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Abstract We determine a 2-codimensional CR-structure on the slit tangent bundle T0M
of a Finsler manifold (M, F) by imposing a condition on the almost complex structure
� associated to F when restricted to the structural distribution of a framed f -structure.
This condition is satisfied when (M, F) is of scalar flag curvature (particularly flat). In
the Riemannian case (M, g) this last condition means that g is of constant curvature. This
CR-structure is finally generalized by using one positive parameter but under more difficult
conditions.
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1 Introduction

Finsler geometry is very rich in remarkable tensor fields ϕ of (1, 1)-type and associated
structures. More precisely, there are: an (almost) tangent structure (ϕ2 = 0), an almost
complex one (ϕ2 = −I ) and also an almost product structure (ϕ2 = I ). In [1] another well-
known type of structures, namely an f -structure (ϕ3+ϕ = 0) is obtained in this geometry. In
fact, this f -structure belongs to a very interesting particular case which is called framed f -
structure and has, in addition to ϕ, a set of vector fields and differential 1-forms interrelated.
Moreover, a conformal deformation of the Sasaki type metric can be added in order to obtain
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a metric framed f -structure. This metric framed f -structure of M. Anastasiei was recently
generalized in [8,15].

The present note concerns yet another kind of structures, namely the CR-structures, with
an important rôle at the border between differential geometry and complex analysis, as it
is pointed out in [7]. We restrict ourselves to the real case; more precisely, based on a
relationship between framed f -structures and CR-structure established in [2, p. 130] we
found a CR-structure on the slit tangent bundle T0M of a Finsler manifold (M, F). This CR-
structure is constructed with the above almost complex structure denoted by �F in Sect. 3
and its existence is constrained by one condition expressing the vanishing of the Nijenhuis
tensor of �F on the structural distribution of the framed f -structure from [1]. The above
condition is expressed as a relation between the curvature of the Cartan nonlinear connection
and the Jacobi endomorphism and is satisfied in dimension two or if (M, F) is of scalar flag
curvature which in the particular case of Riemannian geometry (M, g) means that the metric
g has a constant curvature. Several important classes of Finsler manifolds with scalar flag
curvature are discussed in Chapter 7 of [5].

Inspired by [15] we generalize this CR-structure using a real parameter β > 1
2 but with

more difficult conditions. More precisely, we take into account the same vector fields and
1-forms as in the previous framed f -structure but deform the metric and the almost complex
structure on both horizontal and vertical directions. At β = 1 we recover the previous CR-
structure.

Finally, let us note that ourCR-structures are of codimension 2 and the (complex) geometry
of these structures was studied in [11,12] and recently in [9,10]. But for the Riemannian case
the only studies until now are on hypersurfaces of Sasakian manifolds [13,14] and not on
(slit) tangent bundle. The para-CR version of this study is the paper [6].

2 CR-structures from framed f -structures

Framed f -structures constitute a particular case of f -structures. A detailed study of this class
of tensor fields of (1, 1)-type, especially from a local point of view, can be found in [16].

Let N be a smooth (2n + s)-dimensional manifold with n, s ≥ 1 and fix a distribution D
of dimension 2n on N . Considering D as a vector bundle over N let �(D) be the module
of its sections. Supposing D is endowed with a morphism J : D → D of vector bundles
satisfying J 2 = −I where I is the identity (Kronecker) morphism on D, the pair (D, J ) is
called almost complex distribution.

The first main notion is given in [2, p.128].

Definition 2.1 If for all X, Y ∈ �(D) we have
{ [J X, JY ] − [X, Y ] ∈ �(D)

NJ (X, Y ) := [J X, JY ] − [X, Y ] − J ([X, JY ] + [J X, Y ]) = 0,
(2.1)

then (D, J ) is a CR-structure on N and the triple (N , D, J ) is a CR-manifold.
A second main notion is that of a framed f -structure.

Definition 2.2 Let ϕ be a tensor field of (1, 1)-type and s pairs (ξa, η
a), 1 ≤ a ≤ s of vector

fields and 1-forms on N . If

(i) ϕ3 + ϕ = 0, rank ϕ = 2n,
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(ii) ϕ2 = −I + ∑s
a=1 ηa ⊗ ξa , ϕ(ξa) = 0, ηa(ξb) = δab , η

a ◦ ϕ = 0,
then the data (ϕ, ξa, η

a) is called a framed f -structure.

