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Abstract The celebrated construction by Munn of a fundamental inverse semigroup TE
from a semilattice E provides an important tool in the study of inverse semigroups and
ample semigroups. Munn’s semigroup TE has the property that a semigroup is a fundamental
inverse semigroup (resp. a fundamental ample semigroup) with a semilattice of idempotents
isomorphic to E if and only if it is embeddable as a full inverse subsemigroup (resp. a full
subsemigroup) into TE . The aim of this paper is to extendMunn’s approach to a class of abun-
dant semigroups, namely abundant semigroups with a multiplicative ample transversal. We
present here a semigroup T(I,�,E◦,P) from a so-called admissible quadruple (I,�, E◦, P)

that plays for abundant semigroups with a multiplicative ample transversal the role that TE
plays for inverse semigroups and ample semigroups. More precisely, we show that a semi-
group is a fundamental abundant semigroup (resp. fundamental regular semigroup) having a
multiplicative ample transversal (resp. multiplicative inverse transversal) whose admissible
quadruple is isomorphic to (I,�, E◦, P) if and only if it is embeddable as a full subsemi-
group (resp. full regular subsemigroup) into T(I,�,E◦,P). Our results generalize and enrich
some classical results of Munn on inverse semigroups and of Fountain on ample semigroups.

Keywords The Munn semigroup of an admissible quadruple · Multiplicative ample
transversal · Fundamental abundant semigroup

Mathematics Subject Classification 20M10

1 Introduction

Let S be a semigroup. We denote the set of all idempotents of S by E(S) and the set of
all inverses of x ∈ S by V (x). Recall that V (x) = {a ∈ S|xax = x, axa = a} for all
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44 S. Wang

x ∈ S. A semigroup S is called regular if V (x) �= ∅ for any x ∈ S, and a regular semigroup
S is called inverse if E(S) is a commutative subsemigroup (i.e. a subsemilattice) of S, or
equivalently, the cardinal of V (x) is equal to 1 for all x ∈ S.

Recall that a regular semigroup S is fundamental if the largest congruence contained inH
on S is the identity congruence. Structure theorems for certain important subclasses of the
class of fundamental regular semigroups are alreadyknown.Thefirst initiating thework in this
direction is due toMunn [19].He proved that given a semilattice E , theMunn semigroup TE of
all isomorphisms of principal ideals of E is “maximal” in the class of all fundamental inverse
semigroups whose semilattices of idempotents are E , that is, every semigroup belonging to
this class is isomorphic to a full inverse subsemigroup of TE . Further from Munn [19] if S is
an inverse semigroup such that E(S) is isomorphic to a given semilattice E , then there exists
a homomorphism f : S → TE and the kernel of f is the largest congruence contained in H
on S.

The pioneering work of Munn was generalized first by Hall in 1971 to orthodox semi-
groups (i.e. regular semigroups whose idempotents form subsemigroups) in [17] in which
the Hall semigroup WB of a band B was constructed. Recall that a band is a semigroup
in which every element is idempotent. The Hall semigroup WB has properties analogous
to those described above for TE (see Hall [17] for details). As another direction, Fountain
[10] generalized Munn’s result to a class of non-regular semigroup, namely adequate semi-
groups, by considering Green’s ∗-relations L∗ andR∗ on semigroups. Let S be a semigroup
and a, b ∈ S. Then a and b are L∗-related if and only if they are L-related in an oversemi-
group of S; the relation R∗ can be defined dually. It is obvious that L∗ and R∗ are a left
congruence and a right congruence, respectively. We denote the L∗-class (resp.R∗-class) of
S containing a ∈ S by L∗

a(S) (resp. R∗
a(S)). A semigroup S is abundant if each L∗-class and

eachR∗–class of S contains an idempotent and an abundant semigroup S is called adequate
if E(S) is subsemilattice of S. If S is adequate, theL∗-class (resp.R∗-class) of a ∈ S contains
a unique idempotent, denoted by a∗ (resp. a+). From Proposition 1.6 in [10], if S is adequate,
then for all a, b ∈ S, we have aL∗b (resp. aR∗b) if and only if a∗ = b∗ (resp. a+ = b+),
moreover,

(ab)∗ = (a∗b)∗, (ab)+ = (ab+)+, a+(ab)+ = (ab)+, (ab)∗b∗ = (ab)∗. (1.1)

If S is a regular semigroup, then L∗ = L andR∗ = R. Obviously, regular semigroups are
abundant and inverse semigroups are adequate. Moreover, for an inverse semigroup S and
a ∈ S, we have a∗ = a−1a and a+ = aa−1. For an abundant semigroup, letH∗ = L∗ ∩ R∗
and let D∗ be the smallest equivalence containing L∗ and R∗. An abundant semigroup S is
called fundamental if the largest congruence μS contained inH∗ is the identity congruence.
From Proposition 2.1 in [7], for an abundant semigroup S and a, b ∈ S, we have

aμSb if and only if eaL∗eb and aeR∗be for all e ∈ E(S). (1.2)

In [10], Fountain shows that if S is an adequate semigroup and satisfies the following
condition

(∀a ∈ S)(∀e ∈ E(S)) ea = a(ea)∗, ae = (ae)+a, (1.3)

then there is a homomorphism f : S → TE(S) whose kernel is the largest congruence
contained in H∗ on S. Such a semigroup is called type A by Fountain in [10] and called
ample by Gould in [14]. Obviously, an inverse semigroup is ample.

Following the above direction, Fountain et al. [11] and Gomes and Gould [12] investigate
other classes of non-regular semigroups having a semilattice of idempotents by usingMunn’s
approach. More recent developments in this area can be found in the survey articles of Gould
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[15] and Hollings [18]. Furthermore El-Qallali et al. [9], Gomes and Gould [13] and Wang
[21] go a step further to extend Hall’s approach for orthodox semigroups to some classes
of non-regular semigroups having a band of idempotents. From the above texts, we can see
that the approaches of Munn and Hall can be extended to some generalizations of inverse
semigroups and orthodox semigroups, respectively.

On the other hand, Blyth andMcFadden [3] introduced the concept of inverse transversals
for regular semigroups. A subsemigroup S◦ of a regular semigroup S is called an inverse
transversal of S if V (x)∩ S◦ contains exactly one element for all x ∈ S. Clearly, in this case,
S◦ is an inverse subsemigroup of S. Since an inverse semigroup can be regarded as an inverse
transversal of itself, the class of regular semigroups with inverse transversals contains the
class of inverse semigroups as a proper subclass.Regular semigroupswith inverse transversals
are investigated extensively by many authors (see Blyth [4] and Tang [20] for details), and
some generalizations of inverse transversals are proposed (see [5,8,22,23]). In particular,
El-Qallali introduced adequate transversals and ample transversals for abundant semigroups
in [8]. It is well known that both adequate semigroups (resp. ample semigroups) and regular
semigroups with inverse transversals are abundant semigroups having adequate transversals
(resp. ample transversals). Adequate transversals of abundant semigroups have been studied
by several researchers and some meaningful results are obtained, see [1,2,6,16] and their
references.

Inspired by the above facts, the following problem is natural: Can we study abundant
semigroups with an adequate transversal byMunn’s approach? In this paper, we shall initiate
the investigation of the above question by extending Munn’s approach to abundant semi-
groups with a multiplicative ample transversal. We present here a semigroup T(I,�,E◦,P)

from an admissible quadruple (I,�, E◦, P) (see Definition 3.1) that plays for abundant
semigroups with a multiplicative ample transversal the role that the Munn semigroup TE
plays for inverse semigroups and ample semigroups. More precisely, for a given admissible
quadruple (I,�, E◦, P), we show that a semigroup is a fundamental abundant semigroup
(resp. fundamental regular semigroup) having a multiplicative ample transversal (resp. mul-
tiplicative inverse transversal) whose admissible quadruple is isomorphic to (I,�, E◦, P)

if and only if it is embeddable as a full subsemigroup (resp. full regular subsemigroup) into
T(I,�,E◦,P). Moreover, some further properties of admissible quadruples are also explored.

