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Abstract The main goal of this paper is to introduce Durrmeyer modifications for the gener-
alized Szász–Mirakyan operators defined in (Aral et al., in Results Math 65:441–452, 2014).
The construction of the new operators is based on a function ρ which is continuously differ-
entiable ∞ times on [0,∞) , such that ρ (0) = 0 and infx∈[0,∞) ρ′ (x) ≥ 1. Involving the
weighted modulus of continuity constructed using the function ρ, approximation properties
of the operators are explored: uniform convergence over unbounded intervals is established
and a quantitative Voronovskaya theorem is given. Moreover, we obtain direct approxima-
tion properties of the operators in terms of the moduli of smoothness. Our results show that
the new operators are sensitive to the rate of convergence to f, depending on the selection
of ρ. For the particular case ρ (x) = x , the previous results for classical Szász-Durrmeyer
operators are captured.

Keywords Szász-Durrmeyer operators · Weighted modulus of continuity · Quantitative
Voronovskaya theorem

Mathematics Subject Classification 41A25 · 41A35 · 41A36

1 Introduction

Approximation theory has an important role in mathematical research, with a great poten-
tial for applications. Since Korovkin’s famous theorem in 1950, the study of the linear
methods of approximation given by sequences of positive and linear operators became a
firmly entrenched part of approximation theory. Due to this fact, the well-known operators
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Approximation by modified Szász-Durrmeyer operators 65

such as Bernstein, Szász, Baskakov etc. and their generalizations have been studied inten-
sively. Recently Cárdenas-Morales et al. [8] introduced Bernstein-type operators defined for
f ∈ C [0, 1] by Bn

(
f ◦ τ−1

)◦ τ , Bn being the classical Bernstein operators and τ being any
function that is continuously differentiable∞ times on [0, 1] , such that τ (0) = 0, τ (1) = 1
and τ ′ (x) > 0 for x ∈ [0, 1]. They investigated the shape preserving and convergence prop-
erties, as well as the asymptotic behavior and saturation. A Durrmeyer type generalization
of Bn

(
f ◦ τ−1

) ◦ τ was also studied in [3]. The results of the aforementioned papers show
that it is possible to obtain some improvements of the classical approximation by Bernstein
and Bernstein-Durrmeyer operators in certain senses, simultaneously. Very recently Aral et
al. [6] introduced similar modifications of the Szász–Mirakyan operators. Let us recall that
construction.

Set N0 = N ∪ {0} and let R+ be the positive real semi-axis [0,∞) . Assume that ρ is any
function satisfying the conditions:

(p1) ρ is a continuously differentiable function on R
+,

(p2) ρ (0) = 0, inf x∈[0,∞) ρ′ (x) ≥ 1.

The generalized Szász–Mirakyan operators are defined by

Sρ
n ( f ; x) = Sn

(
f ◦ ρ−1; ρ (x)

) =
∞∑

k=0

(
f ◦ ρ−1)

(
k

n

)
Pn,ρ,k (x) , (1.1)

where Pn,ρ,k (x) := exp (−nρ (x)) (nρ (x))k /k!. Sn are the classical Szász–Mirakyan oper-
ators and can be obtained from Sρ

n as a particular case ρ (x) = x . The weighted uniform
convergence of Sρ

n to f , the rate of convergence with the aid of weighted modulus of conti-
nuity and some shape preserving properties of Sρ

n were studied.
The aim of this article is to introduce Durrmeyer type modifications of the operators

(1.1). A Durrmeyer type generalization of Szász–Mirakyan operators was introduced in [18].
Later on, further Durrmeyer type generalizations of the Szász–Mirakyan operators have been
studied intensively. Among others, we refer the reader to [5,7,15] and references therein.
The general integral modification of ( 1.1) to approximate Lebesgue integrable functions on
R

+ can be defined as

Dρ
n ( f ; x) = n

∞∑

k=0

Pn,ρ,k (x)

