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Abstract Let P ≥ 3 be an integer and let (Un) and (Vn) denote generalized Fibonacci and
Lucas sequences defined by U0 = 0,U1 = 1; V0 = 2, V1 = P, and Un+1 = PUn − Un−1,
Vn+1 = PVn − Vn−1 for n ≥ 1. In this study, when P is odd, we solve the equation
Un = wx2 +1 forw = 1, 2, 3, 5, 6, 7, 10.After then, we solve some Diophantine equations
utilizing solutions of these equations.

Keywords Generalized Fibonacci numbers · Generalized Lucas numbers · Congruences ·
Diophantine equation

Mathematics Subject Classifications 11B37 · 11B39 · 11B50 · 11B99 · 11D41

1 Introduction

Let P and Q be nonzero integers. Generalized Fibonacci sequence (Un) and Lucas sequence
(Vn) are defined by U0(P, Q) = 0,U1(P, Q) = 1; V0(P, Q) = 2, V1(P, Q) = P, and
Un+1(P, Q) = PUn(P, Q)+ QUn−1(P, Q), Vn+1(P, Q) = PVn(P, Q)+ QVn−1(P, Q)

for n ≥ 1. Un(P, Q) and Vn(P, Q) are called n-th generalized Fibonacci number and n-
th generalized Lucas number, respectively. Generalized Fibonacci and Lucas numbers for
negative subscripts are defined as U−n(P, Q) = −(−Q)−nUn(P, Q) and V−n(P, Q) =
(−Q)−nVn(P, Q), respectively.

Since

Un(−P, Q) = (−1)n−1Un(P, Q) and Vn(−P, Q) = (−1)nVn(P, Q),
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it will be assumed that P ≥ 1.Moreover, wewill assume that P2+4Q > 0. For P = Q = 1,
we have classical Fibonacci and Lucas sequences (Fn) and (Ln). For P = 2 and Q = 1, we
have Pell and Pell-Lucas sequences (Pn) and (Qn). For more information about generalized
Fibonacci and Lucas sequences one can consult [1–4].

Generalized Fibonacci and Lucas numbers of the form kx2 have been investigated since
1962. In [5], the authors solved Un = x2, Vn = x2,Un = 2x2, and Vn = 2x2 for odd
relatively prime integers P and Q. The reader can consult [6] or [7] for a brief discussion of
the subject.

In [8], the authors showed that when a �= 0 and b are integers, then the equation
Un(P,±1) = ax2 + b has only a finite number of solutions n. In [9], Keskin solved the
equations Vn(P,−1) = wx2 + 1 and Vn(P,−1) = wx2 − 1 for w = 1, 2, 3, 6 when
P is odd. In [10], Karaatlı and Keskin solved the equations Vn(P,−1) = 5x2 ± 1 and
Vn(P,−1) = 7x2 ± 1. Similar equations are tackled in [11] by using very different meth-
ods (see also [12–14]). In this study, we solve the equation Un(P,−1) = wx2 + 1 for
w = 1, 2, 3, 5, 6, 7, 10.

We will use the Jacobi symbol throughout this study. Our method is elementary and used
by Cohn, Ribenboim and McDaniel in [15] and [16] , respectively.

2 Preliminaries

From now on, instead ofUn(P,−1) and Vn(P,−1),we sometimes writeUn and Vn, respec-
tively. Moreover, we will assume that P ≥ 3.

The following lemmas can be proved by induction.

Lemma 2.1 If n is a positive integer, thenU2n ≡ n(−1)n+1P (modP2) andU2n+1 ≡ (−1)n

(modP2).

Lemma 2.2 If n is a positive integer, then V2n ≡ 2(−1)n (modP2) and V2n+1 ≡ (−1)n(2n+
1)P (modP2).

The following theorems are given in [9].

Theorem 2.3 Let P be odd. If Vn = kx2 for some k|P with k > 1, then n = 1.

Theorem 2.4 Let P be odd. If Vn = 2kx2 for some k|P with k > 1, then n = 3.

Theorem 2.5 Let P be odd. If Un = kx2 for some k|P with k > 1, then n = 2 or n = 6
and 3|P.
Theorem 2.6 Let P be odd. If k|P with k > 1, then the equation Un = 2kx2 has no
solutions.

Theorem 2.7 Let P be odd. If k|P with k > 1, then the equation Un = kx2 + 1 has only
the solution n = 1.

The following theorem is given in [10].

Theorem 2.8 Let P be odd. If Vn = 7kx2 for some k|P with k > 1, then n = 1.