2 Preliminaries

This section gives some useful results related to ample transversals which will be used
throughout the paper. We begin with the following alternative description of L∗, which may
be found in Fountain [10].

Lemma 2.1 Elements a, b of a semigroup S are L∗-related if and only if, for all x, y ∈ S1,
ax = ay if and only if bx = by.

Let S be an abundant semigroup and U an abundant subsemigroup of S. If there exist an
idempotent e ∈ L∗

a(S)∩U and an idempotent f ∈ R∗
a(S)∩U for all a ∈ U , thenU is called

a ∗-subsemigroup of S. It is well known that U is a ∗-subsemigroup if and only if

L∗(U ) = L∗(S) ∩ (U ×U ), R∗(U ) = R∗(S) ∩ (U ×U ).

It is obvious that a regular subsemigroup of a regular semigroup S is always a
∗-subsemigroup of S. From El-Qallali [8], an adequate ∗-subsemigroup S◦ of an abundant
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semigroup S is called an adequate transversal of S if for each element a ∈ S, there are a
unique element a in S◦ and u, v ∈ E(S) such that

a = uav, where uLa+, vRa∗ and a+, a∗ ∈ E(S◦). (2.1)

In this case, u, v are uniquely determined by a and so we denote them by ua and va ,
respectively. An adequate transversal S◦ of S is called an ample transversal if S◦ is also an
ample semigroup. Let S be an abundant semigroup with an ample transversal S◦. Denote

I S = {ua |a ∈ S}, �S = {va |a ∈ S}.
The following lemma characterizes the relations L∗ and R∗ on an abundant semigroups

having an ample transversal.

Lemma 2.2 (Proposition 2.3 in [6]) Let S be an abundant semigroupwith an ample transver-
sal S◦ and a, b ∈ S. Then aR∗b (resp. aL∗b) if and only if ua = ub (resp. va = vb).

Recall that a subsemigroup U of a semigroup S is full if E(S) ⊆ U .

Lemma 2.3 Let S be an abundant semigroup with an ample transversal S◦ and U a full
subsemigroup of S. Then U is an abundant semigroup with an ample transversal S◦ ∩ U.
Moreover, we have I S = IU and �S = �U .

Proof Since S is abundant, S◦ is an ample ∗-subsemigroup of S andU is full, by Lemma 2.1
and its dual, we can easily show that U is abundant and S◦ ∩U is an ample ∗-subsemigroup
of U . Now, let a ∈ U . Since U is full, a = uaava and ua, va, a∗, a+ ∈ E(S), we have

a = a+a a∗ = a+uaavaa
∗ = a+aa∗ ∈ U (2.2)

by (2.1). This yields that the equality a = uaava holds in U , whence S◦ ∩ U is an ample
transversal of U and I S = IU ,�S = �U . ��

An ample transversal S◦ of an abundant semigroup S is multiplicative if f g ∈ E(S◦) for
all f ∈ �S and g ∈ I S , or equivalently, if vaub ∈ E(S◦) for all a, b ∈ S.

Corollary 2.4 Let S be an abundant semigroup with an ample transversal S◦ and U a full
subsemigroup of S.

(1) If S◦ is multiplicative, then S◦ ∩U is also multiplicative.
(2) If S◦ is fundamental, then U is fundamental.

Proof Item (1) follows from the fact I S = IU and �S = �U obtained by Lemma 2.3. Now
we prove the item (2). Let a, b ∈ U and aμUb. Then aH∗b in U . By Lemma 2.2 and (2.1),
we have a+Lua = ubLb+

and a∗Rva = vbRb
∗
whence a+ = b

+
and a∗ = b

∗
. Since

aμUb, we have

a = (a+aa∗)μU (b
+
bb

∗
) = b

by (2.2). In view of the fact (1.2), we have eaL∗eb and aeR∗be inU for all e ∈ E(U ). Since
U is full, we have E(S◦) ⊆ E(U ) and so eaL∗eb and aeR∗be in U for all e ∈ E(S◦). This
implies that eaL∗eb and aeR∗be in S◦∩U for all e ∈ E(S◦) since S◦∩U is a ∗-subsemigroup
of U . Observe that S◦ ∩U is an ample subsemigroup of the ample semigroup S◦, it follows
that eaL∗eb and aeR∗be in S◦ for all e ∈ E(S◦). In view of the fact (1.2) again, we have
aμS◦b. This gives a = b since S◦ is fundamental. This implies that a = uaava = ubbvb = b.
Thus, U is fundamental. ��
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To give further properties of abundant semigroups with an ample transversal, we need the
following notion. Let S be an abundant semigroup and B the subsemigroup generated by
E(S). For e ∈ E(S), we denote the subsemigroup of eBe generated by the idempotents of
eBe by 〈e〉. FromEl-Qallali and Fountain [7], we say S is idempotent-connected (IC for short)
if for all u ∈ R∗

a(S) ∩ E(S) and v ∈ L∗
a(S) ∩ E(S), there is an isomorphism α : 〈u〉 → 〈v〉

satisfying xa = a(xα) for all x ∈ 〈u〉. On IC abundant semigroups, we have the following.

Lemma 2.5 Let S be an IC abundant semigroup and a ∈ S. If u, v ∈ E(S) and uR∗aL∗v,
then there exists a unique isomorphism α from 〈u〉 onto 〈v〉 such that a(xα) = xa for all
x ∈ 〈u〉. This isomorphism is called the idempotent-connected isomorphism from 〈u〉 onto
〈v〉.
Proof Let α and β be two isomorphisms satisfying the conditions given in the lemma. Then
for all x ∈ 〈u〉, we have a(xα) = xa = a(xβ). Since aL∗v and xα, xβ ∈ 〈v〉, we have
xα = v(xα) = v(xβ) = xβ by Lemma 2.1. ��

Combining Lemmas 2.1 and 4.1 in El-Qallali [8] and Proposition 3.1, Lemma 6.12 in Guo
[16], we have the following lemma.

Lemma 2.6 ([8,16])Let S be an abundant semigroupwith amultiplicative ample transversal
S◦. Then S is an IC abundant semigroup. Moreover, for a, b ∈ S and x ∈ E(S), we have

(1) uaR∗aL∗va.
(2) uab = ua(avaub)+, ab = āvaubb̄, vab = (vaubb)∗vb, x = vxux ∈ E(S◦).
(3) uua = ua, ua = a+ = vua , uva = a∗ = va, vva = va .

Corollary 2.7 Let S be an abundant semigroup with a multiplicative ample transversal S◦
and x ∈ E(S). Then x = uxvx .

Proof If x ∈ E(S), then by Lemma 2.6(2), x ∈ E(S◦). This implies that x+ = x . Therefore
x = ux xvx = ux x+vx = uxvx by (2.1). ��

Recall that a band B is called left normal (resp. right normal, normal) if e f g = eg f (resp.
e f g = f eg, e f ge = eg f e) for all e, f, g ∈ B.

Lemma 2.8 (Lemma 2.1 and Proposition 2.6 in [6]) Let S be an abundant semigroup with
a multiplicative ample transversal S◦. Then
(1) I S ∩ �S = E(S◦).
(2) I S = {e ∈ E(S)| there exists a unique e◦ ∈ E(S◦) such that eLe◦}, �S = { f ∈

E(S)| there exists a unique f ◦ ∈ E(S◦) such that fR f ◦}.
(3) I S (resp. �S) is a left normal band (resp. a right normal band).

