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Abstract This paper concerns a short-update primal-dual interior-point method for linear
optimization based on a new search direction. We apply a vector-valued function generated
by a univariate function on the nonlinear equation of the system which defines the central
path. The common way to obtain the equivalent form of the central path is using the square
root function. In this paper we consider a new function formed by the difference of the
identity map and the square root function. We apply Newton’s method in order to get the
new directions. In spite of the fact that the analysis is more difficult in this case, we prove
that the complexity of the algorithm is identical with the one of the best known methods for
linear optimization.

Keywords Linear optimization · Interior-point method · Full-Newton step · Search
direction · Polynomial complexity
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1 Introduction

The area of linear optimization (LO) has become very active since Karmarkar’s [27] first
interior-point method (IPM) was published on this subject. Later on, a large amount of
papers appeared and the most important results were summarized in the monographs written
by Roos, Terlaky and Vial [46], Wright [57] and Ye [58]. It turned out that IPMs are more
efficient in practice than pivot algorithms in the case of large sparse problems. Illés and
Terlaky [26] presented a comparison between the IPMs and pivot methods from practical and
theoretical point of view.Nowadays, state-of-the-art implementations of interior-point solvers
are available. Lustig et al. [34,35] as well as Mehrotra [38] made important contributions
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No. 1 Mihail Kogălniceanu Street, 400084 Cluj-Napoca, Romania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10998-016-0119-2&domain=pdf
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to this field. Some significant aspects of implementations techniques were presented by
Andersen et al. [7], by Mészáros [39] and by Gondzio and Terlaky [18], respectively.

Recently, the algorithms proposed for solving LO problems have been extended to more
general optimization problems such as semidefinite optimization (SDO), second-order cone
optimization (SOCO), symmetric optimization (SO) and linear complementarity problems
(LCPs). Nesterov and Nemirovskii [41] introduced the concept of self-concordant barrier
functions in order to define IPMs for solving convex optimization problems. Klerk [30] pro-
posed a general framework for solving SDO problems. Beside this, he studied the concept of
self-dual embeddings for SDO. Alizadeh and Goldfarb [6] used Euclidean Jordan algebras
in order to investigate the theory of SOCO. Schmieta and Alizadeh [47] extended the com-
mutative class of primal-dual IPMs for SDO proposed by Monteiro and Zhang [40] to SO.
Furthermore, Vieira [50] presented different IPMs for SO based on kernel functions.

Some key contributions to the field of LCPs are summarized in the monograph of Cottle et
al. [12]. Kojima et al. [31] presented a unified approach to IPMs for LCPs. Kojima, Mizuno
and Yoshise [33] proposed an IPM for a class of LCPs with positive semidefinite matrices.
Kojima, Megiddo and Ye [32] introduced a new potential reduction algorithm for solving
LCPs. Potra and Sheng [44,45] defined a predictor-corrector algorithm and a large step
infeasible IPM for the P∗(κ)-matrix LCPs. Moreover, Illés and Nagy [22] and Potra [43]
devised Mizuno-Todd-Ye type algorithms for LCPs. It turned out that LCPs have important
applications in the field of economics. One of these is the Arrow-Debreu market equilibrium
model. Ye [59] showed that some market equilibrium models are equivalent to LCPs that are
not necessarily sufficient. Therefore, Illés, Nagy and Terlaky [23–25] analysed the question
of solvability of general LCPs.

It emerged that specifying a proper search direction plays a key role in the analysis of the
IPMs. In [42] Peng, Roos and Terlaky introduced the notion of self-regular barriers and they
determined new large-update IPMs with better iteration bounds than the long step interior-
point algorithms studied before. The first algorithm which works in a wide neighbourhood
and enjoys the same complexity as the best known short-update IPMs was presented by Ai
and Zhang [5] for monotone LCPs.

