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Abstract We introduce four extension properties (CEP, QEP, SCEP and SQEP) for ordered
algebras, similar to the congruence extension property (CEP) and the strong congruence
extension property of usual (unordered) algebras. All four properties turn out to have a
description in terms of commutative squares or pullback diagrams. We then use these cat-
egorical descriptions to prove an ordered analogue of the well-known relation TP = AP +
CEP, namely that a variety of ordered algebras has the ordered transferability property if and
only if it has the ordered amalgamation property and QEP.
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1 Preliminaries

As usual in universal algebra, a type is a (possibly empty) set � of operation symbols which
is a disjoint union of sets �k , k ∈ N ∪ {0}.
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On congruence extension properties for ordered algebras 93

Definition 1.1 (Cf. [1]) Let�be a type.Anordered�-algebra (or simplyordered algebra) is
a tripleA = (A,�A,≤A) comprising a poset (A,≤A) and a set �A of monotone operations
on A, where ωA ∈ �A has arity k if ω ∈ �k and where the monotonicity of ωA means
that

a1 ≤A a′
1 ∧ . . . ∧ ak ≤A a′

k �⇒ ωA(a1, . . . , ak) ≤A ωA(a′
1, . . . , a

′
k)

for all a1, . . . , ak, a′
1, . . . , a

′
k ∈ A.

An ordered algebra B = (B,�B ,≤B) is called a subalgebra of A = (A,�A,≤A) if

(i) B ⊆ A,
(ii) for every k and for every ω ∈ �k , ωB = ωA

∣
∣
Bk ,

(iii) ≤B = ≤A ∩ (B × B).

The order and operations on the direct product of ordered algebras are defined compo-
nentwise.

A homomorphism f : A −→ B of ordered algebras is a monotone operation-preserving
map from an ordered �-algebra A to an ordered �-algebra B. We call a homomorphism f
an order-embedding if additionally

f (a) ≤B f (a′) �⇒ a ≤A a′

for all a, a′ ∈ A. Note that every order-embedding is necessarily injective.
An inequality of type � is a sequence of symbols t ≤ t ′ with t and t ′ being �-terms.

We say that A satisfies inequality t ≤ t ′ if tA ≤ t ′A, where tA, t ′A: An −→ A are the
term functions induced on A by t and t ′, and tA ≤ t ′A is defined pointwise. A class K of
ordered �-algebras is called a variety if it consists precisely of all the algebras satisfying
some set of inequalities; we refer to [1] for further details. Every variety of ordered algebras
and their homomorphisms forms a category. Because the pointwise order is compatible with
the composition of homomorphisms, considering the set of homomorphisms from A to B
(for each pair of algebrasA and B) as a poset with respect to the pointwise order one may in
fact regard these categories as Pos-categories (categories enriched over the category Pos of
posets and monotone mappings). We recall from [8] that monomorphisms in the categories
of ordered algebras are precisely injective homomorphisms.

Given a quasiorder θ on a poset (A,≤) and a, a′ ∈ A, we write

a ≤
θ
a′ ⇐⇒ (∃n ∈ N)(∃a1, . . . , an ∈ A)(a ≤ a1 θ a2 ≤ a3 θ . . . θ an ≤ a′).

An order-congruence on an ordered algebra A = (A,�A,≤A) is a congruence θ of the
algebra (A,�A) such that the following condition (cf. [3]) is satisfied:

(∀a, a′ ∈ A)

(

a ≤
θ
a′ ≤

θ
a �⇒ a θ a′

)

.

Wecall a quasiorderσ onanordered algebraA a compatible quasiorder if it is compatiblewith
operations and extends the order of A. In [1] such relations are called admissible preorders.
Both order-congruences and compatible quasiorders play an important role in the theory of
ordered algebras. Let us denote the sets of all order-congruences and compatible quasiorders
of A by Con(A) and Cqu(A), respectively.