Following [2, p. 130] we associate to a framed f -structure

(1) the (1, 2)-type torsion tensor field

S = Nϕ + 2
s∑

a=1

dηa ⊗ ξa, (2.2)

(2) the structural distribution

D = {X ∈ �(T M); η1(X) = ... = ηs(X) = 0} = ∩s
a=1 ker η

a . (2.3)

For a 1-form η we use the differential

2dη(X, Y ) = X (η(Y )) − Y (η(X)) − η([X, Y ]). (2.4)

These notions lead to

Definition 2.3 The framed f -structure is called D-normal if S vanishes on D i.e. S(X, Y ) =
0 for all X, Y ∈ �(D).

The relationship between the above structures was pointed out by A. Bejancu in Proposi-
tion 1.1 of [2, p. 130].

Proposition 2.4 If (ϕ, ξa, η
a) is a D-normal framed f -structure, then (D, J = ϕ|D) is a

CR-structure.

Proof The restriction J of ϕ to D is obviously an almost complex structure. Conditions (2.1)
result from the fact that for X, Y ∈ �(D) we have

S(X, Y ) = 0 = [J X, JY ] + ϕ2([X, Y ]) − ϕ([X, JY ] + [J X, Y ]) −
s∑

a=1

ηa([X, Y ])ξa .

(2.5)

For other details see the cited reference. 
�

3 A metric framed f -structure on the tangent bundle of a Finsler manifold

Let M be now a smooth m-dimensional manifold with m ≥ 2 and π : T M → M its tangent
bundle. Let x = (xi ) = (x1, ..., xm) be local coordinates on M and (x, y) = (xi , yi ) =
(x1, ..., xm, y1, ...., ym) the induced local coordinates on T M . Denote by O the null-section
of π .

Recall after [5] that a Finsler fundamental function on M is a map F : T M → R+ with
the following properties:

(F1) F is smooth on the slit tangent bundle T0M := T M \ O and continuous on O ,
(F2) F is positive homogeneous of degree 1: F(x, λy) = λF(x, y) for every λ > 0,

(F3) the matrix (gi j ) =
(
1
2

∂2F2

∂yi ∂y j

)
is invertible and its associated quadratic form is positive

definite.

123



CR-structures of codimension 2 on tangent bundles in Riemann... 243

The tensor field g = {gi j (x, y); 1 ≤ i, j ≤ m} is called the Finsler metric and the homo-
geneity of F implies:

F2(x, y) = gi j y
i y j = yi y

i , (3.1)

where yi = gi j y j . The pair (M, F) is called Finsler manifold.
On T0M we have two distributions:

(i) V (T M) := ker π∗, called the vertical distribution and not depending of F . It is inte-

grable and has the basis
{

∂
∂yi

; 1 ≤ i ≤ m
}
. A remarkable section of it is the Liouville

vector field � = yi ∂
∂yi

.

(ii) H(T M) with the basis
{

δ
δxi

:= ∂
∂yi

− N j
i

∂
∂y j

}
, where

Ni
j = 1

2

γ i
00

∂y j
(3.2)

with γ i
00 = γ i

jk y
j yk built from the usual Christoffel symbols

γ i
jk = 1

2
gia

(
∂gak
∂x j

+ ∂g ja

∂xk
− ∂g jk

∂xa

)
. (3.3)

H(T M) is often called theCartan (or canonical) nonlinear connection of the geometry
(M, F) and a remarkable section of it is the geodesic spray

SF = yi
δ

δxi
. (3.4)

In particular, if g does not depend on y, we recover Riemannian geometry.

The dual basis of the above local basis { δ
δxi

, ∂
∂yi

} of�(T0M) is (dxi , δyi = dyi +Ni
j dx

j ).
On T0M we have a Riemannian metric of Sasaki type

GF = gi j dx
i ⊗ dx j + gi jδy

i ⊗ δy j . (3.5)

Another Finslerian object is the tensor field of (1, 1)-type �F : �(T0M) → �(T0M)

�F

(
δ

δxi

)
= − ∂

∂yi
, �F

(
∂

∂yi

)
= δ

δxi
. (3.6)

It results that �F is an almost complex structure and the pair (�F ,GF ) is an almost Kähler
structure on T0M .