To end this section, we explore the relationship between transversals. As usual, if S is
a regular semigroup with an inverse transversal S◦, then we denote the unique element in
VS◦(a) = V (a)∩ S◦ by a◦ for all a ∈ S, moreover, let (a◦)◦ = a◦◦. From the remarks before
Example 2.2 in [8] and Corollary 2.7 in [22], we have the fact below.

Lemma 2.9 ([8,22]) Let S be a regular semigroup and S◦ a subsemigroup of S. Then S◦
is an inverse transversal of S if and only if S◦ is an ample transversal of S. In this case,
ua = aa◦, a = a◦◦ and va = a◦a for all a ∈ S. As consequence, we have I S = {aa◦|a ∈ S}
and �S = {a◦a|a ∈ S}.

For multiplicative inverse transversals of bands, we have the following result.

Lemma 2.10 ([3]) Let B◦ be an inverse transversal of a band B. Then B◦ is multiplicative
if and only if B is normal.
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3 The Munn semigroups of admissible quadruples

In this section, a generalization of the Munn semigroup of a semilattice, namely the Munn
semigroup of an admissible quadruple, is constructed. Moreover, we show that this semi-
group is a fundamental regular semigroup with a multiplicative inverse transversal. We first
introduce admissible quadruples, which is inspired by Lemma 2.8.

Definition 3.1 Let I (resp.�) be a left normal band (resp. a right normal band), E◦ = I ∩�

a subsemilattice of I and �, and P = (Pf,g)�×I be a � × I -matrix over E◦. The quadruple
(I,�, E◦, P) is called admissible if for all g ∈ I and f ∈ �, there exist g◦, f ◦ ∈ E◦ such
that gLg◦, fR f ◦ and for all i, j ∈ E◦,

i Pf,g = Pi f,g, Pf,g j = Pf,g j , Pf, j = f j, Pi,g = ig. (3.1)

Remark 3.2 On admissible quadruples, we have the following remarks.

(1) Since E◦ is a subsemilattice, the elements g◦ and f ◦ in Definition 3.1 are uniquely
determined by g and f , respectively. In particular, i ∈ E◦ if and only if i◦ = i . Thus,
P◦
f,g = Pf,g for all f ∈ � and g ∈ I .

(2) If S is an abundant semigroupwith amultiplicative ample transversal S◦, then it is obvious
that (I S,�S, E(S◦), PS) is an admissible quadruple by Lemma 2.8, where PS

f,g is equal

to the product of f and g in S for all f ∈ � and g ∈ I . In this case, (I S,�S, E(S◦), PS) is
called the admissible quadruple of S. IfU is a full subsemigroup of S, then by Lemma 2.3
and Corollary 2.4(1), S◦∩U is a multiplicative ample transversal ofU and the admissible
quadruples of S and U are equal.

To construct theMunn semigroup of an admissible quadruple,we need somepreliminaries.
First, we have the following basic facts on admissible quadruples.

Lemma 3.3 Let (I,�, E◦, P) be an admissible quadruple and e, g ∈ I, f, h ∈ �. Then

eg = eg◦, (eg)◦ = e◦g◦, f h = f ◦h, ( f h)◦ = f ◦h◦.

Moreover, we have eE◦e = eE◦ and f E◦ f = E◦ f , which are subsemilattices of I and �,
respectively.

Proof Since gLg◦ and I is a left normal band, we have eg = egg◦ = eg◦g = eg◦. This
implies that e◦g = e◦g◦, and so egLe◦g = e◦g◦ ∈ E◦ by the fact that eLe◦. This yields that
(eg)◦ = e◦g◦. Finally, it follows that eE◦e = eE◦ by the fact that I is a left normal band.
Moreover, for i, j ∈ E◦, we have

(ei)(ej) = (eie) j = ei j = eji = (eje)i = (ej)(ei),

whence eE◦ is a subsemilattice of I . The remaining facts of this lemma can be proved by
symmetry. ��

Remark 3.4 Let I (resp.�) be a left normal band (resp. a right normal band), and E◦ = I∩�

be a subsemilattice of I and�. Suppose that for each e ∈ I and f ∈ � there exist e◦, f ◦ ∈ E◦
such that eLe◦ and fR f ◦, respectively. ThenbyLemma3.3 it is easy to see that (I,�, E◦, Q)

forms an admissible quadruple, where Q f,g = f ◦g◦ for all f ∈ � and g ∈ I . This admissible
quadruple is called the normal admissible quadruple determined by I,� and E◦.
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Let (I,�, E◦, P) be an admissible quadruple and e ∈ I, f ∈ �. If eE◦ is isomorphic to
E◦ f , we write eE◦ ∼= E◦ f , and denote the set of isomorphisms from eE◦ to E◦ f by Te, f .
Moreover, we denote

U = {(e, f ) ∈ I × �|eE◦ ∼= E◦ f }, T(I,�,E◦,P) =
⋃

(e, f )∈U
Te, f .

Obviously, the elements in the Munn semigroup TE◦ of the semilattice E◦ are contained
in T(I,�,E◦,P). The following proposition provides some other elements in T(I,�,E◦,P). As
usual, we use ιM to denote the identity transformation on the non-empty set M .

Proposition 3.5 Let (I,�, E◦, P) be an admissible quadruple and g ∈ I, f ∈ �. Define

π f,g : gPf,g E
◦ → E◦Pf,g f, x �→ x◦Pf,g f.

Then π f,g ∈ TgPf,g ,Pf,g f and the inverse mapping of π f,g is

π−1
f,g : E◦Pf,g f → gPf,g E

◦, y �→ gPf,g y
◦.

In particular, we have

πg◦,g: gE◦ → E◦g◦, x �→ x◦g◦, π f, f ◦ : f ◦E◦ → E◦ f, x �→ x◦ f

and πi, j = ιi j E◦ , πi,i = ιi E◦ for all i, j ∈ E◦.

Proof Clearly, π f,g is well defined. Let x ∈ gPf,g E◦ and y ∈ E◦Pf,g f . Then by condition
(3.1) and Lemma 3.3, we have

gPf,g(x
◦Pf,g f )

◦ =gPf,gx
◦Pf,g f

◦ = g f ◦Pf,gx
◦ =gPf ◦ f,gx

◦ = gPf,gx
◦ = gPf,gx = x .

Dually, we can obtain that (gPf,g y◦)◦Pf,g f = y. Moreover, for x1, x2 ∈ gPf,g E◦, by
Lemma 3.3 and fR f ◦, we have (x1x2)π f,g = (x1x2)◦Pf,g f = x◦

1 x
◦
2 Pf,g f and

(x1π f,g)(x2π f,g) = (x◦
1 Pf,g f )(x

◦
2 Pf,g f ) = x◦

1 Pf,g( f x
◦
2 )Pf,g f

= x◦
1 Pf,g( f

◦x◦
2 )Pf,g f = x◦

1 x
◦
2 Pf,g( f

◦ f ) = x◦
1 x

◦
2 Pf,g f = (x1x2)π f,g.

This implies that the first part of this lemma holds. The remaining part follows from the
fact that

Pg◦,g = g◦g = g◦, Pf, f ◦ = f f ◦ = f ◦, Pi, j = i j, x◦ = x

for all g ∈ I, f ∈ � and i, j, x ∈ E◦. ��
The following results give some simple but useful properties of the elements in the set

T(I,�,E◦,P).

Lemma 3.6 Let (I,�, E◦, P) be an admissible quadruple, α ∈ Te, f and x ∈ eE◦, y ∈
E◦ f .

(1) eα = f and α−1 is an isomorphism from E◦ f onto eE◦.
(2) (x E◦)α = E◦(xα) and (E◦y)α−1 = (yα−1)E◦.
(3) (xα)◦ = (xα) f ◦ and xα = (xα)◦ f .
(4) (yα−1)◦ = e◦(yα−1) and yα−1 = e(yα−1)◦.

