) (
p(p − 3)m2 + 1

m

)

= −1,

since m ≡ 3 (mod 4) and p ≡ 1 (mod 4). In view of these, z is even from (1.3).
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Taking (1.3) modulo 4 implies that 3y ≡ (pm)z ≡ 3z ≡ 1 (mod 4), since z is even. Hence
y is even. Similarly, (3.1) also leads to a contradiction. We therefore obtain x = 1. �	
3.3 Pillai’s equation cz − by = a

From Lemma 3.2, it follows that x = 1 in (1.3), provided that m is odd with m �≡ 0 (mod 3).
If y ≤ 2, then we obtain y = 1 and z = 2 from (1.3). From now on, we may suppose that
y ≥ 3. Hence our theorem is reduced to solving Pillai’s equation

cz − by = a (3.2)

with y ≥ 3, where a = 3pm2 − 1, b = p(p − 3)m2 + 1 and c = pm.

We now want to obtain a lower bound for y.

Lemma 3.3 y > m2 − 2.

Proof Since y ≥ 3, Eq. (3.2) yields the following inequality:

(pm)z ≥ 3pm2 − 1 + (p(p − 3)m2 + 1)3 > (pm)3.

Hence z ≥ 4. Taking (3.2) modulo p2m4 implies that

3pm2 − 1 + 1 + p(p − 3)ym2 ≡ 0 (mod p2m4),

so 3 + (p − 3)y ≡ 0 (mod pm2). Hence we have

y ≥ 1

p − 3
(pm2 − 3) = p

p − 3
m2 − 3

p − 3
> m2 − 2,

as desired. �	
We next want to obtain an upper bound for y.

Lemma 3.4 y < 2521 log c.

Proof From (3.2), we now consider the following linear form in two logarithms:

� = z log c − y log b (>0).

Using the inequality log(1 + t) < t for t > 0, we have

0 < � = log

(
cz

by

)
= log

(
1 + a

by

)
<

a

by
. (3.3)

Hence we obtain
log� < log a − y log b. (3.4)

On the other hand, we use Proposition 2.1 to obtain a lower bound for �. It follows from
Proposition 2.1 that

log� ≥ − 25.2
(
max

{
log b′ + 0.38, 10

})2
(log b) (log c), (3.5)

where b′ = y

log c
+ z

log b
.

We note that by+1 > cz . Indeed,

by+1 − cz = b(cz − a) − cz = (b − 1)cz − ab ≥ p(p − 3)m2 · p2m2

−(3pm2 − 1)(p(p − 3)m2 + 1) > 0.
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Hence b′ <
2y + 1

log c
.

Put M = y

log c
. Combining (3.4) and (3.5) leads to

y log b < log a + 25.2

(
max

{
log

(
2M + 1

log c

)
+ 0.38, 10

})2

(log b) (log c),

so

M < 1 + 25.2 (max {log (2M + 1) + 0.38, 10})2 ,

since log c = log(pm) ≥ log 5 > 1. We therefore obtain M < 2521. This completes the
proof of Lemma 3.4. �	

We are now in a position to prove Theorem 1.1. It follows from Lemmas 3.3, 3.4 that

m2 − 2 < 2521 log(pm). (3.6)

We want to obtain an upper bound for p and then one for m. We first show that if m ≡
3 (mod 4), then p < 3784. Recall that z is even for the case m ≡ 3 (mod 4), as seen in the
proof of Lemma 3.2. Put z = 2Z with Z positive integer. Now Eq. (3.2) can be written as

(c2)Z − by = c2 − b.

Then y ≥ Z . If y = Z , then we obtain y = Z = 1. If y > Z , then we consider a “gap”
between the trivial solution (y, Z) = (1, 1) and (possibly) another solution (y, Z).

From a + b = c2 and a + by = c2Z , consider the following two linear forms in two
logarithms:

�0 = 2 log c − log b (> 0), � = 2Z log c − y log b (> 0).

Then

y�0 − � = 2(y − Z) log c ≥ 2 log c,

so

y >
2

�0
log c.