In order to obtain a framed f -structure on T0M associated to the Finslerian function F ,
the following objects are considered in [1]⎧⎪⎪⎨

⎪⎪⎩

ξ1 = SF , ξ2 = �,

η1 = 1
F2 yi dx

i , η2 = 1
F2 yiδy

i ,

ϕ = �F + η1 ⊗ ξ2 − η2 ⊗ ξ1,

G = 1
F2 GF .

(3.7)

Then the main result of [1] is that the data (ϕ, ξ1, ξ2, η
1, η2) is a framed f -structure on T0M

with ηa the G-dual of ξa , 1 ≤ a ≤ 2 and, moreover

G(ϕ·, ϕ·) = G − η1 ⊗ η1 − η2 ⊗ η2. (3.8)

Also, ξa are unitary vector fields with respect to G and (G, ϕ, ξa, η
a) is a metric framed

f -structure.
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4 Putting all together

The last paragraph of the previous section provides the ingredients of Sect. 2 with N = T0M ,
s = 2 and n = m − 1, which motivates our choice m ≥ 2. Then the structural distribution is

DF = ker η1 ∩ ker η2 = {ξ1}⊥G ∩ {ξ2}⊥G = {ξ1}⊥GF ∩ {ξ2}⊥GF , (4.1)

where {X}⊥G is the G-orthogonal complement of span{X}. We have DF = (span{ξ1,
ξ2})⊥GF and this implies that DF has dimension 2m − 2. For a geometrical meaning of the
distribution span{ξ1, ξ2} in [1] is defined the differential 2-form ωF , naturally associated to
the metric framed f -structure

ωF = G(·, ϕ·), (4.2)

and it follows that span{ξ1, ξ2} is the kernel of ωF . Also, the homogeneity of F implies the
homogeneity of SF = ξ1, which means

[�, SF ] = [ξ2, ξ1] = ξ1, (4.3)

and thus span{ξ1, ξ2} is an integrable distribution; see also Theorem 3.15 of [3, p. 236].
A concrete expression of DF appears in [4, p. 11]. More precisely, consider after the cited

paper

(i) the horizontal vector fields

hi = δ

δxi
− 1

F2 yi SF , (4.4)

and the corresponding (m − 1)-distribution Hm−1 = span{hi ; 1 ≤ i ≤ m},
(ii) the vertical vector fields

vi = ∂

∂yi
− 1

F2 yi�, (4.5)

and also the corresponding (m − 1)-distribution Vm−1 = span{vi ; 1 ≤ i ≤ m}.
We have

DF = Hm−1 ⊕ Vm−1, (4.6)

and the same Theorem 3.15 of [3, p. 236] proves the integrability of Vm−1; see also
[4, p. 12].

Regarding the integrability of the nonlinear connection H(T M) we have[
δ

δx j
,

δ

δxk

]
= Ri

jk
∂

∂yi
, (4.7)

where

Ri
jk = δNi

j

δxk
− δNi

k

δx j
. (4.8)

The tensor field R = {Ri
jk(x, y); 1 ≤ i, j, k ≤ m} is called the curvature of the Cartan

nonlinear connection and

Ri
j := Ri

k j y
k (4.9)

are the components of the Jacobi endomorphism � = Ri
j

∂
∂yi

⊗ dx j , [4, p. 5]. Now we are
ready for the first main result:
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Theorem 4.1 If the curvature tensor of (M, F) has the form

Ri
jk = λ

(
Xi
k y j − Xi

j yk
)

(4.10)

with λ a smooth function on T0M and the tensor field {Xi
j (x, y); 1 ≤ i, j ≤ m} satisfying

yi X
i
j = y j (4.11)

for all i, j ∈ {1, ...,m}, then the pair (DF , JF = �F |DF ) is a CR-structure on T0M.