For every subset H ⊆ A×A there exists the smallest order-congruence� onA containing
H , which is the intersection of all order-congruences containing H . This � is called the
order-congruence generated by H . We will need the following result about �.
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94 V. Laan et al.

Lemma 1.2 Let A be an ordered algebra, H ⊆ A × A and � be the order-congruence on
A generated by H. Then for any c, c′ ∈ A, c ≤

�
c′ if and only if c ≤ c′ or there exist unary

polynomial functions p1, . . . , pn on A and pairs (a1, a′
1), . . . , (an, a′

n) ∈ H ∪ H−1 such
that

c ≤ p1(a1) p2(a′
2) ≤ p3(a3) pn(a′

n) ≤ c′.
p1(a′

1) ≤ p2(a2) . . . pn−1(a′
n−1) ≤ pn(an)

There are two natural ways of forming quotients of ordered algebras. If θ is an order-
congruence on an ordered algebra A = (A,�A,≤A) then one can define an order relation
� on the quotient set A/θ by

[a] � [a′] ⇐⇒ a ≤
θ
a′,

a, a′ ∈ A. With the usual definitions of operations we obtain an ordered �-algebra A/θ :=
(

A/θ,�A/θ ,�
)

. As in [8], we call such an algebra the regular quotient algebra of A by an
order-congruence θ . Such quotients were introduced in [3].

On the other hand, if σ is a compatible quasiorder on A then θ = σ ∩ σ−1 is an order-
congruence, and one can define an order relation � on the quotient set A/θ by

[a] � [a′] ⇐⇒ aσa′,

a, a′ ∈ A. Again, with the usual operations we obtain an ordered algebra A/σ :=
(

A/(σ ∩ σ−1),�A/(σ∩σ−1),�
)

; let us call it the quotient algebra of A by a compatible
quasiorder σ . Such quotients have appeared in [1] and [4]. We note that every variety is
closed both under quotient algebras and regular quotient algebras.

If σ is a compatible quasiorder then we may consider both the regular quotient algebra
A/(σ ∩ σ−1) and the (non-regular) quotient algebraA/σ . They have the same elements and
operations, but the order may be different: � is contained in �.

Given a homomorphism f : A −→ B of ordered algebras, the directed kernel
−→
ker f of f ,

defined as
−→
ker f = {

(a, a′) ∈ A × A | f (a) ≤ f (a′)
}

(see [4]) is clearly a compatible quasiorder on A. Hence

ker f = (
−→
ker f ) ∩ (

−→
ker f )−1

is an order-congruence on A. So we have the quotient algebras

A/ ker f = (

A/ ker f,�A/ ker f ,�
)

, A/
−→
ker f = (

A/ ker f,�A/ ker f ,�
)

,

with order relations

[a] � [a′] ⇐⇒ a ≤
ker f

a′,

[a] � [a′] ⇐⇒ f (a) ≤ f (a′) ⇐⇒ (a, a′) ∈ −→
ker f.

A homomorphism g: A −→ B of ordered algebras is called a Q-homomorphism (cf. [4])
if, for all b, b′ ∈ B, b ≤B b′ implies that there exist a, a′ ∈ A such that

b = g(a), a ≤
ker g

a′, g(a′) = b′.
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On congruence extension properties for ordered algebras 95

A morphism in a category of ordered algebras is called a regular epimorphism if it is the
coequalizer of some pair of morphisms. It was shown in [8] that surjective epimorphisms of
ordered algebras are not necessarily regular. We, however, have the following remark as an
immediate consequence of Corollary 28 and Theorem 32 of [8].

Remark 1.3 Every regular epimorphism in a category of ordered algebras is surjective.

Theorem 1.4 ([8]) Regular epimorphisms in a variety of ordered algebras are precisely
Q-homomorphisms.