In 2002 Darvay introduced a new technique for finding search directions for LO prob-
lems [13,15]. The new technique is based on an equivalent transformation on the centering
equations of the central path. The new search directions are obtained by applying New-
ton’s method to the resulting system. Infeasible IPMs for LO based on this technique were
proposed in [4,17]. In 2006, Achache generalized this method for convex quadratic pro-
gramming [2]. Many variations of the technique appeared for LCPs. Achache [1] and Wang
et al. [55,56] generalized the weighted-path-following method introduced in [14] to LCPs,
monotone mixed LCPs and monotone horizontal LCPs, respectively. Achache [3], Asadi and
Mansouri [8,9], Mansouri and Pirhaji [36] and Kheirfam [29] presented numerical results
on LCPs based on this technique. Wang and Bai [52] and Mansouri et al. [37] extended this
approach to SDO problems. Furthermore, Bai, Wang and Luo proposed a new method for
convex quadratic SDO [11]. Bai, Sun and Chen extended this algorithm to semidefinite LCPs
[10].Wang and Bai presented new full Nesterov-Todd step primal-dual algorithms for SOCO
[53] and for SO [54]. Kheirfam introduced an infeasible IPM for SO in [28]. Wang defined a
new polynomial interior-point algorithm for the monotone LCPs over symmetric cones with
full Nesterov-Todd step [51].

In the above mentioned papers generally the square root function is used to obtain an
equivalent form of the central path. The idea of using a new function, namely the difference
of the identity and the square root function was raised in [16]. In this paper we analyse the
complexity of the algorithm proposed in [16] and we prove its polynomiality. The paper is
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organized in the following way. In the second section the LO problem and the central path are
presented. Section 3 contains the method used for the determination of the search direction.
In the fourth section the new primal-dual algorithm is introduced, which is based on the new
search direction. The fifth section is about the complexity analysis of the algorithm, where it
is proved that the method solves the problem in polynomial time. The sixth section contains
some numerical results. Finally, some conclusions are enumerated.

We present some notations used throughout the paper. Let x and s be two n-dimensional
vectors. Then, xs denotes the componentwise product of the vectors x and s, i.e. xs =
[x1s1, x2s2, . . . , xnsn]T . We also use the notation x

s =
[
x1
s1

, x2
s2

, . . . , xn
sn

]T
, where si �= 0 for

all 1 ≤ i ≤ n. For an arbitrary univariate function f and a vector x , if each component
of x belongs to the domain of f , then we define f (x) = [ f (x1), f (x2), . . . , f (xn)]T .
Thus, if x ≥ 0, then

√
x is the vector obtained by taking square roots of the components

of x . Furthermore, e = [1, 1, . . . , 1]T denotes the n-dimensional all-one vector and let
R

+ = {x ∈ R | x ≥ 0}. Moreover, diag(x) is a diagonal matrix, which contains on his main
diagonal the elements of x in the original order. Beside these, ‖x‖ denotes the Euclidean
norm, ‖x‖∞ the Chebyshev norm, ‖x‖1 the 1-norm, and min(x) the minimal component of
x . Finally, if f (t) ≥ 0 and g(t) ≥ 0 are real valued functions, then f (t) = O(g(t)) means
that there exists a positive constant γ so that f (t) ≤ γ g(t).

2 The LO problem

In this section we introduce the LO problem. Let us consider the following problem:

min
{
cT x : Ax = b, x ≥ 0

}
, (P)

where A ∈ R
m×n with rank(A) = m, b ∈ R

m and c ∈ R
n . The dual of this problem can be

written in the following form:

max
{
bT y : AT y + s = c, s ≥ 0

}
. (D)

We suppose that the interior-point condition (IPC) holds for both problems, which means
that there exists (x0, y0, s0) such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.

Using the self-dual embeddingmodel presented by Ye, Todd andMizuno [60] and Terlaky
[49] we conclude that the IPC can be assumed without loss of generality. In this case the
all-one vector can be considered as a starting point.

The optimal solution of the primal-dual pair can be given with the following system of
equations:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2.1)

xs = 0.

The first two equations of system (2.1) are named feasibility conditions and the last one
is called complementarity condition. In IPMs we replace the complementary condition by a
parameterized equation. Hence, we obtain the following system of equations:
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Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2.2)

xs = μe.

If the IPC holds, then for a fixed μ > 0 system (2.2) has unique solution, which is called
the μ-center or analytic center (Sonnevend [48]). The set of μ-centers formes an analytic
curve [19,20], which is called central path. If μ tends to zero, then the central path converges
to the optimal solution of the problem.

Detailed analysis of the existence and uniqueness of the central path and some important
concepts such as the IPC and self-dual embedding can be found in Chapter 2 of [46] and in
Chapters 1 and 2 of [21].