Nowwe give some known theorems from [5], whichwill be useful for solving the equation
Un = wx2 + 1.We use a theorem from [17] while solving Vn = 2x2.
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Theorem 2.9 Let P be odd. If Vn = x2 for some integer x, then n = 1. If Vn = 2x2 for
some integer x, then n = 3, P = 3, 27.

Theorem 2.10 Let P be odd. If Un = x2 for some integer x, then n = 1 or n = 2, P = �
or n = 6, P = 3. If Un = 2x2 for some integer x, then n = 3.

The following lemma is a consequence of a theorem given in [18].

Lemma 2.11 All positive integer solutions of the equation 3x2 − 2y2 = 1 are given by
(x, y) = (Un(10,−1) −Un−1(10,−1),Un(10,−1) +Un−1(10,−1)) with n ≥ 1.

The proof of the following lemma is easy and will be omitted.

Lemma 2.12 All positive integer solutions of the equation x2 − 7y2 = 2 are given by
(x, y) = (3 (Um+1(16 − 1) −Um(16,−1)) , 17Um(16,−1) −Um−1(16,−1)) with m ≥ 0.

The following theorems are well known (see [19–22]).

Lemma 2.13 All positive integer solutions of the equation x2 − (P2 − 4)y2 = 4 are given
by (x, y) = (Vn(P,−1),Un(P,−1)) with n ≥ 1.

Lemma 2.14 All positive integer solutions of the equation x2 − Pxy + y2 = 1 are given
by (x, y) = (Un(P,−1),Un−1(P,−1)) with n ≥ 2.

The following two theorems are given in [23].

Theorem 2.15 Let n ∈ N∪ {0} , m, r ∈ Z and m be a nonzero integer. Then

U2mn+r ≡ Ur (modUm) . (2.1)

Theorem 2.16 Let n ∈ N∪ {0} and m, r ∈ Z. Then

U2mn+r ≡ (−1)n Ur (modVm) . (2.2)

If n = 2 · 2ka + r with a odd, then we get

Un = U2·2ka+r ≡ −Ur (modV2k ). (2.3)

by (2.2).
When P is odd, since 8|U3, using (2.1) we get

U6q+r ≡ Ur (modU3) (2.4)

and therefore
U6q+r ≡ Ur (mod8) . (2.5)

From Lemma 2.1 and Lemma 2.2, it follows that if q|P with q > 1, then

q|Vn ⇔ n is odd and q|Un ⇔ n is even. (2.6)

If P2 ≡ −1 (mod5), then 5|U5. (2.7)

If P is odd, then 2|Vn ⇔ 2|Un ⇔ 3|n. (2.8)
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Now we give some identities concerning generalized Fibonacci and Lucas numbers:

U−n = −Un and V−n = Vn,

U2n+1 − 1 = UnVn+1, (2.9)

U2n = UnVn, (2.10)

V 2
n − (P2 − 4)U 2

n = 4, (2.11)

V2n = V 2
n − 2. (2.12)

Let m = 2ak, n = 2bl, k and l odd, a, b ≥ 0, and d = (m, n). Then (see [24])

(Um, Vn) =
{
Vd if a > b,
1 or 2 if a ≤ b.

(2.13)

From (2.11) and Lemma 2.2, it follows that

5|Vn ⇔ 5|P and n is odd. (2.14)

An induction method shows that
V2k ≡ 7 (mod8)

and thus (
2

V2k

)
= 1 (2.15)

and ( −1

V2k

)
= −1 (2.16)

for all k ≥ 1.

Lemma 2.17 Let P be odd. Then(
P − 1

V2k

)
=

(
P + 1

V2k

)
= 1 (2.17)

for all k ≥ 1.Moreover, if 3 � P, then (
3

V2k

)
= 1 (2.18)

for all k ≥ 1.

Proof If 3 � P, then P2 ≡ 1 (mod3) and therefore V2 = P2−2 ≡ −1 (mod3).An induction

method shows that V2k ≡ −1 (mod3) since V2k = (
V2k−1

)2 − 2 by (2.12). Thus(
3

V2k

)
= −

(
V2k

3

)
= −

(−1

3

)
= 1.

Since V2 = P2 − 2 ≡ −1 (modP2 − 1), it follows that V2k ≡ −1 (modP2 − 1). Thus
V2k ≡ −1 (modP − 1) and V2k ≡ −1 (modP + 1). Let P − 1 = 2t a with a odd. Then we
get (

P − 1

V2k

)
=

(
2t a

V2k

)
=

(
2

V2k

)t ( a

V2k

)
=

(
a

V2k

)
= (−1)

a−1
2

(
V2k

a

)
(2.19)

since
(

2
V2k

)
= 1 by (2.15). By using the fact that V2k ≡ −1 (moda), we get

(
P−1
V2k

)
=

(−1)
a−1
2

(−1
a

) = 1 by (2.19). Similarly, it is seen that
(
P+1
V2k

)
= 1. 	
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When P is odd, it can be shown that(
5

V2k

)
=

{ −1 if P2 ≡ −1 (mod5),
1 if P2 ≡ 1 (mod5)

(2.20)

and (
7

V2k

)
=

{−1 if P2 ≡ 4 (mod7),
1 if P2 ≡ 1 (mod7)

(2.21)

for all k ≥ 1.