Proof We express the Nijenhuis tensor field of �F as

N�F (X, Y ) = [�F X, �FY ] − [X, Y ] − �F (A(X, Y )) = B(X, Y )

−�F (A(X, Y )) (4.12)

with A(X, Y ) := [X, �FY ] + [�F X, Y ] and B(X, Y ) = [�F X, �FY ] − [X, Y ]. It follows
that B(X, Y ) = A(�F X, Y ) and then

N�F (X, Y ) = A(�F X, Y ) − �F ◦ A(X, Y ). (4.13)

We prove firstly that A is a DF -valued (0, 2)-tensor field. From (4.7) and

[
δ

δx j
,

∂

∂yk

]
= ∂Ni

j

∂yk
∂

∂yi
= ∂2γ i

00

∂y j∂yk
∂

∂yi
(4.14)

we obtain

A

(
δ

δx j
,

δ

δxk

)
= A

(
∂

∂y j
,

∂

∂yk

)
= 0, A

(
δ

δx j
,

∂

∂yk

)
= Ri

jk
∂

∂yi
, (4.15)

which means that η1 ◦ A = 0 and

A = Ri
jkdx

j ∧ δyk ⊗ ∂

∂yi
. (4.16)

A main identity in Finsler geometry is

yi R
i
ab = 0, (4.17)

and then η2 ◦ A = 0, which conclude the first part of the proof.
Secondly, we search for the framework of Proposition 2.4. The torsion tensor S on DF is

S(X, Y ) = Nϕ(X, Y ) − η1([X, Y ])ξ1 − η2([X, Y ])ξ2
with

Nϕ(X, Y ) = [�F X, �FY ] + ϕ2([X, Y ]) − ϕ ◦ A(X, Y ).

Since ϕ is an element of a framed f -structure, we get

Nϕ(X, Y ) = [�F X, �FY ] − [X, Y ] + η1([X, Y ])ξ1 + η2([X, Y ])ξ2 − ϕ ◦ A(X, Y )

and from the definition (3.73) of ϕ it follows

S(X, Y ) = [�F X, �FY ] − [X, Y ] − (�F + η1 ⊗ ξ2 − η2 ⊗ ξ1) ◦ A(X, Y )

= N�F (X, Y ). (4.18)
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In local coordinates we have

N�F = Ri
jkδy

j ∧ δyk ⊗ ∂

∂yi
, (4.19)

and then N�F has components only when applied on the pair (va, vb). A long but straight-
forward computation yields

N�F (va, vb) = 2

[
Ri
ab + 1

F2 (Ri
a yb − Ri

b ya)

]
∂

∂yi
, (4.20)

and therefore the normality condition is

F2Ri
ab = Ri

b ya − Ri
a yb, (4.21)

which can be expressed as

N�F = η2 ∧
(
Ri
kδy

k ⊗ ∂

∂yi

)
. (4.22)

Relation (4.10) yields

Ri
k = λ

(
F2Xi

k − ya Xi
a yk

)
(4.23)

and then both sides of (4.21) are equal toλF2(Xi
k y j−Xi

j yk), which gives the final conclusion.
Condition (4.11) corresponds to relation (4.17).

Let us also point out that condition (4.10) gives the following expression for the Nijenhuis
tensor

N�F = 2λF2η2 ∧
(
Xi

jδy
j ⊗ ∂

∂yi

)
, (4.24)

which yields again the vanishing of N�F on DF due to the presence of η2. Concerning the
tensor field A we have

A = λF2
[
η1 ∧

(
Xi

jδy
j ⊗ ∂

∂yi

)
−

(
Xi

j dx
j ⊗ ∂

∂yi

)
∧ η2

]
, (4.25)

which proves the relations η1 ◦ A = η2 ◦ A = 0. 
�
Example 4.2 Recall that in dimension 2 the Nijenhuis tensor field of any almost complex
structure vanishes. Then every2-dimensional Finslermanifold (M2, F) satisfies the condition
of Theorem 4.1. Let V (T M) be spanned by the vector fields � and V respectively, H(T M)

be spanned by the vector fields SF and H . Then DF is spanned by V and H and

JF (H) = −V, JF (V ) = H. (4.26)

We have that H is a linear combination of h1 and h2 while V is a linear combination of v1
and v2. 
�

In order to consider examples in any dimension we remark that a solution of condition
(4.11) is

Xi
j = μδij + (1 − μ)

yi y j
F2 (4.27)

again with μ a smooth function on T0M .
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Example 4.3 If μ = 1 then Xi
j = δij and the Finsler manifold (M, F) is of scalar flag

curvature λ since

Ri
jk = λ

(
δik y j − δij yk

)
, (4.28)

and then

Ri
k = λ

(
δik F

2 − yi yk
)

. (4.29)

Corollary 4.4 If (M, F) is of scalar flag curvature, then (DF = (span{SF , �})⊥GF , JF ) is
a CR-structure on T0M.