∞∫

0

(
f ◦ ρ−1) (t) pn,k (t) dt, (1.2)

where n ∈ N, pn,k (t) = exp (−nx) (nx)k /k! and ρ is any function with the assumptions
(ρ1) and (ρ2) . The operators Dρ

n are linear and positive and in the case of ρ (x) = x , the
operators reduce to the classical ones. By considering the notion of ρ-convexity (a function
f ∈ Ck

(
R

+)
is said to be ρ-convex of order k ∈ Nwhenever Dk

ρ f := Dk
(
f ◦ ρ−1

)◦ρ ≥ 0,
where D is the differential operator). Note that the operators Dρ

n map ρ-convex functions of
order k onto ρ-convex functions of order k, so they are said to be ρ-convex of order k, which
means that Dρ

n transform the so called ρ-polynomials into polynomials of the same degree,
that is, if we consider the set Pρ,k := {

ρi : i = 0, 1, ...k, k ∈ N
}
, then Dρ

n
(
Pρ,k

) ⊂ Pρ,k .

We shall first show that the operators (1.2) are an approximation process for functions
belonging to a weighted space, we shall prove uniform convergence of the operators and
determine the degree of this uniform convergence as well. In the next section, we obtain local
approximation properties. The last section is devoted to a Voronovskaya type theorem in
quantitative form. Quantitative Voronovskaya theorems have been studied intensively in the
last decade. This kind of results are very useful to describe the rate of point-wise convergence
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and error of approximation simultaneously. In the paper [19], a quantitative Voronovskaya
type theorem was presented for Bernstein operators in terms of usual modulus of continuity
and in terms of the least concave majorant of usual modulus of continuity in [13,14]. Since
the modulus of continuity doesn’t work on unbounded intervals, we obtain the corresponding
theorem with the weighted modulus of continuity. Some quantitative form of Voronvskaya’s
theorem on bounded and unbounded intervals, we refer the readers to [1,2,4].

2 Preliminary results

In what follows, we give the moments and recurrence relation for the central moments of the
operators without proofs since they are similar to the corresponding results for the Szász-
Durrmeyer operators. Also they can be verified just by taking ρ (x) = x . We also recall the
weighted modulus of continuity and its properties.

Lemma 2.1 We have

Dρ
n (1; x) = 1, Dρ

n (ρ; x) = ρ (x) + 1

n
, (2.1)

Dρ
n

(
ρ2; x) = ρ2 (x) + 4nρ (x) + 2

n2
, (2.2)

Dρ
n

(
ρ3; x) = ρ3 (x) + 9n2ρ2 (x) + 18nρ (x) + 6

n3
. (2.3)

Lemma 2.2 If we define the central moment of degree m,

μρ
n,m (x) = Dρ

n

(
(ρ (t) − ρ (x))m; x)

then we have

nρ′ (x) μ
ρ
n,m+1 (x) = ρ′ (x)

[
(m + 1)μρ

n,m (x) + 2mρ (x) μ
ρ
n,m−1 (x)

]

+ ρ (x) Dμρ
n,m (x) .

Also, using the above recurrence relation we get

μ
ρ
n,1 (x) = 1

n
,

μ
ρ
n,2 (x) = 2 + 2nρ (x)

n2
,

μ
ρ
n,3 (x) = 6 + 12nρ (x)

n3
,

μ
ρ
n,4 (x) = 24 + 72nρ (x) + 12n2ρ2 (x)

n4
,

μ
ρ
n,5 (x) =

(
180n2 + 72n

)
ρ2 (x) + (408n) ρ (x) + 120

n5
,

μ
ρ
n,6 (x) = 120n3ρ3 (x) + (

2160n2 + 984n
)
ρ2 (x) + (2688n) ρ (x) + 720

n6
.
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Approximation by modified Szász-Durrmeyer operators 67

Throughout the paper we shall consider the following class of functions. CB
(
R

+)
is the

space of all real valued continuous and bounded functions f onR+. Let ϕ (x) = 1+ρ2 (x) .