3 Main theorems

From now on, we will assume that n is a positive integer and P is an odd integer.

Theorem 3.1 If Un = 2kx2 + 1 with k|P and k > 1, then n = 1 or n = 5.

Proof Assume that Un = 2kx2 + 1 for some integer x . Then n is odd by Lemma 2.1. It is
clear that n = 1 is a solution. Assume that n > 1. Then we have n = 2m + 1 with m ≥ 1.
Thus, we getUmVm+1 = U2m+1 − 1 = 2kx2 by (2.9). It can be seen that m is even by (2.6).
Thus, (Um, Vm+1) = P by (2.13). Then it follows that

Um = k1Pa
2 and Vm+1 = 2k2Pb

2

or
Um = 2k1Pa

2 and Vm+1 = k2Pb
2

for some natural numbers a and b with k = k1k2. Thus, it is seen that

Um = ut2 and Vm+1 = 2vs2 (3.1)

or
Um = 2ut2 and Vm+1 = vs2 (3.2)

for some natural numbers u, v, s, t with u|P and v|P. Assume that (3.1) is satisfied. By
using Theorems 2.4 and 2.10, it is seen that m = 2. Therefore n = 5. The identity (3.2) is
impossible by Theorems 2.6 and 2.10.

Theorem 3.2 Let w = 1, 2, 3, 6. If Un = wx2 + 1 for some integer x, then (w, n) =
(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (6, 1), (6, 2), (6, 5).

Proof Assume thatUn = wx2 +1 for some integer x . Let n > 3. Then n = 4q + r for some
q > 0 with 0 ≤ r ≤ 3. Then n = 2 · 2ka + r with a odd and k ≥ 1. Thus,

wx2 = −1 +Un ≡ −1 −Ur (modV2k )

by (2.3). This shows that

wx2 ≡ −1,−2,−(P + 1),−P2 (modV2k ).

Since

(
2

V2k

)
= 1,

( −1

V2k

)
= −1, and

(
P + 1

V2k

)
= 1 by (2.15), (2.16), and (2.17), respec-

tively, we get (
w

V2k

)
= −1. (3.3)
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If w = 1, 2, then (3.3) is impossible. Let w = 3, 6. If 3 � P , then again (3.3) is impossible

since

(
3

V2k

)
= 1 by (2.18). Therefore n ≤ 3 in case 3 � P and w = 3, 6. But n = 3 is not a

solution in this case. If w = 6 and 3|P , then by Theorem 3.1, we get n = 1 or n = 5. Thus,
n = 1, 5 for the case w = 6 and 3|P. If w = 3 and 3|P , then by Theorem 2.7, we get n = 1.

	

Theorem 3.3 If Un = 5x2 + 1 for some integer x, then n = 1 or n = 2.

Proof Assume that Un = 5x2 +1 for some integer x . If 5|P, then by Theorem 2.7, n = 1.
Assume that 5 � P . Let n > 2 and n be even. Now we divide the proof into two cases.

Case I. Let P2 ≡ 1 (mod5). Since n is even, n = 4q + r for some positive integer q with
r = 0, 2. Thus, n = 2 · 2ka + r with a odd and k ≥ 1. Then

5x2 = −1 +Un ≡ −1 −Ur (modV2k )

by (2.3). This shows that
5x2 ≡ −1,−(P + 1) (modV2k ),

which is impossible since

( −1

V2k

)
= −1,

(
P + 1

V2k

)
= 1, and

(
5

V2k

)
= 1 by (2.16), (2.17),

and (2.20), respectively.

Case II. Let P2 ≡ −1 (mod5). We get 5x2 ≡ −1 (modP) since P|Un when n is even. This
shows that

−1 =
(
P

5

)
=

(
5

P

)
=

(−1

P

)
,

which implies that P ≡ 3, 7 (mod8). Since n is even, we get n = 6q + r , r = 0, 2, 4. Then
5x2+1≡ Ur (mod8) by (2.5). If r = 0, then we get 5x2 ≡ −1 (mod8),which is impossible.
Let r = 2. Then 5x2 +1 ≡ U2 (mod8) by (2.5), which shows that 5x2 +1 ≡ P (mod8). But
this is impossible since P ≡ 3, 7 (mod8). Let r = 4. Then n = 12t + 4 or n = 12t + 10 for
some integer t. Let n = 12t + 10. Then n = 12q1 − 2 with q1 > 0. Thus, n = 2 · 2ka − 2
with a odd and k ≥ 1. Then it follows that

5x2 = −1 +Un ≡ −1 −U−2 (modV2k )

by (2.3), which implies that
5x2 ≡ P − 1 (modV2k ).