3 Search directions

Using [15] we define a method for finding search directions for IPMs. Let us consider the
continuously differentiable function ϕ : R+ → R

+. Assume that the inverse function ϕ−1

exists. Observe that system (2.2) can be written in the following equivalent form:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (3.1)

ϕ

(
xs

μ

)
= ϕ(e),

and applying Newton’s method yields new search directions. Let

v =
√
xs

μ
,

and assume that we have Ax = b, and AT y + s = c for a triple (x, y, s) such that x > 0 and
s > 0. We get

A�x = 0,

AT�y + �s = 0,

s

μ
ϕ′

(
xs

μ

)
�x + x

μ
ϕ′

(
xs

μ

)
�s = ϕ(e) − ϕ

(
xs

μ

)
.

(3.2)

Let

dx = v�x

x
, ds = v�s

s
.

Then,
μv(dx + ds) = s�x + x�s, (3.3)

and

dxds = �x�s

μ
. (3.4)

Let us introduce the Ā = 1
μ
Adiag( x

v
) notation. Thus, system (3.2) can be written in the

form

Ādx = 0,
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ĀT�y + ds = 0, (3.5)

dx + ds = pv,

where

pv = ϕ(e) − ϕ(v2)

vϕ′(v2) .

For differentϕ functionswe obtain different values for the pv vector that lead to new search
directions. An alternative approach for determining the pv vector could be using self-regular
barriers [42]. Let us consider pv as a function of v. In all the cases studied in the literature
this function is defined on the whole positive orthant. However, if the points generated by
the algorithm are perfectly centered, then we have the v = e equality. Therefore, our goal
is to analyse a case where the domain of the above mentioned function is a restriction of
the positive orthant, but it contains the e vector. That is why we propose a new ϕ function,
namely ϕ(t) = t − √

t , which gives a new search direction.

4 A new primal-dual algorithm

This section presents a new form of the primal-dual interior-point algorithm based on the
corresponding search directions, using the function ϕ(t) = t − √

t . In this case

pv = 2(v − v2)

2v − e
. (4.1)

It should be mentioned that the components of the vector pv are defined on the
( 1
2 ,+∞)

interval. We can give a proximity measure to the central path as follows:

δ(x, s;μ) = ‖pv‖
2

=
∥∥∥∥
v − v2

2v − e

∥∥∥∥ .

Let

qv = dx − ds .

Considering (3.5) we have dTx ds = 0. Thus, the vectors dx and ds are orthogonal, which
implies

‖pv‖ = ‖qv‖.
Wemention that as an effect of this relation we can also express the proximity measure using
qv , thus

δ(x, s;μ) = ‖qv‖
2

.

Moreover,

dx = pv + qv

2
and ds = pv − qv

2
,

and we have

dxds = p2v − q2v
4

. (4.2)

Thus, the algorithm can be defined as in Fig. 1.
The following section is meant to prove the polynomiality of the algorithm.
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Fig. 1 Primal-dual interior-point algorithm for LO

5 Convergence analysis

The first lemma will investigate the feasibility of the full-Newton step. We prove that feasi-
bility is accomplished if a condition on the proximity measure holds. Let x+ = x + �x and
s+ = s + �s be the vectors obtained after a full-Newton step.

Lemma 5.1 Let δ = δ(x, s;μ) < 1 and assume that v > 1
2e. Then,

x+ > 0 and s+ > 0.

Thus, we conclude that the full-Newton step is strictly feasible.

Proof For each 0 ≤ α ≤ 1 denote x+(α) = x + α�x and s+(α) = s + α�s. Therefore,

x+(α)s+(α) = xs + α(s�x + x�s) + α2�x�s.

Using (3.3) and (3.4) we get

1

μ
x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds . (5.1)

From (3.5) and (4.2) it follows that

1

μ
x+(α)s+(α) = (1 − α)v2 + α(v2 + vpv) + α2

(
p2v
4

− q2v
4

)
.

Moreover, from (4.1) we obtain

v2 + vpv = v2 + 2(v2 − v3)

2v − e
= v2

2v − e
, (5.2)

and for this reason we get

1

μ
x+(α)s+(α) = (1 − α)v2 + α

(
e + (v − e)2

2v − e
+ α

p2v
4

− α
q2v
4

)
. (5.3)
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Using v > 1
2e we obtain

(v − e)2

2v − e
≥ − p2v

4
.