Bϕ

(
R

+) = {
f : R+ → R, | f (x)| ≤ M f ϕ (x) , x ≥ 0

}
,

Cϕ

(
R

+) = {
f ∈ Bϕ

(
R

+)
, f is continuous on R

+}
,

C∗
ϕ

(
R

+) =
{
f ∈ Cϕ

(
R

+)
, lim

x→∞ f (x) /ϕ (x) = const.
}

,

Uϕ

(
R

+) = {
f ∈ Cϕ

(
R

+)
, f (x) /ϕ (x) is uniformly continuous on R

+}
,

where M f is a constant depending only on f. CB
(
R

+)
is the linear normed space with the

norm ‖ f ‖ = supx∈R+ | f (x)| and the other spaces are normed linear spaces with the norm
‖ f ‖ϕ = supx∈R+ | f (x)| /ϕ (x) .

The weighted modulus of continuity defined in [16] is given by

ωρ ( f ; δ) = sup
x,t∈R+

|ρ(t)−ρ(x)|≤δ

| f (t) − f (x)|
ϕ (t) + ϕ (x)

for each f ∈ Cϕ

(
R

+)
and for every δ > 0. We observe that ωρ ( f ; 0) = 0 for every

f ∈ Cϕ

(
R

+)
and the function ωρ ( f ; δ) is nonnegative and nondecreasing with respect to δ

for f ∈ Cϕ

(
R

+)
and also limδ→0 ωρ ( f ; δ) = 0 for every f ∈ Uϕ

(
R

+)
(For more details

see [16]).
Let δ > 0 andW2∞ = {

g ∈ CB [0,∞) ; g′, g′′ ∈ CB [0,∞)
}
. The Peetre’s K -functional

is defined by

K2 ( f ; δ) = inf
{
‖ f − g‖ + δ ‖g‖W2∞; g ∈ W2∞

}
,

where
‖ f ‖W2∞ := ‖ f ‖ +

∥∥∥ f
′∥∥∥ +

∥∥∥ f
′′∥∥∥ .

It was shown in [9] that there exists an absolute constant C > 0 such that

K2 ( f, δ) ≤ C
{
ω2

(
f ;√

δ
)

+ min (1, δ) ‖ f ‖
}

,

where the second order modulus of continuity is defined by

ω2

(
f,

√
δ
)

= sup
0<h≤√

δ

sup
0≤x<∞

| f (x + 2h) − 2 f (x + h) + f (x)| .

The usual modulus of continuity for f ∈ CB
(
R

+)
is given by

ω ( f, δ) = sup
0<h≤δ

sup
0≤x<∞

| f (x + h) − f (x)| .

3 Uniform convergence of Dρ
n

In this section, we obtain the uniform convergence of the operators Dρ
n in terms of the

weighted Korovkin theorem [11,12] and we describe the rate of the corresponding uniform
convergence. Foremost, we recall the weighted form of the Korovkin theorem.

Lemma 3.1 ([11]) The positive linear operators Ln, n ≥ 1, act from Cϕ

(
R

+)
to Bϕ

(
R

+)

if and only if the inequality
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68 G. Ulusoy, T. Acar

|Ln (ϕ; x)| ≤ Knϕ (x) ,

holds, where Kn is a positive constant depending on n.

Theorem 3.2 ([11]) Let the sequence of linear positive operators (Ln), n ≥ 1, acting from
Cϕ

(
R

+)
to Bϕ

(
R

+)
satisfy the following three conditions

lim
n→∞

∥
∥Lnρ

ν − ρν
∥
∥

ϕ
= 0, ν = 0, 1, 2.

Then for any function f ∈ C∗
ϕ

(
R

+)
,

lim
n→∞ ‖Ln f − f ‖ϕ = 0.

Therefore, we have the following result.

Theorem 3.3 For each function f ∈ C∗
ϕ

(
R

+)

lim
n→∞

∥
∥Dρ

n f − f
∥
∥

ϕ
= 0.