This is impossible since

(
P − 1

V2k

)
= 1 and

(
5

V2k

)
= −1 by (2.17) and (2.20), respectively.

Let n = 12t + 4. Since 16|U6, we get 5x2 + 1 = Un ≡ U4 (mod16) by (2.1). A simple
computation shows that 5x2 + 1 ≡ 1, 5, 6, 14 (mod16) and therefore U4 ≡ 1, 5, 6, 14
(mod16). Moreover, we have 5x2 + 1 = Un ≡ U4 ≡ −P (mod8) by (2.5). Using the fact
that 5x2 + 1 ≡ 1, 5, 6, 14 (mod8), we see that P ≡ 3, 7 (mod8). Since P ≡ 3, 7 (mod8)
and P3 − 2P = U4 ≡ 1, 5, 6, 14 (mod16), it is seen that P ≡ 3, 15 (mod16). Let P ≡ 3
(mod16) and P ≡ 3 (mod5). Since n is even, n = 10q + r, r ∈ {0, 2, 4, 6, 8}. Using 5|U5,

we get 5x2 + 1 = Un ≡ Ur (mod5) by (2.1). A simple computation shows that r = 4. Since
n = 10q + 4 and n = 12t + 4, we get n = 60k + 4 for some natural number k. Thus, by
using (2.2), it is seen that

Un = U60k+4 ≡ U4 (modV5),
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which implies that
5x2 ≡ P3 − 2P − 1 (modP4 − 5P2 + 5)

since V5 = P(P4 − 5P2 + 5). This shows that(
5

P4 − 5P2 + 5

)
=

(
P3 − 2P − 1

P4 − 5P2 + 5

)
=

(
(P3 − 2P − 1)/4

P4 − 5P2 + 5

)
.

By using the facts that (P3 − 2P − 1)/4 ≡ 1 (mod4), P4 − 5P2 + 5 ≡ 1 (mod5),
P4 − 5P2 + 5 ≡ 9 (mod16), and −3P2 + P + 5 ≡ 13 (mod16), we get

1 =
(

5

P4 − 5P2 + 5

)
=

(
P4 − 5P2 + 5

(P3 − 2P − 1)/4

)
=

( −3P2 + P + 5

(P3 − 2P − 1)/4

)

=
(
(P3 − 2P − 1)/4

−3P2 + P + 5

)
=

(
P3 − 2P − 1

−3P2 + P + 5

)
=

(
9(P3 − 2P − 1)

−3P2 + P + 5

)

=
( −2(P + 2)

−3P2 + P + 5

)
=

( −2

−3P2 + P + 5

) (
P + 2

−3P2 + P + 5

)

= −
(

P + 2

−3P2 + P + 5

)
= −

(−3P2 + P + 5

P + 2

)
= −

( −1

P + 2

)
= −1,

a contradiction. Let P ≡ 3 (mod16) and P ≡ 2 (mod5). Then (P − 1)/2 ≡ 3 (mod5) and
(P − 1)/2 ≡ 1 (mod8) and therefore(

5

(P − 1)/2

)
= −1 and

( −2

(P − 1)/2

)
= 1. (3.4)

Moreover,

5x2 = −1 +Un = −1 +U12t+4 ≡ −1 +U4 ≡ P3 − 2P − 1 (modU3)

by (2.1). This implies that

5x2 ≡ P3 − 2P − 1 (modP − 1).

This shows that
5x2 ≡ −2 (mod(P − 1)/2),

which is impossible by (3.4). Let P ≡ 15 (mod16). Then (P2 − 3)/2 ≡ 3 (mod5) and
(P2 − 3)/2 ≡ 7 (mod8).Moreover, we get

5x2 = −1 +Un = −1 +U12t+4 ≡ −1 +U4 ≡ P3 − 2P − 1 (modV3)

by (2.2). This shows that
5x2 ≡ P − 1 (mod(P2 − 3)/2)

and therefore (
5

(P2 − 3)/2

)
=

(
P − 1

(P2 − 3)/2

)
.