Remark also that the hypothesis of scalar flag curvature yields

N�F = 2λF2η2 ∧ πV (T M), (4.30)

where πV (T M) is the projector on the vertical part in the GF-orthogonal decomposition
T (T0M) = H(T M) ⊕ V (T M) i.e πV (T M) = δyi ⊗ ∂

∂yi
. However, �F is integrable only in

the flat case (i.e. λ = 0) since N�F (�, va) = 2λF2va. The integrability of �F as a tensor
field of (1, 1)-type is equivalent with the integrability of the Cartan nonlinear connection of
(M, F) and then (T0M, �F ,GF ) is a Kähler manifold.

Particular case 4.5 (Riemannian space) Let g = (gi j (x)) be a Riemannian metric on M .
Then γ i

jk(x, y) = �i
jk(x) are the Riemannian Christoffel symbols and

Ri
jk(x, y) = Ri

jka(x)y
a (4.31)

where Rg = (Ri
jka) is the Riemannian curvature tensor of g. It results that a Riemannian

geometry (M, F = (gi j (x)yi y j )
1
2 ) is of scalar flag curvature if and only if g is of constant

curvature. Therefore on the slit tangent bundle of a space form (M, g) there exists a CR-
structure on the distribution complementary (with respect to the Sasaki lift of g) to the
distribution generated by the Liouville vector field and the geodesic spray Sg . 
�
Example 4.6 Returning to the general non-Riemannian case (4.27) with μ = 0 we get

Xi
j = yi y j

F2 , (4.32)

and then Ri
jk = 0, which means that (M, F) is flat, a situation belonging also to Example 4.3

for vanishing scalar curvature. 
�
For the general μ we have

N�F = 2λF2η2 ∧ [
μπV (T M) + (1 − μ)η2 ⊗ �

] = 2λμF2η2 ∧ μπV (T M). (4.33)

5 A 1-parametric generalization

Let α > 0 and β > 0 be two positive numbers. Following the approach of [15], let v :
T M → R be a function of the form v = v̄ ◦ τ where τ = F2 and v̄ : [0,+∞) → R is a
smooth function. Supposing that

α + 2t v̄(t) > 0 (5.1)
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for any t ∈ (0,+∞), in the cited paper, the smooth functions w̄ : [0,+∞) → R,w : T M →
R

w̄(t) = − βv̄(t)

α + t v̄(t)
and w = w̄ ◦ τ, (5.2)

and the Riemannian metric on T0M

Ḡ = Gi j dx
i ⊗ dx j + Hi jδy

i ⊗ δy j (5.3)

are defined, where {
Gi j = 1

β
gi j + v

αβ
yi y j

Hi j = βgi j + w ◦ τ yi y j .
(5.4)

Inspired by [15] we define also⎧⎪⎨
⎪⎩

ξ̄1 = (β + wτ)SF , ξ̄2 = � = ξ2,

η̄1 = 1
τ
yi dxi = η1, η̄2 = (

β
τ

+ w)yiδyi ,
�̄F ( δ

δxi
) = −Ga

i
∂

∂ya , �̄F ( ∂
∂yi

) = Ha
i

δ
δxa ,

(5.5)

where the lift of indices in the third line is constructed with g−1 = (gab). In fact, the only
difference between us and [15] is with respect to 1-form η̄i ; in order to reobtain that of
Sect. 3 we divide with τ the 1-forms of Peyghan–Zhong. With a computation similar to that
of Theorem 4.8 of Peyghan–Zhong we derive that (Ḡ, ϕ̄, ξ̄a, η̄

a) with

ϕ̄ = �̄F + η̄1 ⊗ ξ̄2 − η̄2 ⊗ ξ̄1 (5.6)

is a metric framed f -structure on T0M if and only if

β + tw̄(t) = 1. (5.7)

From this condition we get that ξ̄a = ξa and η̄a = ηa . From (5.2) and (5.7) we obtain

v̄(t) = α(β − 1)

t
, w̄(t) = 1 − β

t
. (5.8)

In the particular case α = β = 1 we recover the metric framed f -structure of Anastasiei
since v̄ = w̄ ≡ 0.