Thus,

1

μ
x+(α)s+(α) ≥ (1 − α)v2 + α

(
e − (1 − α)

p2v
4

− α
q2v
4

)
.

The inequality x+(α)s+(α) > 0 holds if
∥∥∥∥(1 − α)

p2v
4

+ α
q2v
4

∥∥∥∥∞
< 1.

We have
∥∥∥∥(1 − α)

p2v
4

+ α
q2v
4

∥∥∥∥∞
≤ (1 − α)

‖p2v‖∞
4

+ α
‖q2v‖∞

4

≤ (1 − α)
‖pv‖2

4
+ α

‖qv‖2
4

= δ2 < 1.

Thus, we obtain that for each 0 ≤ α ≤ 1 the x+(α)s+(α) > 0 inequality holds, which
means that the linear functions of α, x+(α) and s+(α) do not change sign on the interval
[0, 1]. Consequently, x+(0) = x > 0 and s+(0) = s > 0 yields x+(1) = x+ > 0 and
s+(1) = s+ > 0. �


The following lemma will be used in the next part of the analysis.

Lemma 5.2 Let f :D → (0,+∞) be a decreasing function, where D = [d,+∞], d > 0.
Furthermore, let us consider the vector v ∈ R

n+ such that min(v) > d. Then,
∥∥ f (v) · (e − v2)

∥∥ ≤ f (min(v)) · ‖e − v2‖ ≤ f (d) · ‖e − v2‖.
Proof We have

∥∥ f (v) · (e − v2)
∥∥ =

√√√√
n∑

i=1

(
f (vi )

)2(1 − v2i

)2

≤ f (min(v)) ·
√√√√

n∑
i=1

(
1 − v2i

)2

= f (min(v)) · ‖e − v2‖
≤ f (d) · ‖e − v2‖.

�

The second lemma is meant to analyse the conditions under which the Newton process is

quadratically convergent.

Lemma 5.3 Suppose that δ = δ(x, s;μ) < 1
2 and v > 1

2e. Then, v+ > 1
2e and

δ(x+, s+;μ) ≤ 3 − 3δ2 − 3
√
1 − δ2(1 − 2δ2)

3 − 4δ2
. (5.4)
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In addition,

δ(x+, s+;μ) <
9 − 3

√
3

2
δ2, (5.5)

which means that the full-Newton step ensures local quadratic convergence of the proximity
measure.

Proof We know from Lemma 5.1 that x+ > 0 and s+ > 0. Considering the notation

v+ =
√
x+s+

μ

and the substitution α = 1 in (5.3), after some reductions we obtain

v2+ = e − e − 2v − v2

v2
· p2v
4

− q2v
4

. (5.6)

From the condition v > 1
2e we get v2 + 2v − e > 0 and this implies v2+ ≥ e − q2v

4 .
Consequently,

min(v+) ≥
√
1 − 1

4
‖q2v‖∞ ≥

√
1 − ‖qv‖2

4
=

√
1 − δ2. (5.7)

From δ < 1
2 it follows that min(v+) >

√
3
2 , hence v+ > 1

2e. Moreover, we have

δ(x+, s+;μ) =
∥∥∥∥∥
v+ − v2+
2v+ − e

∥∥∥∥∥ =
∥∥∥∥

v+
(2v+ − e)(e + v+)

· (e − v2+)

∥∥∥∥ .

Let us consider the function f (t) = t
(2t−1)(1+t) > 0 for all t > 1

2 . From f ′(t) < 0 it follows
that f is decreasing, therefore using (5.7) and Lemma 5.2 we obtain

δ(x+, s+;μ) ≤
√
1 − δ2

2(1 − δ2) + √
1 − δ2 − 1

· ‖e − v2+‖. (5.8)

We write f (t) in the following way:

f (t) = t (2t + 1)(1 − t)

(4t2 − 1)(1 − t2)
.

Substituting
√
1 − δ2 and making some elementary reductions we obtain

f
(√

1 − δ2
)

= 1 − δ2 − √
1 − δ2(1 − 2δ2)

δ2(3 − 4δ2)
. (5.9)

We have 1 < t2+2t−1
t2

≤ 2 for all t > 1
2 and

e − v2+ = e − 2v − v2

v2
· p2v
4

+ q2v
4

.