Proof We first have to show that Dρ
n : Cϕ

(
R

+) → Bϕ

(
R

+)
. In fact, using (2.1)–(2.2) we

have
∣∣Dρ

n (ϕ; x)∣∣ = 1 + ρ2 (x) + 4nρ (x) + 2

n2
.

Since
∣∣Dρ

n (ϕ; x)∣∣ ≤ (
1 + ρ2 (x)

) (n2 + 4n + 2

n2

)
whenever ρ (x) ≤ 1,

and
∣∣Dρ

n (ϕ; x)∣∣ ≤ (
1 + ρ2 (x)

) (n2 + 4n

n2

)
whenever ρ (x) > 1,

we get
∣∣Dρ

n (ϕ; x)∣∣ ≤ (
1 + ρ2 (x)

) 2
(
n2 + 4n + 2

)

n2

which verifies our assertion by Lemma 3.1. On the other hand, since
∥∥Dρ

n 1 − 1
∥∥

ϕ
= 0,

∥∥Dρ
nρ − ρ

∥∥
ϕ

= 1/n,
∥∥Dρ

nρ2 − ρ2
∥∥

ϕ
= sup

x∈R+
(4nρ (x) + 2) /n2

(
1 + ρ2(x)

) ≤ 6/n, (3.1)

we deduce
lim
n→∞

∥∥Dρ
n f − f

∥∥
ϕ

= 0

by Theorem 3.2. ��
Let us describe the rate of the above convergence. To do this, we consider the following

theorem proved in [16].

Theorem 3.4 ([16]) Let Ln :Cϕ

(
R

+) → Bϕ

(
R

+)
be a sequence of positive linear operators

with

‖Ln (1) − 1‖ϕ0 = an,

‖Ln (ρ) − ρ‖
ϕ
1
2

= bn, (3.2)
∥∥Ln

(
ρ2) − ρ2

∥∥
ϕ

= cn,
∥∥Ln

(
ρ3) − ρ3

∥∥
ϕ
3
2

= dn, (3.3)
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Approximation by modified Szász-Durrmeyer operators 69

where an, bn, cn and dn tend to zero as n → ∞. Then

‖Ln ( f ) − f ‖
ϕ
3
2

≤ (7 + 4an + 2cn) ωρ ( f ; δn) + ‖ f ‖ϕ an

for all f ∈ Cϕ

(
R

+)
, where

δn = 2
√

(an + 2bn + cn) (1 + an) + an + 3bn + 3cn + dn .

Theorem 3.5 For all f ∈ Cϕ

(
R

+)
we have

∥
∥Dρ

n ( f ) − f
∥
∥

ϕ
3
2

≤
(
7 + 12

n

)
ωρ

(

f ; 4
√
2√
n

+ 54

n

)

.

Proof In order to apply Theorem 3.4, we should calculate the sequences an, bn, cn and dn .
In light of (2.1) and (2.2) we obtain

∥
∥Dρ

n (1) − 1
∥
∥

ϕ0 = an = 0

and

bn = ∥
∥Dρ

n (ρ) − ρ
∥
∥

ϕ
1
2

= sup
x∈R+

1

n
√
1 + ρ2(x)

≤ 1

n
.

Also by (3.1) we have

cn = ∥∥Ln
(
ρ2) − ρ2

∥∥
ϕ

= sup
x∈R+

4nρ (x) + 2

n2
(
1 + ρ2(x)

) ≤ 6

n
.

Finally using (2.3), we get

dn = ∥∥Ln
(
ρ3) − ρ3

∥∥
ϕ
3
2

= sup
x∈R+

9n2ρ2 (x) + 18nρ (x) + 6

n3
(
1 + ρ2(x)

) 3
2

≤ 33

n
.

Since all conditions of Theorem 3.4 are satisfied, the desired result follows. ��

4 Local approximation

Theorem 4.1 Let ρ be a function satisfying the conditions (p1), (p2) and
∥∥ρ′′∥∥ be finite. If

f ∈ CB
(
R

+)
, then we have

∣
∣Dρ

n ( f ; x)− f (x)
∣
∣ ≤ C

{

ω2

(

f ;
√
4 (1+nρ (x))

n2

)

+ min

(
1,

4 (1+nρ (x))

n2

)
‖ f ‖

}

+ ω

(
f,
1

n

)
,

where C is a constant independent of n.