Theorem 1.5 ([8]) For any homomorphism f : A −→ B of ordered algebras the diagram

A/ ker f A/
−→
ker f

1A/ ker f

��

A

A/ ker f

π

��

A Bf �� B

A/
−→
ker f

��
ι

commutes, where the mappings π and ι, defined by

π(a) := [a],
ι([a]) := f (a),

are homomorphisms of ordered algebras. Moreover,

(1) π is a Q-homomorphism;
(2) 1A/ ker f is injective;
(3) ι is an order-embedding;
(4) 1A/ ker f ◦ π is surjective;
(5) ι ◦ 1A/ ker f is injective.

We will also need the following result, the proof of which is routine.

Theorem 1.6 For any homomorphism f : A −→ B and a surjective homomorphism g:

A −→ C of ordered algebras with
−→
ker g ⊆ −→

ker f , the mapping h: C −→ B, given by
h(c) = f (a), where c = g(a), is the unique homomorphism of ordered algebras such that
h ◦ g = f . Moreover,

(1) h is injective if and only if ker f = ker g;
(2) h is an order-embedding if and only if

−→
ker f = −→

ker g;
(3) h is surjective if and only if f is surjective.

2 Congruence and quasiorder extension properties

Congruence extension properties have been investigated in the context of various algebras (see
[7] and the references contained therein). The aim of this section is to introduce congruence
and quasiorder extension properties for ordered algebras. We shall see that the latter imply
the former, but the converse is not necessarily true.

Definition 2.1 We say that an ordered algebra A has the congruence extension property
(CEP) if every order-congruence θ on any subalgebra B of A is the restriction of some
order-congruence � on A, i.e. � ∩ (B × B) = θ .
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96 V. Laan et al.

Definition 2.2 We say that an ordered algebra A has the quasiorder extension property
(QEP) if every compatible quasiorder σ on any subalgebra B of A is the restriction of some
compatible quasiorder 	 on A, i.e. 	 ∩ (B × B) = σ .

Proposition 2.3 If an ordered algebra has QEP then it has CEP.

Proof LetA be an ordered algebra having QEP. LetB be a subalgebra ofA and θ ∈ Con(B).
Then ≤

θ
∈ Cqu(B). By QEP there exists 	 ∈ Cqu(A) such that 	 ∩ (B × B) = ≤

θ
. Now

� := 	∩	−1 ∈ Con(A). To complete the proof we need to show that�∩ (B× B) = θ . To
this end, first take (b, b′) ∈ � with b, b′ ∈ B. Then b	 b′ 	 b and hence b ≤

θ
b′ ≤

θ
b. Since

θ is an order-congruence, we have b θ b′. Now, let b θ b′, where b, b′ ∈ B. Then, because θ

is symmetric, we also have b′ θ b. Now b ≤
θ
b′ and b′ ≤

θ
b imply b	 b′ and b′ 	 b. Hence

b� b′, as needed. ��

The following example shows that there exist ordered algebras which have CEP but not
QEP.

Example 2.4 Let S be the pomonoid given by the following Cayley table and Hasse diagram
(cf. Example 2 of [2]):

· a b e 1
a a a a a
b b b b b
e a b e e
1 a b e 1

,

a
� |

e 1
�

b

.

(This S is obtained from a left zero semigroup {a, b} by adjoining the external identities e
and 1, one after the other.)

We first show that S has CEP. The proper subpomonoids of S are U1 = {b, e, 1}, U2 =
{a, e, 1}, U3 = {a, b, 1}, U4 = {a, 1}, U5 = {e, 1}, U6 = {b, 1} and U7 = {1}.

Because the smallest and the largest order-congruences (denoted respectively by 
 and
∇) on any of these subpomonoids are respectively the restrictions of the smallest and the
largest order-congruences of S, there is nothing to prove for these order-congruences. We
therefore leave out U4, U5 and U6 which only admit 
 and ∇. We can also omit U7 which
has only one order-congruence 
 = ∇.