Thus,

‖e − v2+‖ ≤ 2

∥∥∥∥− p2v
4

∥∥∥∥ +
∥∥∥∥
q2v
4

∥∥∥∥ ≤ 2δ2 + δ2 = 3δ2, (5.10)
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and using (5.8) and (5.9) we get (5.4), which proves the first part of the lemma. Moreover,
we have

δ(x+, s+;μ) ≤
3

(
1 − √

1 − δ2
)

3 − 4δ2
+

3δ2
(
−1 + 2

√
1 − δ2

)

3 − 4δ2
.

Let

φ1(δ) :=
3

(
1 − √

1 − δ2
)

3 − 4δ2
and φ2(δ) :=

3δ2
(
−1 + 2

√
1 − δ2

)

3 − 4δ2
.

From δ < 1
2 it follows that 1 + √

1 − δ2 > 2+√
3

2 . We get

1

1 + √
1 − δ2

< 4 − 2
√
3,

and

1

3
φ1(δ) <

4 − 2
√
3

3 − 4δ2
δ2.

Furthermore, if δ < 1
2 , then 4δ2 < 1. Thus, 1

3−4δ2
< 1

2 and we obtain

1

3
φ1(δ) <

4 − 2
√
3

2
δ2. (5.11)

A simple calculus yields

1

3
φ2(δ) = δ2

1 + 2
√
1 − δ2

.

We have 1
1+2

√
1−δ2

<
√
3−1
2 and

1

3
φ2(δ) <

√
3 − 1

2
δ2. (5.12)

From (5.11) and (5.12) we obtain

1

3

(
φ1(δ) + φ2(δ)

)
<

4 − 2
√
3 + √

3 − 1

2
δ2 = 3 − √

3

2
δ2,

and this results in (5.5), which proves the lemma. �

The next lemma examines what is the effect of the full-Newton step on the duality gap.

Lemma 5.4 Let δ = δ(x, s;μ) and suppose that the vectors x+ and s+ are obtained using
a full-Newton step, thus x+ = x + �x and s+ = s + �s. We have

(x+)T s+ ≤ μ(n + δ2),

and if δ < 1
2 , then (x+)T s+ < μ

(
n + 1

4

)
.

Proof Substituting α = 1 in (5.1) and using (3.5) we have

1

μ
x+s+ = v2 + vpv + dxds .
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Using (4.1) and (5.2) we deduce

1

μ
x+s+ ≤ e + p2v

4
+ dxds .

Therefore, using the orthogonality of the vectors dx and ds we obtain

(x+)T s+ = eT (x+s+) ≤ μ(eT e + eT p2v
4

+ eT dxds) = μ(n + ‖pv‖2
4

+ dTx ds)

= μ(n + δ2).

This completes the first part of the lemma. From δ < 1
2 we have δ2 < 1

4 . Using this we
obtain

(x+)T s+ < μ

(
n + 1

4

)
,

which proves the second statement of the lemma.

In the next lemma we analyse the effect which a Newton step followed by an update of the
parameter μ has on the proximity measure. Suppose that μ is reduced by the factor (1 − θ)

in every iteration.

Lemma 5.5 Let δ = δ(x, s;μ) < 1
2 ,v > 1

2e,μ+ = (1−θ)μ,v
 =
√

x+s+
μ+ andη = √

1 − θ ,

where 0 < θ < 1. Then v
 > 1
2e and

δ(x+, s+;μ+) ≤
√
3(θ

√
n + 3δ2)

−2η3 + √
3η2 + 3η

.

Moreover, if θ = 1
27

√
n
and n ≥ 4, then we have δ(x+, s+;μ+) < 1

2 .

Proof We have v
 = 1
η
v+. Using Lemma 5.3 we obtain v+ > 1

2e, which yields v
 > 1
2e.

Hence, we get

v
 − v2


2v
 − e
=

1
η
v+ − 1

η2
v2+

2
η
v+ − e

=
1
η2

v+(ηe − v+)

1
η
(2v+ − ηe)

= v+(η2e − v2+)

η(2v+ − ηe)(ηe + v+)
.

Let us consider the function h(t) = t
(2t−η)(η+t) for all t >

η
2 . Thus, we may write

v
 − v2


2v
 − e
= 1

η
h(v+)(η2e − v2+).