Proof Let us consider the auxiliary operator

D̂n ( f ; x) = Dρ
n ( f ; x) + f (x) − (

f ◦ ρ−1)
(

ρ (x) + 1

n

)
.

It is clear by Lemma 2.1 that

D̂n (1; x) = Dρ
n (1; x) = 1 (4.1)

and

D̂n (ρ (t) ; x) = Dρ
n (ρ (t) ; x) + ρ (x) − ρ (x) − 1

n
= ρ (x) . (4.2)
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The classical Taylor’s expansion of g ∈ W2∞ yields for t ∈ R
+ that

g (t) = (
g ◦ ρ−1) (ρ (t)) = (

g ◦ ρ−1) (ρ (x)) + D
(
g ◦ ρ−1) (ρ (x)) (ρ (t) − ρ (x))

+
ρ(t)∫

ρ(x)

(ρ (t) − u) D2 (
g ◦ ρ−1) (u) du.

Using (4.1) and (4.2) we have

D̂n (g; x) − g (x) = D̂n

⎛

⎜
⎝

ρ(t)∫

ρ(x)

(ρ (t) − u) D2 (
g ◦ ρ−1) (u) du; x

⎞

⎟
⎠ . (4.3)

On the other hand, with the change of variable u = ρ (y) we get

ρ(t)∫

ρ(x)

(ρ (t) − u) D2 (
g ◦ ρ−1) (u) du

=
t∫

x

(ρ (t) − ρ (y)) D2 (
g ◦ ρ−1) ρ (y) ρ′ (y) dy.

Using the equality

D2 (
g ◦ ρ−1) (ρ (y)) = 1

ρ′ (y)
g′′ (y) ρ′ (y) − g′ (y) ρ′′ (y)

(ρ′ (y))2
, (4.4)

one can write

ρ(t)∫

ρ(x)

(ρ (t) − u) D2 (
g ◦ ρ−1) (u) du

=
t∫

x

(ρ (t) − ρ (y))

(
1

ρ′ (y)
g′′ (y) ρ′ (y) − g′ (y) ρ′′ (y)

(ρ′ (y))2

)
dy

=
ρ(t)∫

ρ(x)

(ρ (t) − u)
g′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du −
ρ(t)∫

ρ(x)

(ρ (t) − u)
g′ (ρ−1 (u)

)
ρ′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du.

So (4.3) can be written as

D̂n (g; x) − g (x) = D̂n

⎛

⎜
⎝

ρ(t)∫

ρ(x)

(ρ (t) − u)
g′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du; x
⎞

⎟
⎠

− D̂n

⎛

⎜
⎝

ρ(t)∫

ρ(x)

(ρ (t) − u)
g′ (ρ−1 (u)

)
ρ′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du; x
⎞

⎟
⎠
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Approximation by modified Szász-Durrmeyer operators 71

= Dρ
n

⎛

⎜
⎝

ρ(t)∫

ρ(x)

(ρ (t) − u)
g′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du; x
⎞

⎟
⎠

−
ρ(x)+ 1

n∫

ρ(x)

(
ρ (x) + 1

n
− u

)
g′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du

−Dρ
n

⎛

⎜
⎝

ρ(t)∫

ρ(x)

(ρ (t) − u)
g′ (ρ−1 (u)

)
ρ′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du; x
⎞

⎟
⎠

+
ρ(x)+ 1

n∫

ρ(x)

(
ρ (x) + 1

n
− u

)
g′ (ρ−1 (u)

)
ρ′′ (ρ−1 (u)

)

(
ρ′ (ρ−1 (u)

))3 du.