Proof (1) This is obvious.
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(2) Let xi ∈ x E◦, i ∈ E◦. Since I is a left normal band, we have xi x = xi and so

(xi)α = (xi x)α = (xi)α · (xα) = ((xi)α)◦(xα) ∈ E◦(xα)

by Lemma 3.3. Conversely, let u′ ∈ E◦(xα). Since xα ∈ E◦ f , we obtain that u′ ∈ E◦ f
whence u′ = uα for some u ∈ eE◦. Observe that I is a left normal band and � is a right
normal band, it follows that

uα = (uα)(xα) = (xα)(uα)(xα) = (xux)α = (xu)α.

Noticing that α is injective, we get u = xu = xu◦ ∈ x E◦ by Lemma 3.3. This implies
that u′ = uα ∈ (x E◦)α. The other identity can be proved by similar methods.

(3) Since xα ∈ E◦ f ⊆ �, we have xα = (xα) f = (xα)◦ f whence

(xα)◦ = ((xα) f )◦ = (xα)◦ f ◦ = (xα) f ◦

by Lemma 3.3.
(4) This is the dual of item (3). ��

Now, let (I,�, E◦, P) be an admissible quadruple, α ∈ Te, f , β ∈ Tg,h . Consider the
composition απ−1

f,gβ in the symmetric inverse semigroup on the set I ∪ �. Since

dom(π−1
f,gβ) = (gPf,g E

◦ ∩ gE◦)π f,g = (gPf,g E
◦)π f,g = E◦Pf,g f,

it follows that

dom(απ−1
f,gβ) = (E◦ f ∩ E◦Pf,g f )α

−1 = (E◦Pf,g f )α
−1 = (Pf,g f )α

−1E◦

and

ran(απ−1
f,gβ) = (E◦Pf,g f )π

−1
f,gβ = (gPf,g E

◦)β = E◦(gPf,g)β

by Lemma 3.6(2). Thus, we have

απ−1
f,gβ ∈ Tj,k, j = (Pf,g f )α

−1, k = (gPf,g)β. (3.2)

In view of the above discussions, we can define a multiplication “◦′′ on T(I,�,E◦,P) as
follows: For α ∈ Te, f , β ∈ Tg,h ,

α ◦ β = απ−1
f,gβ,

where π−1
f,g is defined as in Proposition 3.5.

Lemma 3.7 The set T(I,�,E◦,P) forms a semigroup with respect to the multiplication “◦”
defined above.

Proof Now, let α ∈ Te, f , β ∈ Tg,h , γ ∈ Ts,t and

α ◦ β ∈ Tj,k, (α ◦ β) ◦ γ ∈ Tm,n, β ◦ γ ∈ Tp,q , α ◦ (β ◦ γ ) ∈ Ta,b,

where

j = (Pf,g f )α
−1, k = (gPf,g)β, p = (Ph,sh)β−1, q = (sPh,s)γ,

m = (Pk,sk)(α ◦ β)−1, n = (sPk,s)γ, a = (Pf,p f )α
−1, b = (pPf,p)(β ◦ γ ).

On one hand, in view of the fact k ∈ E◦h and Lemma 3.3, we have k = kh = k◦h. By
condition (3.1) and h◦Rh,
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Pk,s = Pk◦h,s = k◦Ph,s = k◦Ph◦h,s = k◦h◦Ph,s = k◦Ph,sh
◦. (3.3)

Since h◦k = hk (by Lemma 3.3), k◦Rk and � is a right normal band, this implies that

Pk, sk = k◦Ph,sh
◦k = k◦Ph, shk = k◦(pβ)k = (pβ)k◦k = (pβ)k = (pgPf,g)β.

By Lemma 3.3, condition (3.1) and the fact that gLg◦, we have

m = (Pk,sk)(α ◦ β)−1 = (Pk,sk)β
−1π f,gα

−1

= ((pgPf,g)β)β−1π f,gα
−1 = (pgPf,g)π f,gα

−1 = ((pgPf,g)
◦Pf,g f )α

−1

= (p◦g◦Pf,g Pf,g f )α
−1 = (p◦Pf,gg

◦ f )α−1 = (p◦Pf,gg◦ f )α−1 = (p◦Pf,g f )α
−1.

On the other hand, by Lemma 3.3 and the fact p ∈ gE◦, we have

gp◦ = gp = p, Pf,p = Pf,gp◦ = Pf,g p
◦ = p◦Pf,g (3.4)

by condition (3.1), which implies that Pf,p f = p◦Pf,g f and so

a = (Pf,p f )α
−1 = (p◦Pf,g f )α

−1 = m.

Dually, we can obtain that n = b.
Take x ∈ aE◦ = mE◦ and denote y = xα. On one hand,

x(α ◦ β) = (xα)π−1
f,gβ = yπ−1

f,gβ = (gPf,g y
◦)β. (3.5)

Since both k and x(α ◦ β) are in �, and ran(α ◦ β) = E◦k, by Lemma 3.3 we have

k◦(x(α ◦ β))◦ = (x(α ◦ β) · k)◦ = (x(α ◦ β))◦ (3.6)

Combining the identities (3.3), (3.6) and (3.5), we obtain

x[(α ◦ β) ◦ γ ] = (x(α ◦ β))π−1
k,s γ = (sPk,s · (x(α ◦ β))◦)γ

= (sk◦Ph,s · (x(α ◦ β))◦)γ = (sPh,s · k◦(x(α ◦ β))◦)γ
= (sPh,s · (x(α ◦ β))◦)γ = (sPh,s · ((gPf,g y

◦)β)◦)γ.

On the other hand,

x[α ◦ (β ◦ γ )] = (xα)π−1
f,pβπ−1

h,s γ = yπ−1
f,pβπ−1

h,s γ = (pPf,p y
◦)βπ−1

h,s γ.

Observe that gp◦ = p (by (3.4)) and y◦ p = y◦ p◦ (by Lemma 3.3), it follows by the
identity (3.4) that

(pPf,p y
◦)β = (gp◦Pf,g y

◦)β = (gPf,g y
◦ p◦)β

= (gPf,g y
◦ p)β = (gPf,g y

◦)β(pβ) = (gPf,g y
◦)β · Ph,sh.

By Lemma 3.3 and condition (3.1),

x[α ◦ (β ◦ γ )] = ((pPf,p y
◦)β)π−1

h,s γ = ((gPf,g y
◦)β · Ph,sh)π−1

h,s γ

= (sPh,s · ((gPf,g y
◦)β · Ph,sh)◦)γ = (sPh,s · h◦Ph,s · ((gPf,g y

◦)β)◦)γ
= (sPh,s · Ph◦h,s · ((gPf,g y

◦)β)◦)γ = (sPh,s · ((gPf,g y
◦)β)◦)γ.

Hence, (α ◦ β) ◦ γ = α ◦ (β ◦ γ ) and so T(I,�,E◦,P) forms a semigroup with respect to
the multiplication “◦”. ��
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Let (I,�, E◦, P) be an admissible quadruple. If I = � = E◦, then it is easy to check
that the semigroup T(I,�,E◦,P) coincides with the Munn semigroup TE◦ since π−1

f,g = ι f gE◦
for all f ∈ � and g ∈ I in the case. Thus, the semigroup T(I,�,E◦,P) can be regarded as a
generalization of theMunn semigroup of a semilattice and will be called theMunn semigroup
of the admissible quadruple (I,�, E◦, P).

Theorem 3.8 The semigroup T(I,�,E◦,P) is a regular semigroupwith amultiplicative inverse
transversal

TE◦ = {α ∈ T(I,�,E◦,P)|α ∈ Tp,q , p, q ∈ E◦}.
Proof For α ∈ Te, f , let α◦ = π f, f ◦α−1πe◦,e, where π f, f ◦ and πe◦,e are defined as in
Proposition 3.5. It is routine to check that α◦ ∈ T f ◦,e◦ and so α◦ ∈ TE◦ . Furthermore, we
have

α ◦ α◦ = απ−1
f, f ◦α◦ = απ−1

f, f ◦π f, f ◦α−1πe◦,e = πe◦,e. (3.7)

Similarly, we can prove that πe◦,e ◦ α = α and α◦ ◦ πe◦,e = α◦, which implies that α◦ is
an inverse of α in TE◦ .