This is impossible since

−1 =
(
(P2 − 3)/2

5

)
=

(
5

(P2 − 3)/2

)
=

(
(P − 1)/2

(P2 − 3)/2

)(
2

(P2 − 3)/2

)

=
(

(P − 1)/2

(P2 − 3)/2

)
= −

(
(P2 − 3)/2

(P − 1)/2

)
= −

( −1

(P − 1)/2

)
= 1.
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Now assume that n > 3 and n is odd. Then n = 2m + 1 with m > 1. Therefore U2m+1 =
5x2 + 1, which implies that 5x2 = U2m+1 − 1 = UmVm+1 by ( 2.9). Let m be odd. Then
(Um, Vm+1) = 1 by (2.13) and ( 2.8). Thus,

Um = a2 and Vm+1 = 5b2 (3.5)

or
Um = 5a2 and Vm+1 = b2 (3.6)

for some integers a and b.The identities (3.5) and (3.6) are impossible by (2.14) and Theorem
2.9, respectively. Let m be even. Then (Um, Vm+1) = P by (2.13). Thus,

Um = Pa2 and Vm+1 = 5Pb2 (3.7)

or
Um = 5Pa2 and Vm+1 = Pb2 (3.8)

for some integers a and b.The identities (3.7) and (3.8) are impossible by (2.14) and Theorem
2.3, respectively. Therefore n ≤ 3. If n = 3, we get P2 − 1 = U3 = 5x2 + 1, which implies
that P2 ≡ 2 (mod5). This is impossible. Thus, n = 1 or n = 2. 	


Theorem 3.4 If Un = 7x2 + 1 for some integer x, then n = 1, 2, 3.

Proof Assume that Un = 7x2 +1 for some integer x . If 7|P, then by Theorem 2.7, n = 1.
Assume that 7 � P . Let n > 2 and n be even. Then 7x2 + 1 ≡ 0 (modP). This shows that(
7

P

)
=

(−1

P

)
, which implies that

(
P

7

)
= 1. Therefore P ≡ 1, 2, 4 (mod7). Now we

distinguish three cases.

Case I. Let P ≡ 1 (mod7). Since n is even, n = 4q + r for some q > 0 with r = 0, 2. Thus,
n = 2 · 2ka + r with a odd and k ≥ 1. Then we get

7x2 = −1 +Un ≡ −1 −Ur (modV2k )

by (2.3), which implies that

7x2 ≡ −1,−(P + 1) (modV2k ).

This is impossible since

( −1

V2k

)
= −1,

(
P + 1

V2k

)
= 1, and

(
7

V2k

)
= 1 by (2.16), (2.17),

and (2.21), respectively.

Case II. Let P ≡ 4 (mod7). Then 7|V2 and
7x2 = −1 +Un = −1 +U4q+r ≡ −1 ±Ur (modV2)

by (2.2). This is impossible since 7 � (−1 ±Ur ) for r = 0, 2.

Case III. Let P ≡ 2 (mod7). If n = 4q + 2, then n = 4(q + 1) − 2 = 2 · 2ka − 2 with a
odd and k ≥ 1. Thus, we get

7x2 = −1 +Un ≡ −1 −U−2 (modV2k )

by (2.3), which implies that
7x2 ≡ P − 1 (modV2k ).
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But this is impossible since

(
P − 1

V2k

)
= 1 and

(
7

V2k

)
= −1 by (2.17) and (2.21), respec-

tively. Let n = 4q. Then n = 12t + r with r = 0, 4, 8. Assume that n = 12t. Since P is
odd, we can write P2 − 1 = 2ma with a odd. Thus,

7x2 = −1 +Un ≡ −1 +U0 (modU3)

by (2.1), which implies that
7x2 ≡ −1 (moda).

This shows that

(
7

a

)
=

(−1

a

)
and therefore

(a
7

)
= 1. Thus,

1 =
(a
7

)
=

(
2ma

7

)
=

(
P2 − 1

7

)
=

(
3

7

)
= −1,

a contradiction. Assume that n = 12t + 4. Since 16|U6, we get Un ≡ U4 (mod16) by (2.1).
This shows that 7x2+1 ≡ P3−2P (mod16). Since 7x2+1 ≡ 0, 1, 8, 13 (mod16), a simple
computation shows that P ≡ 11, 15 (mod16). Let P ≡ 11 (mod16). Then

7x2 = −1 +Un = −1 +U12t+4 ≡ −1 +U4 ≡ P3 − 2P − 1 (modU3)

by (2.1), which shows that 7x2 ≡ −2 (modP − 1). Thus, we get

(
7

(P − 1)/2

)
=( −2

(P − 1)/2

)
and therefore

(
(P − 1)/2

7

)
=

(
2

(P − 1)/2

)
. But this is impossible since

(P−1)/2 ≡ 5 (mod8) and (P−1)/2 ≡ 4 (mod7). Let P ≡ 15 (mod16).By using a similar
argument, it is seen that 7x2 ≡ P − 1 (modP2 − 3). This shows that(

7

(P2 − 3)/2

)
=

(
(P − 1)/2

(P2 − 3)/2

) (
2

(P2 − 3)/2

)
.