Since ρ is strictly increasing on [0,∞) and with the condition (p2), we get

∣∣∣D̂n (g; x) − g (x)
∣∣∣ ≤

(
Mρ

n,2 (x) + 1

n2

)(∥∥∥g
′′∥∥∥ + ∥∥g′∥∥

∥∥∥ρ
′′∥∥∥

)

≤ 4 (1 + nρ (x))

n2

(∥∥∥g
′′∥∥∥ + ∥∥g′∥∥

∥∥∥ρ
′′∥∥∥

)
.

Also, it is clear that ∥∥Dρ
n

∥∥ ≤ ‖ f ‖ .

Hence we have

∣∣Dρ
n ( f ; x) − f (x)

∣∣ ≤
∣∣∣∣D̂n ( f ; x) − f (x) + (

f ◦ ρ−1)
(

ρ (x) + 1

n

)
− f (x)

∣∣∣∣

≤
∣∣∣D̂n ( f − g; x)

∣∣∣ +
∣∣∣D̂n (g; x) − g (x)

∣∣∣ + |g (x) − f (x)|

+
∣∣∣∣
(
f ◦ ρ−1)

(
ρ (x) + 1

n

)
− (

f ◦ ρ−1) (ρ (x))

∣∣∣∣

≤ 4 ‖ f − g‖ + 4 (1 + nρ (x))

n2
(‖g′′ ‖ + ‖g′‖‖ρ ′′ ‖)

+ω

(
f ◦ ρ−1,

1

n

)

and choosing C := max
{
1, ‖ρ ′′ ‖

}
we have

∣∣Dρ
n ( f ; x) − f (x)

∣∣ ≤ C

{
‖ f − g‖ + 4 (1 + nρ (x))

n2
(‖g′′ ‖ + ∥∥g′∥∥ + ‖g‖)

}

+ω

(
f ◦ ρ−1,

1

n

)

= C

{
‖ f − g‖ + 4 (1 + nρ (x))

n2
‖g‖W2∞

}
+ ω

(
f ◦ ρ−1,

1

n

)
.
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Taking the infimum on the right hand side over all g ∈ W2∞ we obtain

∣
∣Dρ

n ( f ; x) − f (x)
∣
∣ ≤ CK2

(
f ; 4 (1 + nρ (x))

n2

)
+ ω

(
f ◦ ρ−1,

1

n

)

≤ C

{

ω2

(

f ;
√
4 (1 + nρ (x))

n2

)

+ min

(
1,

4 (1 + nρ (x))

n2

)
‖ f ‖

}

+ ω

(
f ◦ ρ−1,

1

n

)
.

Furthermore, for x ∈ R
+ we have

ω
(
f ◦ ρ−1, t

) = sup

{ ∣
∣ f

(
ρ−1 (y)

) − f
(
ρ−1 (x)

)∣∣ : 0 ≤ y − x ≤ t

}

= sup {| f (ȳ) − f (x̄)| : 0 ≤ ρ (ȳ) − ρ (x̄) ≤ t} .

Since 0 ≤ ρ (ȳ) − ρ (x̄) ≤ t, then 0 ≤ (ȳ − x̄) ρ′ (u) ≤ t for some u ∈ (x̄, ȳ) , i.e.,
0 ≤ ȳ − x̄ ≤ t/ρ′ (u) ≤ t. Thus we have

ω
(
f ◦ ρ−1, t

) = sup {| f (ȳ) − f (x̄)| : 0 ≤ ȳ − x̄ ≤ t}
= ω ( f, t) .

Hence we have

∣∣Dρ
n ( f ; x) − f (x)

∣∣ ≤ C

{

ω2

(

f ;
√
4 (1 + nρ (x))

n2

)

+ min

(
1,

4 (1 + nρ (x))

n2

)
‖ f ‖

}

+ω

(
f,
1

n

)
.

��

5 Pointwise convergence of Dρ
n

In this section, we shall focus on pointwise convergence ofDρ
n by obtaining theVoronovskaya

theorem in quantitative form. We need the following lemma.