Now, let β ∈ Tp,q (p, q ∈ E◦) be an inverse of α ∈ Te, f in TE◦ . We have to show that
β = α◦. Let α ◦ β ∈ Tj,k and β ◦ α ∈ Tu,v . Then α ◦ β ◦ α = α ∈ Te, f . Moreover,

j = (Pf,p f )α
−1 ∈ domα = eE◦, k = (pPf,p)β ∈ ranβ = E◦q ⊆ E◦.

Similarly, we can obtain that v ∈ ranα = E◦ f and u ∈ pE◦ ⊆ E◦. It follows that

e = (Pf,u f )α
−1 = ( f u f )α−1 = (u f )α−1, f = (ePk,e)α = (eke)α = (ek)α

by condition (3.1) and the fact that I is a left normal band and � is a right normal band,
respectively. This implies that u f = eα = f and ek = f α−1 = e. Since u ∈ pE◦ and
k ∈ E◦q , we have pu = u and kq = k whence pu f = u f = f and ekq = ek = e. This
yields that p f = f and eq = e. Consider β ◦ α ◦ β = β ∈ Tp,q . Then we have

p = (Pq, j q)β−1 = (q jq)β−1 = (q j)β−1, q = (pPv,p)β = (pvp)β = (vp)β.

This implies that q j = pβ = q and vp = qβ−1 = p. Observe that j ∈ eE◦ and I is a left
normal band, it follows that j = ej = eje whence je = j and qe = q je = q j = q . Similar
discussion gives f p = p. Therefore fRp and eLq . Observe that p, q ∈ E◦, it follows that
p = f ◦ and q = e◦ by the definition of admissible quadruple, whence β ∈ T f ◦,e◦ . Moreover,
by simple calculations, we can see that

β = βπ−1
e◦,eπe◦,e = β ◦ πe◦,e = β ◦ α ◦ α◦

by the identity (3.7) and so

α◦ = α◦ ◦ α ◦ β ◦ α ◦ α◦ = α◦ ◦ α ◦ β.

This implies that α◦Lβ in T(I,�,E◦,P). Dually, we can obtain α◦Rβ in T(I,�,E◦,P) and so
α◦Hβ in T(I,�,E◦,P). However, both α◦ and β are the inverses of α, and hence β = α◦.

By the above discussions, we have shown that TE◦ is an inverse transversal of T(I,�,E◦,P).
To see TE◦ is multiplicative, we take α ∈ Te, f and β ∈ Tg,h . Then by the identity (3.7) and
its dual, and vα = α◦ ◦ α, uβ = β ◦ β◦ (by Lemma 2.9), we have

vα ◦ uβ = α◦ ◦ α ◦ β ◦ β◦ = π f, f ◦ ◦ πg◦,g ∈ Tj,k
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where

j = (Pf,g f )π
−1
f, f ◦ ∈ ranπ−1

f, f ◦ = f ◦E◦ ⊆ E◦

and

k = (gPf,g)πg◦,g ∈ ranπg◦,g = E◦g◦ ⊆ E◦,

whence vα ◦ uβ ∈ TE◦ . This implies that TE◦ is a multiplicative inverse transversal of
T(I,�,E◦,P). ��

The following corollary characterizes the idempotents in T(I,�,E◦,P).

Corollary 3.9 Let α ∈ Te, f . Then α ∈ E(T(I,�,E◦,P)) if and only if

f ◦ = Pf,e = e◦ and e(xα)◦ = x for all x ∈ eE◦.

Proof Let α ∈ E(T ). Then α ◦α = α, whence dom(α ◦α) = domα and ran(α ◦α) = ranα.
This implies that (Pf,e f )α−1 = e and (ePf,e)α = f , which gives Pf,e f = eα = f and
ePf,e = f α−1 = e. Moreover, by Lemma 3.3 and condition (3.1) we have

f Pf,e = f ◦Pf,e = Pf ◦ f,e = Pf,e

and

Pf,ee = Pf,ee
◦ = Pf,ee◦ = Pf,e.

Therefore eLPf,e ∈ E◦ and fRPf,e ∈ E◦ and so f ◦ = Pf,e = e◦. On the other hand,
for x ∈ eE◦, we have

xα = x(α ◦ α) = ((xα)π−1
f,e )α.

Since α is bijective, it follows that

x = (xα)π−1
f,e = (ePf,e)(xα)◦ = ee◦(xα)◦ = e(xα)◦.

Conversely, if the given condition in the corollary holds, then we can deduce that α ∈
E(T(I,�,E◦,P)) by the above discussions. ��
Corollary 3.10 If (I,�, E◦, Q) is the normal admissible quadruple determined by I,�
and E◦, then the Munn semigroup NT = T(I,�,E◦,Q) is an orthodox semigroup with a
multiplicative inverse transversal TE◦ such that E(NT ) forms a normal band.

Proof Let α, β ∈ E(NT ) where α ∈ Te, f and β ∈ Tg,h . Then by Corollary 3.9, we have

f ◦ = e◦ and e(xα)◦ = x for all x ∈ eE◦ (3.8)

and
h◦ = g◦ and g(yβ)◦ = y for all y ∈ gE◦ (3.9)

Denote α ◦ β ∈ Tj,k , where

j = (Q f,g f )α
−1 = ( f ◦g◦ f )α−1 = (g◦ f )α−1

and k = (gQ f,g)β = (g f ◦g◦)β = (g f ◦)β. Take x = (g◦ f )α−1 in (3.8). Then by Lemma
3.6(4), we have

j = (g◦ f )α−1 = e(((g◦ f )α−1)α)◦ = e(g◦ f )◦ = e f ◦g◦ = ee◦g◦ = eg◦, (3.10)
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which implies that j◦ = (eg◦)◦ = e◦g◦. Similarly, we can show that k◦ = e◦g◦ by (3.8) and
(3.9). This gives that j◦ = Qk, j = j◦k◦ = k◦. On the other hand, for x ∈ j E◦ = eg◦E◦ ⊆
eE◦, we have

x(α ◦ β) = (xα)π−1
f,gβ = (gQ f,g(xα)◦)β = (g f ◦g◦(xα)◦)β

= (gg◦ f ◦(xα)◦)β = (g · f ◦(xα)◦)β = (g((xα) f )◦)β = (g(xα)◦)β.

Since eg◦ = eg (by Lemma 3.3), ege = eg (as I is a left normal band) and j x = x , this
implies that

j (x(α ◦ β))◦ = eg◦((g(xα)◦)β)◦ = e · g((g(xα)◦)β)◦

= eg(xα)◦ = ege(xα)◦ = egx = eg◦x = j x = x

by (3.10), (3.9) and (3.8). Again by Corollary 3.9, we have α ◦ β ∈ E(NT ). This implies
that NT is orthodox, and so E(TE◦) is a multiplicative inverse transversal of E(NT ) by
Theorem 3.8. In view of Lemma 2.10, E(NT ) is a normal band. ��

The following example illustrates Theorem 3.8 and Corollary 3.10.

Example 3.11 Let I = {0, e, g} and � = {0, e, f } be a left normal band and a right normal
band, respectively, and their multiplication tables are:

I 0 e g
0 0 0 0
e 0 e e
g 0 g g

� 0 e f
0 0 0 0
e 0 e f
f 0 e f

.