By Lemma 3.4, we have
2

�0
log c < 2512 log c. Hence

2

2521
< �0 = log

(
c2

b

)
= log

(
1 + a

b

)
<

a

b
= 3pm2 − 1

p(p − 3)m2 + 1
<

3pm2

p(p − 3)m2

= 3

p − 3
.

Consequently we obtain p < 3784. When m ≡ 1 (mod 4),we could not prove that z is even
in Lemma 3.2. We therefore suppose that if m ≡ 1 (mod 4), then p < 3784. In any case,
(3.6) yields m ≤ 183.

From (3.3), we have the inequality
∣∣∣∣
log b

log c
− z

y

∣∣∣∣ <
a

yby log c
,
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which implies that

∣∣∣∣
log b

log c
− z

y

∣∣∣∣ <
1

2y2
, since y ≥ 3. Thus

z

y
is a convergent in the simple

continued fraction expansion to
log b

log c
.

On the other hand, if
pr
qr

is the r -th such convergent, then

∣∣∣∣
log b

log c
− pr

qr

∣∣∣∣ >
1

(ar+1 + 2)q2r
,

where ar+1 is the (r + 1)-st partial quotient to
log b

log c
(see e.g. Khinchin [9]). Put

z

y
= pr

qr
.

Note that qr ≤ y. It follows, then, that

ar+1 >
by log c

ay
− 2 ≥ bqr log c

aqr
− 2. (3.7)

Finally, we checked by Magma [4] that for each p < 3784 with p ≡ 1 (mod 4), inequality
(3.7) does not hold for any r with qr < 2521 log(pm) in the range 3 ≤ m ≤ 183. This
completes the proof of Theorem 1.1.

4 Proof of Corollary 1.2

Let (x, y, z) be a solution of (1.4). By Theorem 1.1, we may suppose that m ≡ 0 (mod 3).
Recall that x is odd. Here, we apply Proposition 2.2. For this, we set p := 3, a1 := 10m2 +
1, a2 := 1 − 15m2, b1 := y, b2 := x , and

� := (10m2 + 1)y − (1 − 15m2)x .

Then we may take g = 1, E = 2, A1 = 10m2 + 1, A2 := 15m2 − 1. Hence we have

z ≤ 36.1

8(log 3)4
(
max{log b′ + log(2 log 3) + 0.4, 12 log 3})2 log(10m2 + 1) log(15m2 − 1),

where b′ := y

log(15m2 − 1)
+ x

log(10m2 + 1)
. Suppose that z ≥ 4. We will observe that

this leads to a contradiction. Taking (1.4) modulo m4, we find

15x + 10y ≡ 0 (mod m2).

In particular, we find M := max{x, y} ≥ m2/25. Therefore, since z ≥ M and b′ ≤ M
logm ,

we find

M ≤ 3.1

(
max

{
log

(
M

logm

)
+log(2 log 3)+0.4, 12 log 3

})2
log(10m2+1) log(15m2−1).

(4.1)
If m ≥ 3450, then

M ≤ 3.1

(
log

(
M

logm

)
+ log(2 log 3) + 0.4

)2
log(10m2 + 1) log(15m2 − 1).

Since m2 ≤ 25M , the above inequality gives

M ≤ 3.1 (logM − log(log 3450) + 1.19)2 log(250M + 1) log(375M − 1).
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We therefore obtain M ≤ 105186, which contradicts the fact that M ≥ m2/25 ≥ 476100.
If m < 3450, then inequality (4.1) gives

m2

25
≤ 539 log(10m2 + 1) log(15m2 − 1).

This implies m ≤ 2062. Hence all x, y and z are also bounded. It is not hard to verify by
Magma [4] that there is no (m, x, y, z) under consideration satisfying (1.4). We conclude
z ≤ 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). This completes the proof
of Corollary 1.2.

Remark In the same way as in the proof of Corollary 1.2, we can completely solve “the
remaining case” m ≡ 0 (mod 3) of Eq. (1.2), which is shown by Su-Li [17] and Bertók [1].
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