Lemma 5.1 ([16]) For every f ∈ Cϕ

(
R

+)
, for δ > 0 and for all x, y ≥ 0,

| f (u) − f (x)| ≤ (ϕ (u) + ϕ (x))

(
2 + |ρ (u) − ρ (x)|

δ

)
ωρ ( f, δ) (5.1)

holds.

Theorem 5.2 If the functionρ satisfies the conditions (p1), (p2) and f ′′/
(
ρ

′)2
, f ′.ρ ′′

/
(
ρ

′)3

∈ Cϕ

(
R

+)
, then we have for any x ∈ [0,∞) that

∣∣n
[Dρ

n ( f ; x) − f (x)
] − D

(
f ◦ ρ−1) (ρ (x)) − ρ (x) D2 (

f ◦ ρ−1) (ρ (x))
∣∣

≤ 1

n
+12

(
ρ2 (x)+ρ (x)+2

) (1+nρ (x))

n

{

ωρ

(
f

′′

(
ρ

′)2 , δρ
n (x)

)

+ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δρ
n (x)

)}

,

where δ
ρ
n (x) =

(
144 (1+nρ(x))2

n4

) 1
3
.
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Proof By the Taylor expansion of f ◦ ρ−1 we can write
(
f ◦ ρ−1) (ρ (t)) = (

f ◦ ρ−1) (ρ (x)) + D
(
f ◦ ρ−1) (ρ (x)) (ρ (t) − ρ (x))

+ D2
(
f ◦ ρ−1

)
(ρ (x)) (ρ (t) − ρ (x))2

2
+ h (t, x) (ρ (t) − ρ (x))2 ,

(5.2)

where

h (t, x) = D2
(
f ◦ ρ−1

)
(ξ) − D2

(
f ◦ ρ−1

)
(ρ (x))

2

and ξ is a number between ρ (x) and ρ (t) .Applying the operatorDρ
n to both sides of equality

(5.2), we immediately have
∣
∣n

[Dρ
n ( f ; x) − f (x)

] − D
(
f ◦ ρ−1) (ρ (x)) − ρ (x) D2 (

f ◦ ρ−1) (ρ (x))
∣
∣

≤
∣
∣
∣nD

(
f ◦ ρ−1) (ρ (x)) μ

ρ
n,1 (x) − D

(
f ◦ ρ−1) (ρ (x))

∣
∣
∣

+
∣∣
∣
∣
∣
nD2

(
f ◦ ρ−1

)
(ρ (x))

2
μ

ρ
n,2 (x) − ρ (x) D2 (

f ◦ ρ−1) (ρ (x))

∣∣
∣
∣
∣

+ nDρ
n

(|h (t, x)| (ρ (t) − ρ (x))2 ; x) .

Let us estimate |h (t, x)| . Using (4.4) and (5.1), respectively, we have

|h (t, x)| = 1

2

{
f

′′
(ξ)

(
ρ

′
(ξ)

)2 − f
′′
(x)

(
ρ

′
(x)

)2 + f
′
(x)

ρ
′′
(x)

(
ρ

′
(x)

)3 − f
′
(ξ)

ρ
′′
(ξ)

(
ρ

′
(ξ)

)3

}

≤ 1

2
(ϕ (t) + ϕ (x))

(
2 + |ρ (t) − ρ (x)|

δ

){

ωρ

(
f

′′

(
ρ

′)2 , δ

)

+ ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δ

)}

.

On the other hand, since ϕ (t) + ϕ (x) ≤ δ2 + 2ρ2 (x) + 2ρ (x) δ + 2 whenever
|ρ (t) − ρ (x)| ≤ δ, we have

|h (t, x)| ≤ 3

2

(
δ2 + 2ρ2 (x) + 2ρ (x) δ + 2

)
{

ωρ

(
f

′′

(
ρ

′)2 , δ

)

+ ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δ

)}

and since ϕ (t) + ϕ (x) ≤
(

ρ(t)−ρ(x)
δ

)2 (
δ2 + 2ρ2 (x) + 2ρ (x) δ + 2

)
whenever |ρ (t)

−ρ (x)| > δ, we have

|h (t, x)| ≤ 3

2

(
δ2 + 2ρ2 (x) + 2ρ (x) δ + 2

) |ρ (t) − ρ (x)|3
δ3

×
{

ωρ

(
f

′′

(
ρ

′)2 , δ

)

+ ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δ

)}

.