Besides 
 and ∇, the order-congruences on U1, represented by their congruence classes,
are:

θ11 = {{b, e}, {1}},
θ12 = {{1, e}, {b}}.

Those of U2 (which is algebraically isomorphic to U1) are:

θ21 = {{a, e}, {1}},
θ22 = {{e, 1}, {a}}.

And that of U3 is:

θ31 = {{a, b}, {1}}.
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On congruence extension properties for ordered algebras 97

We next consider the following order-congruences on S:

�1 = {{a, b, e}, {1}},
�2 = {{e, 1}, {b}, {a}}.

Now one can easily check that θ11 = �1 ∩ (U1 × U1), θ12 = �2 ∩ (U1 × U1), θ21 =
�1 ∩ (U2 ×U2), θ22 = �2 ∩ (U2 ×U2) and θ31 = �1 ∩ (U3 ×U3). Thus S has CEP.

To show that S does not have QEP we consider the compatible quasiorder

θ11 = {(b, e), (e, b), (b, b), (e, e), (1, 1)}
on U1. (Note that an order-congruence that contains the order is a compatible quasiorder.)
Now any compatible quasiorder 	 on S extending θ11 must contain (a, b) = (ea, ba).
Moreover, since 	 extends the order of S, it should also contain the pair (1, a). But then,
using transitivity, we have (1, b) ∈ 	 from (1, a), (a, b) ∈ 	. Thus 	 ∩ (U1 × U1) �= θ11
because (1, b) /∈ θ11 and QEP fails for S.

There also exist ordered algebras which do not have CEP.

Example 2.5 There exist semigroups which do not have the congruence extension property,
see for instance Example 1.2 in [5]. Consider such a semigroup S with discrete order. Then
its congruences and order-congruences coincide and it does not have the order-congruence
extension property.

It turns out that if an algebra has only nullary or unary operations then it always has QEP.

Theorem 2.6 Let � = �0 ∪�1. Then every ordered �-algebra has QEP (and hence CEP).

Proof Let B be a subalgebra of an ordered algebra A = (A,�A,≤), where � = �0 ∪ �1.
Let σ ∈ Cqu(B). Define a relation 	 on A by

	 := {(a, a′) ∈ A2 | a ≤ a′ or a ≤ b σ b′ ≤ a′ for some b, b′ ∈ B}.
Clearly 	 is reflexive and extends ≤. If (a, a′) ∈ 	, that is, a ≤ a′ or a ≤ b σ b′ ≤ a′
for some b, b′ ∈ B, and ω ∈ �1, then ω(a) ≤ ω(a′) or ω(a) ≤ ω(b) σ ω(b′) ≤ ω(a′)
with ω(b), ω(b′) ∈ B. Hence 	 is compatible (note that this argument works because
� = �0 ∪ �1). To prove transitivity, suppose that a 	 a′ and a′ 	 a′′. If a ≤ b1 σ b2 ≤
a′ ≤ b3 σ b4 ≤ a′′ then by transitivity of ≤ we have b2 ≤ b3. This implies b2 σ b3, and
b1 σ b2 σ b3 σ b4 implies b1 σ b4. Hence a ≤ b1 σ b4 ≤ a′′ and (a, a′′) ∈ 	. The other three
cases can be checked in a similar fashion. So 	 ∈ Cqu(A).

Finally we show that 	 ∩ (B × B) = σ . Obviously, σ ⊆ 	 ∩ (B × B). For the converse,
assume that (b, b′) ∈ 	 ∩ (B × B). Then b ≤ b′ or b ≤ b1 σ b2 ≤ b′ for some b1, b2 ∈ B.
In the first case b σ b′ because σ extends the order of B. In the second case b σ b1 σ b2 σ b′
for the same reason and the transitivity of σ yields b σ b′. ��
Corollary 2.7 Every poset has QEP.

Corollary 2.8 If S is a posemigroup or a pomonoid then every S-poset has QEP.