Since (P2 − 3)/2 ≡ 4 (mod7), (P2 − 3)/2 ≡ 7 (mod8), and (P − 1)/2 ≡ 7 (mod8), we
get

−1 =
(

7

(P2 − 3)/2

)
=

(
(P − 1)/2

(P2 − 3)/2

)
= −

(
(P2 − 3)/2

(P − 1)/2

)
= −

( −1

(P − 1)/2

)
= 1,

a contradiction. Assume that n = 12t + 8. Then we can write n = 12m − 4. A simple
computation shows that P ≡ 1, 5 (mod16) in this case. Let P ≡ 1 (mod16). Then

7x2 = −1 +Un = −1 +U12m−4 ≡ −1 +U−4 ≡ −(P3 − 2P + 1) (modU3),

which implies that 7x2 ≡ −2 (modP + 1). Thus, we get(
7

(P + 1)/2

)
=

( −2

(P + 1)/2

)
.

Therefore by using the facts that (P + 1)/2 ≡ 1 (mod8) and (P + 1)/2 ≡ 5 (mod7), we get

−1 =
(
(P + 1)/2

7

)
=

(
2

(P + 1)/2

)
= 1,

a contradiction. Let P ≡ 5 (mod16). Then

7x2 = −1 +Un = −1 +U12m−4 ≡ −1 +U−4 ≡ −(P3 − 2P + 1) (modV3)
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by (2.2), which implies that 7x2 ≡ −(P + 1) (modP2 − 3). By using the facts that (P2 −
3)/2 ≡ 4 (mod7), (P2 − 3)/2 ≡ 3 (mod8), and (P + 1)/2 ≡ 3 (mod8), we get

1 =
(

7

(P2 − 3)/2

) ( −1

(P2 − 3)/2

) (
(P + 1)/2

(P2 − 3)/2

) (
2

(P2 − 3)/2

)

= −
(
(P2 − 3)/2

7

) (
(P + 1)/2

(P2 − 3)/2

)
= −

(
(P + 1)/2

(P2 − 3)/2

)

=
(
(P2 − 3)/2

(P + 1)/2

)
=

( −1

(P + 1)/2

)
= −1,

a contradiction. Thus, we conclude that n ≤ 2. Now assume that n is odd. Then n = 2m + 1
with m ≥ 0. Thus, U2m+1 = 7x2 + 1, which implies that 7x2 = U2m+1 − 1 = UmVm+1 by
(2.9). Let m be odd. Then (Um, Vm+1) = 1 by (2.13) and (2.8). Thus,

Um = a2 and Vm+1 = 7b2 (3.9)

or
Um = 7a2 and Vm+1 = b2 (3.10)

for some integers a and b. Assume that (3.9) is satisfied. Then by Theorem 2.10, we get
m = 1 and therefore n = 3. The identity (3.10) is impossible by Theorem 2.9. Let m be
even. Then (Um, Vm+1) = P by (2.13). This implies that

Um = Pa2 and Vm+1 = 7Pb2 (3.11)

or
Um = 7Pa2 and Vm+1 = Pb2. (3.12)

for some integers a and b. By using Theorems 2.3 and 2.8, we have in both cases that
m + 1 = 1 and therefore n = 1. Consequently, we have n = 1, 2, 3. 	

Theorem 3.5 If Un = 10x2 + 1 for some integer x, then n = 1, 2.

Proof If 5|P, then by Theorem 3.1, n = 1 or n = 5. Assume that 5 � P . Let n > 2 and n
be even. Then 10x2 + 1 ≡ 0 (modP) since P|Un when n is even. Therefore(

5

P

)
=

(−2

P

)
.

If P ≡ ±1 (mod5), then P ≡ 1, 3 (mod8). If P ≡ ±2 (mod5), then P ≡ 5, 7 (mod8). The
remainder of the proof is split into two cases.

Case I. Let P ≡ ±1 (mod5). Since n is even, we get n = 4q + r for some positive integer
q with r = 0, 2. Thus, n = 2 · 2ka + r with a odd and k ≥ 1. Then

10x2 = −1 +Un ≡ −1 −Ur (modV2k )

by (2.3). This shows that

10x2 ≡ −1,−(P + 1) (modV2k ),

which is impossible since

(
2

V2k

)
= 1,

( −1

V2k

)
= −1,

(
P + 1

V2k

)
= 1, and

(
5

V2k

)
= 1 by

(2.15), (2.16), ( 2.17), and (2.20), respectively.