Denote E◦ = I ∩ � = {0, e} and define a � × I -matrix P over E◦ by

P 0 e g
0 0 0 0
e 0 e e
f 0 e 0

Then it is routine to check that (I,�, E◦, P) is an admissible quadruple and

0E◦ = {0}, eE◦ = {0, e}, gE◦ = {0, g}; E◦0 = {0}, E◦e = {0, e}, E◦ f = {0, f }.
This implies that

U = {(0, 0), (e, e), (e, f ), (g, e), (g, f )}
and |Ti,λ| = 1 for all i ∈ I and λ ∈ �. Moreover, if we denote the unique element in Ti,λ by
αi,λ, then we have the multiplication table of T(I,�,E◦,P)

◦ α0,0 αe,e αe, f αg,e αg, f

α0,0 α0,0 α0,0 α0,0 α0,0 α0,0

αe,e α0,0 αe,e αe, f αe,e αe, f

αe, f α0,0 αe,e αe, f α0,0 α0,0

αg,e α0,0 αg,e αg, f αg,e αg, f

αg, f α0,0 αg,e αg, f α0,0 α0,0

.

In this case, we have

VTE◦ (α0,0) = {α0,0}, VTE◦ (αe,e) = VTE◦ (αe, f ) = VTE◦ (αg,e) = VTE◦ (αg, f ) = {αe,e}

123



A Munn type representation of abundant semigroups... 55

and

I T = {α0,0, αe,e, αg,e}, �T = {α0,0, αe,e, αe, f }, �T I T = TE◦ ,

this shows that TE◦ = {α0,0, αe,e} is a multiplicative inverse transversal of T(I,�,E◦,P).
Observe that E(T(I,�,E◦,P)) is not a band (since αg,e ◦ αe, f = αg, f /∈ E(T(I,�,E◦,P))).

Now, we consider the Munn semigroup T(I,�,E◦,Q) of the normal admissible quadruple
determined by I,� and E◦, where the � × I -matrix Q over E◦ is defined by

Q 0 e g
0 0 0 0
e 0 e e
f 0 e e

.

Then we can obtain the multiplication table of T(I,�,E◦,Q):

◦ α0,0 αe,e αe, f αg,e αg, f

α0,0 α0,0 α0,0 α0,0 α0,0 α0,0

αe,e α0,0 αe,e αe, f αe,e αe, f

αe, f α0,0 αe,e αe, f αe,e αe, f

αg,e α0,0 αg,e αg, f αg,e αg, f

αg, f α0,0 αg,e αg, f αg,e αg, f

.

In this case, T(I,�,E◦,Q) forms a normal band with a multiplicative inverse transversal
TE◦ = {α0,0, αe,e}.

The following corollary gives some useful information about the semigroup T(I,�,E◦,P)

which will be used in the next sections frequently.

Corollary 3.12 Let α ∈ Te, f , β ∈ Tg,h and T = T(I,�,E◦,P).

(1) α◦ = π f, f ◦α−1πe◦,e ∈ T f ◦,e◦ , α = α◦◦ = π−1
e◦,eαπ−1

f, f ◦ ∈ Te◦, f ◦ .

(2) uα = α ◦ α◦ = πe◦,e, vα = α◦ ◦ α = π f, f ◦ and so I T = {πe◦,e|e ∈ I } and �T =
{π f, f ◦ | f ∈ �}.

(3) αRβ (resp. αLβ) in T if and only if e = g (resp. f = h).

Proof Item (1) follows directly from the proof of Theorem 3.8 and Lemma 2.9, and item (2)
follows fromLemma 2.9 and the identity (3.7) and its dual. Item (3) follows fromLemma 2.2,
Lemma 2.9, item (2) above and the fact that L = L∗ and R = R∗ on a regular semigroup.

��
We say that two admissible quadruples (I,�, E◦, P) and (J,	, F◦, R) are isomorphic

if there exist an isomorphism ϕ from I onto J and an isomorphism ψ from � onto 	 such
that

ϕ|E◦ = ψ |E◦ , E◦ϕ = F◦, Pf,gϕ = R f ϕ,gψ

for all f ∈ � and g ∈ I . If this is the case, then one can easily show that T(I,�,E◦,P) is
isomorphic to T(J,	,F◦,R). Moreover, we have the following.

Corollary 3.13 Let (I,�, E◦, P) be an admissible quadruple. Then (I,�, E◦, P) is iso-
morphic to the admissible quadruple of T = T(I,�,E◦,P). In particular, if (I,�, E◦, Q) is the
normal admissible quadruple determined by I,� and E◦, then (I,�, E◦, Q) is isomorphic
to the admissible quadruple of the normal band E(NT ), where NT is the Munn semigroup
T(I,�,E◦,Q).
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Proof By Corollary 3.12(2), we can define the mappings

ϕ : I → I T , e �→ πe◦,e, ψ : � → �T , f �→ π f, f ◦ .

By Lemma 3.3, condition (3.1) and Proposition 3.5, it is routine to check that the above
mappings are isomorphisms such that

ϕ|E◦ = ψ |E◦ , E◦ϕ = E(TE◦), Pf,gψ = PT
f ϕ,gψ.

For the normal admissible quadruple (I,�, E◦, Q), E(NT ) is a normal band by Corol-
lary 3.10 and so E(NT ) is a full subsemigroup of NT . By Remark 3.2(2), E(TE◦) =
TE◦ ∩ E(NT ) is an inverse transversal of E(NT ) and the admissible quadruples of NT
and E(NT ) are equal. By the first part of this corollary, (I,�, E◦, Q) is isomorphic to the
admissible quadruple of E(NT ). ��
Remark 3.14 The above Corollary 3.13 shows that admissible quadruples come from regular
semigroups with multiplicative inverse transversals and normal admissible quadruples come
from normal bands with inverse transversals, respectively.

Now, we are a position to give the main result of this section.

Theorem 3.15 Let (I,�, E◦, P) be an admissible quadruple and U a full subsemigroup
of T(I,�,E◦,P). Then U is a fundamental abundant semigroup with a multiplicative ample
transversal TE◦∩U whoseadmissible quadruple is isomorphic to (I,�, E◦, P). In particular,
if U is also regular, then U is a fundamental regular semigroup with a multiplicative inverse
transversal TE◦ ∩U. As a direct consequence, T(I,�,E◦,P) itself is fundamental.

Proof By Theorem 3.8 and Lemma 2.9, TE◦ is a multiplicative ample transversal of
T(I,�,E◦,P). Since the Munn semigroup TE◦ of the semilattice E◦ is fundamental, it follows
thatU is a fundamental abundant semigroup with a multiplicative ample transversal TE◦ ∩U
whose admissible quadruple is isomorphic to (I,�, E◦, P) by Lemma 2.3, Corollary 2.4,
Remark 3.2(2) and Corollary 3.13. The remaining result now follows from Lemma 2.9. ��

4 A Munn type representation of abundant semigroups with a
multiplicative ample transversal

In this section, we always assume that S is an abundant semigroupwith amultiplicative ample
transversal S◦. By the previous section, we have the Munn semigroup T(I S ,�S ,E(S◦),PS) of
the admissible quadruple of S, where PS

f,g is equal to the product of f and g in S for all

f ∈ �S and g ∈ I S (see Lemma 2.8 and Remark 3.2). The aim of this section is to show
that there is a homomorphism ρ : S → T(I S ,�S ,E(S◦),PS) whose kernel is μS . For simplicity,
we write E(S◦) as E◦. To accommodate with the notations of Sect. 3, we use the notations
in Sect. 3 for the admissible quadruple (I S,�S, E(S◦), PS) throughout this section.

In view of Lemmas 2.5 and 2.6, S is IC and for every a ∈ S, there exists a unique
idempotent-connected isomorphism from 〈ua〉 onto 〈va〉. We denote this isomorphism by λa
in the sequel. For all a ∈ S, denote the restriction of λa to uaE◦ by ρa , that is, ρa = λa |ua E◦ .
Recall that a(xλa) = xa for all a ∈ S and x ∈ 〈ua〉. By the definition of ρa , we have
a(xρa) = xa for all a ∈ S and x ∈ ua E◦.