3 CEP, QEP and diagrams

In this section we describe CEP and QEP in the language of commutative diagrams. For
analogous results in the unordered context the reader is referred to [7]. We begin with a
couple of short lemmas.
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98 V. Laan et al.

Lemma 3.1 Let f : A −→ B be an order-embedding between ordered �-algebras and
σ ∈ Cqu(A). Then

σ ′ = {( f (a1), f (a2)) | (a1, a2) ∈ σ } ∈ Cqu( f (A)).

Proof Clearly σ ′ is reflexive and compatible with operations. Transitivity of σ ′ follows from
injectivity of f . Let us show that ≤ f (A) ⊆ σ ′. Indeed, if f (a1) ≤ f (a2) in f (A) then
f (a1) ≤ f (a2) in B and hence a1 ≤ a2 inA. Now (a1, a2) ∈ σ , giving ( f (a1), f (a2)) ∈ σ ′,
as needed. ��

The following lemma can be proved similarly.

Lemma 3.2 Let f : A −→ B be an order-embedding between ordered �-algebras and
θ ∈ Con(A). Then

θ ′ = {( f (a1), f (a2)) | (a1, a2) ∈ θ} ∈ Con( f (A)).

Theorem 3.3 An algebra A in a variety V of ordered �-algebras has CEP if and only if
each diagram

C

B

C

g

��

B Af �� A

,

where f is an order-embedding and g is a regular epimorphism, can be completed to a
commutative square

C D
f ′

��

B

C

g

��

B Af �� A

D
g′

��

in V , where f ′ is an injective homomorphism. In this case, g′ is a regular epimorphism.

Proof Necessity Let A have CEP. Consider an order-embedding f : B −→ A and a regular
epimorphism g: B −→ C. Let θ := ker g ∈ Con(B). Then by Lemma 3.2 we have,

θ ′ := {( f (b1), f (b2)) | (b1, b2) ∈ θ} ∈ Con( f (B)).

Using CEP of A we obtain � ∈ Con(A) such that

� ∩ ( f (B) × f (B)) = θ ′. (3.1)

Consider the diagram

(3.2)
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On congruence extension properties for ordered algebras 99

where the natural surjection�� is a regular epimorphismbyTheorem1.5(1) andTheorem1.4.
Let us prove that

−→
ker g ⊆ −→

ker(�� f ). Suppose that (x, x ′) ∈ −→
ker g, i.e. g(x) ≤ g(x ′). Because

g is a Q-homomorphism, there exist b, b′ ∈ B such that g(x) = g(b), g(x ′) = g(b′) and
b ≤

ker g
b′. And since ker g = θ , we can write a sequence

x θ b ≤ b1 θ b2 ≤ b3 θ . . . θ bn ≤ b′ θ x ′

for some b1, . . . , bn ∈ B. Applying f to this sequence one obtains

f (x) θ ′ f (b) ≤ f (b1) θ ′ f (b2) ≤ f (b3) θ ′ . . . θ ′ f (bn) ≤ f (b′) θ ′ f (x ′).

Condition (3.1) implies that f (x) ≤
�

f (x ′), that is, [ f (x)] ≤ [ f (x ′)] in A/� and (x, x ′) ∈
−→
ker(�� f ).

Now from Theorem 1.6 it follows that there exists a unique homomorphism f ′:
C −→ A/� such that f ′g = �� f . To prove that f ′ is injective, we have to check that
ker(�� f ) = ker g = θ . Since

−→
ker g ⊆ −→

ker(�� f ), we also have θ ⊆ ker(�� f ). For the
converse we suppose that [ f (b1)] = [ f (b2)] in A/�, b1, b2 ∈ B, i.e. ( f (b1), f (b2)) ∈ �.
By (3.1), ( f (b1), f (b2)) ∈ θ ′. Hence there exist b3, b4 ∈ B such that (b3, b4) ∈ θ and
( f (b1), f (b2)) = ( f (b3), f (b4)). Since f is injective, we have b1 = b3 and b2 = b4. Thus
also (b1, b2) ∈ θ , and we have shown that ker(�� f ) ⊆ θ .