Case II. Let P ≡ ±2 (mod5). Since n is even, we get n = 6q + r with r = 0, 2, 4.
Then 10x2 + 1 ≡ Ur (mod8) by (2.5). If r = 0, then we get 10x2 ≡ −1 (mod8), which
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is impossible. Let r = 2. Then 10x2 +1 ≡ U2 (mod8), which shows that 10x2 +1 ≡ P
(mod8),which is impossible since P ≡ 5, 7 (mod8). Let r = 4. Then either n = 12t+10 or
n = 12t + 4 for some nonnegative integer t. Assume that n = 12t + 10. Then n = 12q1 − 2
with q1 > 0. Thus, n = 2 · 2ka − 2 with a odd and k ≥ 1. This shows that

10x2 ≡ −1 +Un ≡ −1 −U−2 (modV2k )

by (2.3), which shows that
10x2 ≡ P − 1 (modV2k ).

This is impossible since

(
2

V2k

)
= 1,

(
P − 1

V2k

)
= 1, and

(
5

V2k

)
= −1 by (2.15), (2.17),

and (2.20), respectively. Assume that n = 12t + 4. It can be seen that Un = 10x2 + 1
≡ 1, 9, 11 (mod16). Moreover, we get Un ≡ U4 (mod16) by ( 2.1) since 16|U6. A simple
computation shows that P ≡ 7, 13, 15 (mod16) since P ≡ 5, 7 (mod8) andU4 = P3 − 2P.
Let P ≡ 7, 15 (mod16). Then (P2 − 3)/2 ≡ 3 (mod5) and (P2 − 3)/2 ≡ 7 (mod8).
Moreover, we get

10x2 = −1 +Un = −1 +U12t+4 ≡ −1 +U4 ≡ P3 − 2P − 1 (modV3)

by (2.2). This shows that
10x2 ≡ P − 1 (mod(P2 − 3))

and therefore
5x2 ≡ (P − 1)/2 (mod(P2 − 3)/2).

Then we get (
5

(P2 − 3)/2

)
=

(
(P − 1)/2

(P2 − 3)/2

)
.

This is impossible since

−1 =
(
(P2 − 3)/2

5

)
=

(
5

(P2 − 3)/2

)
=

(
(P − 1)/2

(P2 − 3)/2

)

= −
(
(P2 − 3)/2

(P − 1)/2

)
= −

( −1

(P − 1)/2

)
= 1.

Let P ≡ 13 (mod16) and P ≡ 2 (mod5). Then

(P − 1)/4 ≡ 4 (mod5) and (P − 1)/4 ≡ 3 (mod4)

and therefore (
5

(P − 1)/4

)
= 1 and

( −1

(P − 1)/4

)
= −1. (3.13)

Moreover,

10x2 = −1 +Un = −1 +U12t+4 ≡ −1 +U4 ≡ P3 − 2P − 1 (modU3)

by (2.1). This implies that

10x2 ≡ P3 − 2P − 1 (modP − 1).

This shows that
10x2 ≡ −2 (mod(P − 1)/2)
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and therefore
5x2 ≡ −1 (mod(P − 1)/4),

which is impossible by (3.13). Let P ≡ 13 (mod16) and P ≡ 3 (mod5). Since n is even,
n = 10q + r with r ∈ {0, 2, 4, 6, 8}. Since 5|U5 by (2.7), we get 10x2 + 1 = Un ≡ Ur

(mod5) by (2.1).Asimple computation shows that r = 4.Since n = 10q+4 and n = 12t+4,
we get n = 60k + 4 for some natural number k. Thus, by using (2.2), it is seen that

Un = U60k+4 ≡ U4 (modV5),

which implies that
10x2 ≡ P3 − 2P − 1 (modP4 − 5P2 + 5)

since V5 = P(P4 − 5P2 + 5). This shows that

5x2 ≡ (P3 − 2P − 1)/2 (modP4 − 5P2 + 5)

and therefore (
5

P4 − 5P2 + 5

)
=

(
(P3 − 2P − 1)/2

P4 − 5P2 + 5

)
.