Now, under condition (5.7) we have the same structural distribution DF but the expression
of the tensor field

Ā(X, Y ) := [X, �̄FY ] + [�̄F X, Y ] (5.9)

is more complicated. More detailed⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ā( δ
δx j ,

δ
δxk

) =
(

δGv
j

δxk
− δGv

k
δx j + Gu

j
∂N v

k
∂yu − Gu

k
∂N v

j
∂yu

)
∂

∂yv

Ā( ∂
∂y j ,

∂
∂yk

) =
(

∂Hv
k

∂y j − ∂Hv
j

∂yk

)
δ

δxv +
(
Hu

j
∂N v

u
∂yk

− Hu
k

∂N v
u

∂y j

)
∂

∂yv ,

Ā( δ
δx j ,

∂
∂yk

) = δHv
k

δx j
δ

δxv +
(
Hu
k R

v
ju + ∂Gv

j

∂yk

)
∂

∂yv ,

(5.10)

where, with (5.7)⎧⎪⎨
⎪⎩
Gi j = 1

β
gi j + β−1

βτ
yi y j , Hi j = βgi j + 1−β

τ
yi y j

Ga
j = 1

β
δaj + β−1

βτ
ya y j , Ha

j = βδaj + 1−β
τ

ya y j
�̄F ( δ

δxi
) = − 1

β
∂

∂yi
+ 1−β

βτ
yi�, �̄F ( ∂

∂yi
) = β δ

δxi
+ 1−β

τ
yi SF .

(5.11)
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It results that α disappears and this motivates the title of this section, namely 1-parametric
generalization and not 2-parametric. Note that �̄F (hi ) = − 1

β
vi and �̄F (vi ) = βhi .

Then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ā( δ
δx j ,

δ
δxk

) = β−1
βτ

[
δ

δxk
(
y j yv

) − δ
δx j (yk yv)

]
∂

∂yv

Ā( ∂
∂y j ,

∂
∂yk

) = (1 − β)
[

∂
∂y j (

yk yv

τ
) − ∂

∂yk
(
y j yv

τ
)
]

δ
δxv

Ā( δ
δx j ,

∂
∂yk

) = 1−β
τ

δ
δx j (yk yv) δ

δxv +
[
βRv

jk + 1−β
τ

yk yu Rv
ju + β−1

β
∂

∂yk

(
y j yv

τ

)]
∂

∂yv .

(5.12)

Choosing α = 1 the second main result is

Theorem 5.1 Let β > 1
2 and the smooth functions v̄(t) = −w̄(t) = β−1

t . If for any
X, Y ∈ DF we have

(1) Ā(X, Y ) ∈ DF,
(2) N�̄F

(X, Y ) = 0, then (DF , J̄F = �̄F |DF ) is a CR-structure on T0M.

Proof The condition in β follows from (5.1). Exactly as in the proof of Theorem 4.1 we
have

S(X, Y ) = N�̄F
(X, Y ) − η1( Ā(X, Y ))ξ2 + η2( Ā(X, Y ))ξ1. (5.13)

and the conclusion follows directly. Let us note that 1) corresponds to condition (2.11)
while 2) corresponds to condition (2.12). 
�

Let us remark that

βη2 ◦ Ā

(
δ

δx j
,

δ

δxk

)
= η1 ◦ Ā

(
δ

δx j
,

∂

∂yk

)
− η1 ◦ Ā

(
δ

δxk
,

∂

∂y j

)
, (5.14)

and then the vanishing of η1 ◦ Ā
(

δ
δxa , ∂

∂yb

)
implies the vanishing of η2 ◦ Ā

(
δ

δxu , δ
δxv

)
. The

vanishing of the former expression means that yk is an eigenvector for δ
δx j

δyk
δx j

=
(

−Na
j ya

F2

)
yk (5.15)

and then yk is an eigenvector for the geodesic spray

SF (yk) =
(

−Na
j y

j ya

F2

)
yk . (5.16)

Such condition holds in the Euclidian space (Rm, gi j = δi j ) but here the expression η2 ◦
Ā( δ

δx j ,
∂

∂yk
) is non-vanishing since

yv
∂

∂yk

(
y j yv

F2

)
= δ jk − y j yk

F2 �= 0 (5.17)

and then it remains an open problem to find Riemannian and/or Finsler manifolds satisfying
the conditions of Theorem 5.1 with β �= 1.
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