From h′(t) < 0 it follows that h is a decreasing function. Then, similar to the proof of Lemma
5.2 using (5.7) we get

δ(x+, s+;μ+) ≤ min(v+)

η(2min(v+) − η)(η + min(v+))
‖η2e − v2+‖

≤ 1

η
h

(√
1 − δ2

)
‖η2e − v2+‖.

Using δ < 1
2 we have

√
1 − δ2 >

√
3
2 and h

(√
1 − δ2

)
< h

(√
3
2

)
. From h

(√
3
2

)
=

√
3

−2η2+√
3η+3

, it follows that
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δ(x+, s+;μ+) <

√
3

−2η3 + √
3η2 + 3η

‖η2e − v2+‖.

Using (5.10) we have

‖η2e − v2+‖ = ‖(1 − θ)e − v2+‖ ≤ ‖ − θe‖ + ‖e − v2+‖ < θ
√
n + 3δ2,

so we may write

δ(x+, s+;μ+) ≤
√
3(θ

√
n + 3δ2)

−2η3 + √
3η2 + 3η

.

Using the function g(η) = 1
−2η3+√

3η2+3η
for all 0 < η < 1 we have

g′(η) = 6η2 − 2
√
3η − 3

(−2η3 + √
3η2 + 3η)2

< 0, for all 0 < η < 1.

This implies that g is decreasing on the interval (0, 1). Now suppose that n ≥ 4 and θ = 1
27

√
n
.

Then, we obtain η ≥
√

53
54 . From δ < 1

2 we get

δ(x+, s+;μ+) <
√
3

(
1

27
+ 3

4

)
g

(√
53

54

)
,

and a simple calculus gives δ(x+, s+;μ+) < 1
2 . �


Lemma 5.5 shows that the algorithm is well defined, more exactly that the conditions
x > 0, s > 0, δ(x, s;μ) < 1

2 and v > 1
2e hold throughout the algorithm. The following

lemma investigates the question of the bound on the number of iterations.

Lemma 5.6 We assume that the pair (x0, s0) is strictly feasible, μ0 =
(
x0

)T
s0

n and

δ(x0, s0;μ0) < 1
2 . Let x

k and sk be the two vectors obtained by the algorithm given in
Fig. 1 after k iterations. Then, for

k ≥
⌈
1

θ
log

μ0
(
n + 1

4

)

ε

⌉

we have
(
xk

)T
sk < ε.

Proof From Lemma 5.4 we get

(
xk

)T
sk < μk

(
n + 1

4

)
= (1 − θ)kμ0

(
n + 1

4

)
.

This implies that
(
xk

)T
sk < ε holds if

(1 − θ)kμ0
(
n + 1

4

)
≤ ε.

Taking logarithms, we may write

k log(1 − θ) + log

(
μ0

(
n + 1

4

))
≤ log ε.
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As − log(1 − θ) ≥ θ we see that the inequality is valid only if

kθ ≥ log

(
μ0

(
n + 1

4

))
− log ε = log

μ0
(
n + 1

4

)

ε
.

This proves the lemma. �

As the self-dual embedding allows us to assume without loss of generality, that x0 = s0 =

e, we have μ0 = 1. This question leads us to the next lemma.

Theorem 5.7 Suppose that x0 = s0 = e. If we consider the default values for θ and τ we
obtain that the algorithm given in Fig. 1 requires no more than

O
(√

n log
n

ε

)
,

interior-point iterations. The resulting vectors satisfy xT s < ε.

6 Numerical results

We implemented the algorithm given in Fig. 1 in the C + + programming language in
order to analyse its efficiency for different ϕ functions. We considered the search directions
obtained by using the following three ϕ functions: the identity, the square root map and the
difference between the square root and the identity functions. The algorithm performed only
full-Newton steps and the barrier update parameter μ was reduced by the factor 1 − θ . We
used for the update parameter θ each constant from the set {0.1, 0.2, 0.3, 0.7, 0.8, 0.9}.
In all cases the accuracy parameter had the value ε = 10−5.

Hereafter, we present three problems for which we tested the different versions of the
algorithm. It should be mentioned that for all the problems the starting points x0, y0 and s0

satisfy the following condition:
√

x0s0

μ0 > e
2 , where μ0 =

(
x0

)T
s0

n .