Choosing δ < 1 we deduce

|h (u, x)| ≤ 3
(
ρ2 (x) + ρ (x) + 2

)
(

|ρ (t) − ρ (x)|3
δ3

+ 1

)

×
{

ωρ

(
f

′′

(
ρ

′)2 , δ

)

+ ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δ

)}

.
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So using Lemma 2.2 and the Cauchy–Schwarz inequality we get
∣
∣n

[Dρ
n ( f ; x) − f (x)

] − D
(
f ◦ ρ−1) (ρ (x)) − ρ (x) D2 (

f ◦ ρ−1) (ρ (x))
∣
∣

≤ 1

n
+ 3n

(
ρ2 (x) + ρ (x) + 2

)
{

ωρ

(
f

′′

(
ρ

′)2 , δ

)

+ ωρ

(
f

′
ρ

′′

(
ρ

′)3 , δ

)}

×μ
ρ
n,2

(

1 + 1

δ3

√
μn,4 (x) μn,6 (x)

μn,2 (x)

)

and if we choose δ =
(√

μn,4(x)μn,6(x)
μn,2(x)

) 1
3
we get

∣
∣n

[Dρ
n ( f ; x) − f (x)

] − D
(
f ◦ ρ−1) (ρ (x)) − ρ (x) D2 (

f ◦ ρ−1) (ρ (x))
∣
∣

≤ 1

n
+ 6n

(
ρ2 (x) + ρ (x) + 2

)
μ

ρ
n,2

×

⎧
⎪⎨

⎪⎩
ωρ

⎛

⎜
⎝

f
′′

(
ρ

′)2 ,

(√
μn,4 (x) μn,6 (x)

μn,2 (x)

) 1
3

⎞

⎟
⎠ + ωρ

⎛

⎜
⎝

f
′
ρ

′′

(
ρ

′)3 ,

(√
μn,4 (x) μn,6 (x)

μn,2 (x)

) 1
3

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

(5.3)

On the other hand, straightforward calculations give

μ
ρ
n,2 (x) = 2

(1 + nρ (x))

n2
, μ

ρ
n,4 (x) ≤ 36

(1 + nρ (x))2

n4
, μ

ρ
n,6 (x) ≤ 1152

(1 + nρ (x))3

n6
.

Hence we have √
μn,4 (x) μn,6 (x)

μn,2 (x)
≤ 144

(1 + nρ (x))2

n4
= δρ

n (x).

If the above estimates are substituted in (5.3), we get the desired result. ��

Corollary 5.3 We have the following particular cases:

(i) Suppose that ρ (x) = x . If f ′′ ∈ Cx2
(
R

+)
(where Cx2

(
R

+)
is the analogues one of

Cϕ

(
R

+)
), then we have for any x ∈ [0,∞) that

∣∣n [Dn ( f ; x) − f (x)] − f ′ (x) − x f ′′ (x)
∣∣

≤ 1

n
+ 12

(
x2 + x + 2

) (1 + nx)

n
	

(
f

′′
, δn(x)

)
,

where 	( f ; δ) is another weighted modulus of continuity defined in [17] and δn(x) =
(
144 (1+nx)2

n4

) 1
3
.

(ii) If f ′′/
(
ρ

′)2
, f ′.ρ ′′

/
(
ρ

′)3 ∈ Uϕ

(
R

+)
, then we have for any x ∈ [0,∞) that

lim
n→∞ n

[Dρ
n ( f ; x) − f (x)

] = D
(
f ◦ ρ−1) (ρ (x)) + ρ (x) D2 (

f ◦ ρ−1) (ρ (x)) .
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3. T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators. Gen. Math. 22(1), 27–41 (2014)
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