Lemma 4.1 ρa ∈ Tua ,va for all a ∈ S.
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Proof Clearly, we have uaE◦ = uaE◦ua ⊆ 〈ua〉 = domλa . Take x = uai ∈ uaE◦, i ∈ E◦.
Then a(xλa) = xa. Since a = uaava , we have uaava(xλa) = uaiuaava . Observe that
uaLa+R∗a and a+i = ia+, it follows that

ava(xλa) = a+uaava(xλa) = a+uaiuaava = iava .

Because S◦ is ample, we have ia = a(ia)∗, (ia)∗ ∈ E◦ by the identity (1.3). This implies
that ava(xλa) = a(ia)∗va . By Lemma 2.1 and the fact that aL∗a∗Rva (see (2.1)) and
xλa ∈ 〈va〉, we obtain that

xλa = va(xλa) = a∗va(xλa) = a∗(ia)∗va = (ia)∗a∗va = (ia)∗va ∈ E◦va . (4.1)

Dually, we can see that λ−1
a |E◦va is a mapping from E◦va to uaE◦. Thus, ρa ∈ Tua ,va . ��

Lemma 4.2 ρa ◦ ρb = ρab for all a, b ∈ S.

Proof Since ρa ∈ Tua ,va and ρb ∈ Tub,vb , we can assume that ρa ◦ ρb ∈ Tj,k where

j = (PS
va ,ubva)ρ

−1
a = (vaubva)ρ

−1
a , k = (ubP

S
va ,ub )ρb = (ubvaub)ρb.

We first show that j = uab and k = vab. In fact, by Lemma 2.6(2), we have uab =
ua(āvaub)+ ∈ ua E◦. Since S◦ is an ample semigroup and vaub ∈ E◦, we get (avaub)+a =
avaub by (1.3). In view of the identity (4.1), it follows that

uabρa = ((avaub)
+a)∗va = (avaub)

∗va = (a∗vaub)∗va = (vaub)
∗va = vaubva

by the identity (1.1) and the fact that vaR∗a∗ and vaub ∈ E◦. This implies that j =
(vaubva)ρ−1

a = uab. Dually, we can prove that k = vab.
Finally, let x ∈ domρab. On one hand,

x(ρa ◦ ρb) = xρaπ
−1
va ,ubρb = (ubP

S
va ,ub (xρa)

◦)ρb = (ubvaub(xρa)
◦)ρb.

On the other hand, since vaub ∈ E◦ ⊆ �S, xρa ∈ �S , we have

(xρa)
◦ ∈ E◦, (xρa)

◦ · vaub = vaub · (xρa)
◦, (xρa)(vaub) = (xρa)

◦(vaub)

by Lemma 3.3. Observe that �S is a right normal band, it follows that vaub(xρa)vaub
= (xρa)vaub, whence

ab · x(ρa ◦ ρb) = ab · (ubvaub(xρa)
◦)ρb = a · [b · (ubvaub(xρa)

◦)ρb]
= a · ubvaub(xρa)◦b = a · ub(xρa)◦vaubb = ava · ub(xρa)◦vaubb
= a · vaub(xρa)vaubb=a(xρa) · vaubb = xa · vaubb= xab=ab · (xρab).

Since abL∗vab and

x(ρa ◦ ρb), xρab ∈ ranρab = E◦vab = vabE
◦vab,

we have

x(ρa ◦ ρb) = vab · x(ρa ◦ ρb) = vab · xρab = xρab

by Lemma 2.1. Thus ρa ◦ ρb = ρab. ��
Lemma 4.3 μS = {(a, b) ∈ S × S|ρa = ρb}.
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Proof Denote δ = {(a, b) ∈ S × S|ρa = ρb}. By Lemma 4.2, δ is a congruence on S. If
ρa = ρb, then domρa = domρb and ranρa = ranρb, which implies that aR∗ua = ubR∗b
and aL∗va = vbL∗b by Lemma 2.6, and so aH∗b. Thus δ ⊆ H∗.

On the other hand, let σ be a congruence on S such that σ ⊆ H∗ and (a, b) ∈ σ . Then
(a, b) ∈ H∗ and so

vaL∗aL∗bL∗vb, uaR∗aR∗bR∗ub

by Lemma 2.6. Since I S is a left normal band and �S is a right normal band, we have
a+Lua = ubLb+

and a∗Rva = vbRb
∗
by (2.1), and so a+ = b

+
and a∗ = b

∗
. Since aσb,

it follows that a = a+aa∗σb+
bb

∗ = b by (2.2). Let

x ∈ domρa = domρb = uaE
◦ = ubE

◦.

Observe that a(xρa) = xa, b(xρb) = xb and aσb, it follows that a(xρa) = xa σ xb =
b(xρb) and so a+a(xρa)σb

+
b(xρb). Because

xρa, xρb ∈ E◦va = E◦vb = a∗E◦va = b
∗
E◦vb, aσb,

we have

a(xρa) = a+aa∗(xρa) = a+a(xρa)σb
+
b(xρb) = b

+
bb

∗
(xρb) = b(xρb)σa(xρb),

which implies that a(xρa)σa(xρb) and so a(xρa)L∗a(xρb) by σ ⊆ H∗. Since aL∗a∗, we
have

xρa = a∗(xρa)La∗(xρb) = xρb.

Observe that �S is a right normal band, it follows that xρa = xρb. This implies that
ρa = ρb. Thus, δ is the largest congruence contained inH∗ on S. That is to say, δ = μS . ��
Theorem 4.4 Define ρ : S → T = T(I S ,�S ,E(S◦),PS), a �→ ρa. Then ρ is a homomorphism
whose kernel is μS. Moreover, ρ satisfies the following conditions:

(1) ρ|I S (resp. ρ|�S ) is an isomorphism from I S onto I T (resp. �T ).
(2) S◦ρ ⊆ TE◦ and ρ|E◦ is an isomorphism from E◦ onto E(TE◦).
(3) ρ|E(S) is a bijection from E(S) onto E(T ).

Proof The first part follows from Lemmas 4.1, 4.2 and 4.3.

(1) By Corollary 3.12, I T = {πe◦,e|e ∈ I S}. We first show that ρe = πe◦,e for all e ∈ I S .
In fact, since e = ee◦e◦ and eLe◦Re◦ ∈ E◦, we have ue = e, ve = e◦ by (2.1), and
so ρe ∈ Tue,ve = Te,e◦ � πe◦,e. Let x ∈ domρe = domπe◦,e = eE◦. Then we have
e(xρe) = xe, xρe ∈ ranρe = E◦e◦ and so

xρe = e◦(xρe) = e◦e(xρe) = e◦xe.

Since I S is a left normal band, it follows that

e◦xe = e◦ex = e◦x = e◦x◦ = x◦e◦ = xπe◦,e

by Lemma 3.3 and Proposition 3.5. This yields that ρe = πe◦,e for all e ∈ I S . By the
above discussions and Lemma 4.2, ρ|I S is a homomorphism from I S onto I T . Since the
kernel of ρ is μS , it follows that ρ|I S is injective. The result for ρ|�S can be proved by
symmetry.
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(2) If a ∈ S◦, then ua, va ∈ E◦. This implies that ρa ∈ Tua ,va ⊆ TE◦ by Lemma 4.1 and
Theorem 3.8. The remaining result follows from item (1) by considering the restriction
of ρ|I S to E◦.