Problem 1

We consider the primal-dual pair (P)–(D), where

A =

⎡
⎢⎢⎣

7 2 3 1 −1 −2 4
−4 −5 −2 3 −5 9 6
2 7 −6 7 −3 4 2
6 −6 −1 7 5 −5 3

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

37
36
97

−59

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−42
26

−59
71

−86
143
68

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The used starting points are the following: x0 = [1, 11, 4, 1, 7, 11, 6]T , y0 =
[−1, 10, 8, −3]T and s0 = [7, 4, 9, 7, 2, 4, 5]T .

In Table 1 we summarize the obtained numbers of iterations for the different search
directions and the used update parameters.

Problem 2

Let
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Table 1 Number of iterations for
Problem 1

ϕ(t) = t − √
t ϕ(t) = t ϕ(t) = √

t

θ = 0.1 84 91 91

θ = 0.2 41 43 43

θ = 0.3 10 27 27

θ = 0.7 8 8 8

θ = 0.8 6 6 7

θ = 0.9 4 5 5

Table 2 Number of iterations for
Problem 2

ϕ(t) = t − √
t ϕ(t) = t ϕ(t) = √

t

θ = 0.1 64 90 90

θ = 0.2 41 43 43

θ = 0.3 21 27 27

θ = 0.7 8 16 9

θ = 0.8 7 7 7

θ = 0.9 7 7 8

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −5 2 −8 −5 2 6 10 5 2
2 −8 −6 −7 6 5 5 6 −9 −8
6 1 9 5 −2 3 10 −5 6 −7
6 3 −2 1 −4 7 −8 10 8 4
1 −3 −1 5 −8 −4 4 1 4 −2
4 −1 3 −2 5 −8 4 1 −6 0
4 −2 6 −8 8 8 −2 −1 6 7
8 0 −9 −5 5 4 −8 −6 5 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

49
0
22
84

−42
−14
108
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

103
−39
−131
−140
236
134

−164
7

−49
70

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider the following starting points: x0 = [1, 2, 2, 1, 4, 5, 2, 4, 2, 4]T , y0 =
[−9, 10, −6, 5, 0, 3, 10, 7]T and s0 = [8, 10, 5, 4, 9, 1, 4, 6, 5, 1]T .

Table 2 contains the obtained results that refer to Problem 2.

Problem 3

Let us consider

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 7 9 3 −1 7 −5
−9 1 5 −5 10 −8 10 −7 3
0 2 −3 5 −1 −6 2 −3 −9
0 4 8 7 8 −2 1 −6 0

−7 6 −7 0 −5 8 8 6 −4
−9 10 −4 −9 0 8 −5 3 −9
7 −6 0 8 −3 −4 −1 1 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−19
75

−86
118
−4
−55
−65

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−156
139
5

−49
34
71
115
−3
−41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Table 3 Number of iterations for
Problem 3

ϕ(t) = t − √
t ϕ(t) = t ϕ(t) = √

t

θ = 0.1 18 93 92

θ = 0.2 42 44 44

θ = 0.3 28 28 28

θ = 0.7 8 9 8

θ = 0.8 6 7 6

θ = 0.9 5 5 6

We used the following starting points: x0 = [5, 9, 6, 1, 5, 3, 5, 2, 8]T , y0 =
[−3, 6, −3, 6, 10, 6, 3]T and s0 = [4, 1, 3, 5, 9, 6, 5, 6, 2]T .

The obtained numbers of iterations for the different cases are presented in Table 3.
It can be observed that for the selected problems the algorithm which uses the proposed

search direction gives better results than the two other studied methods. The used problems
are small-sized and dense. Therefore, as a further research the effieciency of our algorithm
could be analysed for large, sparse problems as well.

7 Conclusion

In this paper we used themethod introduced in [15] to obtain a new search direction for IPMs.
This approach is based on applying Newton’s method on an equivalent form of the central
path (2.2). We used the function ϕ(t) = t − √

t in order to define a new primal-dual IPM.
Because of the specific character of this function we had to ensure that in each iteration of
the algorithm the components of the vectors in the v-space are greater than 1

2 . Therefore, the
complexity analysis turned out to be more difficult than in the usual case. We proved that this
short-update algorithm has the iteration bound O(

√
n log n

ε
). Moreover, we provided some

numerical experiments that demonstrate the efficiency of the proposed algorithm.
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