Since (P3 − 2P − 1)/2 ≡ 5 (mod8), P4 − 5P2 + 5 ≡ 1 (mod5), P4 − 5P2 + 5 ≡ 9
(mod16), and −3P2 + P + 5 ≡ 7 (mod16), we get

1 =
(
P4 − 5P2 + 5

5

)
=

(
5

P4 − 5P2 + 5

)
=

(
(P3 − 2P − 1)/2

P4 − 5P2 + 5

)

=
(

P4 − 5P2 + 5

(P3 − 2P − 1)/2

)
=

( −3P2 + P + 5

(P3 − 2P − 1)/2

)
=

(
(P3 − 2P − 1)/2

−3P2 + P + 5

)

=
(

P3 − 2P − 1

−3P2 + P + 5

)(
2

−3P2 + P + 5

)
=

(
P3 − 2P − 1

−3P2 + P + 5

)

=
(
9(P3 − 2P − 1)

−3P2 + P + 5

)
=

( −2(P + 2)

−3P2 + P + 5

)

=
( −2

−3P2 + P + 5

)(
P + 2

−3P2 + P + 5

)

= −
(

P + 2

−3P2 + P + 5

)
=

(−3P2 + P + 5

P + 2

)
=

( −1

P + 2

)
= −1,

a contradiction. Now assume that n > 1 and n is odd. Then n = 2m + 1 with m ≥ 1.
Therefore U2m+1 = 10x2 + 1, which implies that 10x2 = U2m+1 − 1 = UmVm+1 by (2.9).
Let m be odd. Then (Um, Vm+1) = 1 by (2.13) and (2.8). Thus,

Um = a2 and Vm+1 = 10b2, (3.14)

Um = 10a2 and Vm+1 = b2, (3.15)

Um = 2a2 and Vm+1 = 5b2, (3.16)

or
Um = 5a2 and Vm+1 = 2b2 (3.17)

for some integers a and b. The identity (3.15) is impossible by Theorem 2.9. The identities
(3.14) and (3.16) are impossible by (2.14), and (3.17) is impossible by Theorem 2.9. Let m
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be even. Then (Um, Vm+1) = P by (2.13). Thus,

Um = Pa2 and Vm+1 = 10Pb2, (3.18)

Um = 10Pa2 and Vm+1 = Pb2, (3.19)

Um = 2Pa2 and Vm+1 = 5Pb2, (3.20)

or
Um = 5Pa2 and Vm+1 = 2Pb2 (3.21)

for some integers a and b. The identities (3.18) and (3.20) are impossible by (2.14), and
(3.19) is impossible by Theorem 2.3. Assume that (3.21) is satisfied. Then by Theorem 2.4,
we get m = 2 and therefore n = 5. Consequently, we have n = 1, 2, 5. But it can be seen
that 5 is not a solution and therefore n = 1, 2. 	


By usingMAGMA [25], it can be shown that the equation 2Px2+1 = U5 = P4−3P2+1
has only the solution P = 3.Therefore we can give the following corollary by using Theorem
3.1 and Lemmas 2.13 and 2.14.

Corollary 3.6 The equations x2 − (P2 −4)(2Py2 +1)2 = 4 and (2Px2 +1)2 − P(2Px2 +
1)y + y2 = 1 have positive integer solutions only when P = 3. The solutions are given by
(x, y) = (123, 3) and (x, y) = (3, 21), respectively.

Corollary 3.7 Let k = 1, 2, 3, 5, 10. The equations x2 − (P2 − 4)(ky2 + 1)2 = 4 and
(kx2 + 1)2 − P(kx2 + 1)y + y2 = 1 have positive integer solutions only when P = ka2 + 1
for some integer a.

Corollary 3.8 The equations x2 − (P2 − 4)(6y2 + 1)2 = 4 and (6x2 + 1)2 − P(6x2 +
1)y + y2 = 1 have positive integer solutions only when P = 6a2 + 1 for some integer a or
P = 3(Um(10,−1)+Um−1(10,−1)) for some m ≥ 1 and there is only one solution in each
case.

Proof In order to prove the corollary we must solve the equation 6x2 + 1 = U5 = P4 −
3P2 + 1. Since 6x2 + 1 = P4 − 3P2 + 1, it is seen that P = 3a and x = 3b for some
integers a and b. Then we get a2(3a2 − 1) = 2b2, which implies that 3a2 − 1 = 2v2. This
shows that 3a2 − 2v2 = 1. Thus, by Lemma 2.11, we get a =Um(10,−1)−Um−1(10,−1)
for some m ≥ 1. Since P = 3a, the proof follows. 	


From Theorem 3.4 and Lemma 2.12, we can give the following corollary easily.

Corollary 3.9 The equations x2 − (P2 − 4)(7y2 + 1)2 = 4 and (7x2 + 1)2 − P(7x2 +
1)y + y2 = 1 have positive integer solutions only when P = 7a2 + 1 for some integer a
or P = 3 (Um+1(16 − 1) −Um(16,−1)) for some m ≥ 1 and there is only one solution in
each case.
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