(3) Since ρ is a homomorphism whose kernel is μS , we have E(S)ρ ⊆ E(T ) and ρ|E(S) is
injective. Letα ∈ Te, f , e ∈ I S, f ∈ �S andα ∈ E(T ). Thenα◦α = α, whence dom(α◦
α) = domα. This implies that (PS

f,e f )α
−1 = e, which gives f e f = PS

f,e f = eα = f

by Lemma 3.6(1). Thus, (e f )2 = e( f e f ) = e f ∈ E(S). Moreover, by Corollaries 2.7,
3.12, the fact that ρe = πe◦,e, ρ f = π f, f ◦ and Lemma 4.2, we have

α = uα ◦ vα = πe◦,e ◦ π f, f ◦ = ρe ◦ ρ f = ρe f ,

whence ρ|E(S) is also surjective. ��
Combining Theorem 3.15 and Theorem 4.4, we obtain the main result of this paper.

Theorem 4.5 Let (I,�, E◦, P) be a given admissible quadruple. Then a semigroup S is a
fundamental abundant semigroup (resp. fundamental regular semigroup) havingamultiplica-
tive ample transversal (resp. multiplicative inverse transversal) whose admissible quadruple
is isomorphic to (I,�, E◦, P) if and only if it is isomorphic to a full subsemigroup (resp.
full regular subsemigroup) of T(I,�,E◦,P).

5 Properties of some special admissible quadruples

In this section, we consider some special admissible quadruples. An admissible quadruple
(I,�, E◦, P) is called rigid if |Te, f | = 1 for all (e, f ) ∈ U .
Proposition 5.1 Anadmissible quadruple (I,�, E◦, P) is rigid if and only ifH∗ is a congru-
ence on every abundant semigroup with a multiplicative ample transversal whose admissible
quadruple is isomorphic to (I,�, E◦, P).

Proof Let S be an abundant semigroup with a multiplicative ample transversal S◦ whose
admissible quadruple (I S,�S, E(S◦), PS) is rigid. By Theorem 4.4,

ρ : S → T(I S ,�S ,E(S◦),PS), a �→ ρa

is a homomorphismwhose kernel isμS . If (a, b) ∈ H∗, then ua = ub and va = vb by Lemma
2.2. This implies that ρa, ρb ∈ Tua ,va = Tub,vb and ρa = ρb since (I S,�S, E(S◦), PS) is
rigid. This gives H∗ ⊆ μS and so H∗ = μS is a congruence on S.

On the other hand, by Theorem 3.8, Lemma 2.9 and Corollary 3.13, T(I,�,E◦,P) is an
abundant semigroup with a multiplicative ample transversal whose admissible quadruple
is isomorphic to (I,�, E◦, P). If the relation H∗ on T(I,�,E◦,P) is a congruence, then we
have μS = H∗. Observe that T(I,�,E◦,P) is fundamental by Theorem 3.15, it follows that
H∗ is the identity congruence on T(I,�,E◦,P). This gives |Te, f | = 1 for all (e, f ) ∈ U by
Corollary 3.12(3). That is, (I,�, E◦, P) is rigid. ��

We call an admissible quadruple (I,�, E◦, P) uniform if (e, f ) ∈ U for all e ∈ I and
f ∈ �. On uniform admissible quadruples, we have the following.

Proposition 5.2 Let S be an abundant semigroup with amultiplicative ample transversal S◦.
If S is D∗-simple (i.e. any two elements in S are D∗-related), then its admissible quadruple
is uniform. On the other hand, if an admissible quadruple (I,�, E◦, P) is uniform, then
T(I,�,E◦,P) is D-simple (and also D∗-simple since T(I,�,E◦,P) is regular).
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Proof Let ua ∈ I S and vb ∈ �S where a, b ∈ S. If S is D∗-simple, then uaD∗vb and so
there exist c1, c2, . . . , cn ∈ S such that uaR∗c1L∗c2R∗c3 · · · cnR∗vb. By Lemma 2.2 and
Lemma 2.6(3), we have

ua = uua = uc1 , vc1 = vc2 , uc2 = uc3 , . . . , vcn−1 = vcn , ucn = uvb , vvb = vb.

This implies that ρc1ρ
−1
c2 ρc3 · · · ρ−1

cn ρvb is an isomorphism from uaE◦ onto E◦vb by
Lemma 4.1 and so (ua, vb) ∈ U . Thus, the admissible quadruple of S is uniform.

On the other hand, let (I,�, E◦, P) be uniform and α ∈ Te, f and β ∈ Tg,h be two
elements in T(I,�,E◦,P). Since (I,�, E◦, P) is uniform, we can take γ ∈ Te,h . Then we have
αRγLβ and so αDβ by Corollary 3.12(3). Thus T(I,�,E◦,P) is D-simple. ��

Finally, an admissible quadruple (I,�, E◦, P) is called left anti-uniform (resp. right anti-
uniform) if (e, f ) ∈ U implies that f = e◦ (resp. e = f ◦) for all e ∈ I and f ∈ �. To give
some properties of left anti-uniform and right anti-uniform admissible quadruples, we need
some notions and facts. Recall the an abundant semigroup S is called superabundant if every
H∗-class of S contains an idempotent. We call a superabundant semigroup S is a left normal
(resp. right normal) superabundant semigroup if E(S) forms a left normal band (resp. right
normal band).

Lemma 5.3 Let S be an abundant semigroup with a multiplicative ample transversal S◦ and
a ∈ S. If S is a left normal (resp. right normal) superabundant semigroup, then aH∗ua (resp.
aH∗va).

Proof Since E(S) is a left normal band and vaRa∗ by (2.1), we have va = a∗va = a∗vaa∗ =
a∗. On the other hand, since S is superabundant, it follows that aH∗e for some e ∈ E(S).
Since a+LuaR∗aL∗va = a∗ by (2.1) and Lemma 2.6(2), we have a+LuaReLva = a∗. This
implies that a∗Ra∗uaLuaLa+. Observe that a∗ua ∈ E(S◦)I S ⊆ I S ⊆ E(S) by Lemma 2.8,
it follows that a∗La+a∗Ra+ whence a+ = a∗. Thus, uaR∗aL∗va = a∗ = a+Lua ,
which gives aH∗ua . Dually, we can prove that aH∗va if S is a right normal superabun-
dant semigroup. ��
Proposition 5.4 An admissible quadruple (I,�, E◦, P) is left anti-uniform (resp. right anti-
uniform) if and only if every abundant semigroup with a multiplicative ample transversal
whose admissible quadruple is isomorphic to (I,�, E◦, P) is a left normal (resp. right
normal) superabundant semigroup.

Proof Let (I,�, E◦, P) be left anti-uniform and S be an abundant semigroup with a mul-
tiplicative ample transversal whose admissible quadruple is isomorphic to (I,�, E◦, P).
Then (I S,�S, E(S◦), PS) is left anti-uniform. By Lemma 4.1, for every a ∈ S, we have
(ua, va) ∈ U and va = u◦

a = a+ since uaLa+ by (2.1). This implies that uaR∗aL∗va =
u◦
a = a+Lua by (2.1) and Lemma 2.6(1), and hence aH∗ua . Therefore S is superabundant.

Moreover, for e ∈ E(S), we have e ∈ E(S◦) by Lemma 2.6(2), and so ve = e+ = e. This
implies that e = ueeve = uee ∈ I S . Thus E(S) = I S is a left normal band by Lemma 2.8.

Conversely, let (I,�, E◦, P) be not left anti-uniform. Then there exist e ∈ I and f ∈ �

such that (e, f ) ∈ U and f �= e◦. Thus there exists α ∈ Te, f such that uα = α◦α◦ = πe◦,e ∈
Te,e◦ in T(I,�,E◦,P) by Corollary 3.12(2). Since α ∈ Te, f , uα ∈ Te,e◦ and f �= e◦, it follows
that α and uα are not L∗-related in T(I,�,E◦,P) by Corollary 3.12(3). In view of Lemma 5.3,
T(I,�,E◦,P) is not a left normal superabundant semigroup. The case for right anti-uniform
admissible quadruples can be proved by symmetry. ��
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