Sufficiency Let B be a subalgebra ofA, let θ ∈ Con(B) and let f : B −→ A be the inclusion
mapping (which is, of course, an order-embedding). Consider the diagram

where the natural surjection θ� is a regular epimorphism by Theorem 1.5(1) and Theorem 1.4.
By assumption there exists a commutative diagram

where f ′ is an injective homomorphism. Take � := ker g′ ∈ Con(A). We prove that
� ∩ (B × B) = θ .

Suppose first that (a1, a2) ∈ � ∩ (B × B). Then a1, a2 ∈ B and g′(a1) = g′(a2). Now

g′(ai ) = g′( f (ai )) = (g′ f )(ai ) = ( f ′θ�)(ai ) = f ′([ai ])
for i = 1, 2. Hence f ′([a1]) = g′(a1) = g′(a2) = f ′([a2]). Since f ′ is injective, we
conclude that [a1] = [a2] in B/θ . This means that (a1, a2) ∈ θ . Conversely, let (b1, b2) ∈ θ .
Then [b1] = [b2] in B/θ . Hence

(g′ f )(b1) = ( f ′θ�)(b1) = f ′([b1]) = f ′([b2]) = ( f ′θ�)(b2) = (g′ f )(b2),

which implies that (b1, b2) = ( f (b1), f (b2)) ∈ ker g′ = �. ��
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100 V. Laan et al.

Our next result characterizes QEP in terms of commutative diagrams.

Theorem 3.4 An algebra A in a variety V of ordered �-algebras has QEP if and only if
each diagram

C

B

C

g

��

B Af �� A

,

where f is an order-embedding and g is a surjective homomorphism, can be completed to a
commutative square

C D
f ′

��

B

C

g

��

B Af �� A

D
g′

��

in V , where f ′ is an order-embedding. In this case, g′ is a surjective homomorphism.

Proof Necessity LetA have QEP. Consider an order-embedding f : B −→ A and a surjec-
tive homomorphism g: B −→ C. Let σ := −→

ker g ∈ Cqu(B). By Lemma 3.1,

σ ′ := {( f (b1), f (b2)) | (b1, b2) ∈ σ } ∈ Cqu( f (B)).

Using QEP of A we obtain 	 ∈ Cqu(A) such that

	 ∩ ( f (B) × f (B)) = σ ′. (3.3)

Consider the diagram

(3.4)

Suppose that (b1, b2) ∈ −→
ker g = σ . Then ( f (b1), f (b2)) ∈ σ ′ ⊆ 	. Consequently,

[ f (b1)] ≤ [ f (b2)] in the quotient algebra A/	 and (b1, b2) ∈ −→
ker(	� f ). Thus we have

established the inclusion
−→
ker g ⊆ −→

ker(	� f ).
Now, by Theorem 1.6, there is a uniqe homomorphism f ′ : C −→ A/	 of ordered

algebras, which makes the diagram (3.4) commute.
Toprove that f ′ is an order-embedding it remains to check that

−→
ker(	� f ) ⊆ −→

ker g. Suppose
that (b1, b2) ∈ −→

ker(	� f ). Then [ f (b1)] ≤ [ f (b2)] in A/	, i.e. ( f (b1), f (b2)) ∈ 	. By
(3.3), ( f (b1), f (b2)) ∈ σ ′. Hence there exist b3, b4 ∈ B such that (b3, b4) ∈ σ = −→

ker g and
( f (b1), f (b2)) = ( f (b3), f (b4)). Since f is injective, we have b1 = b3 and b2 = b4, and
hence (b1, b2) ∈ −→

ker g.

Sufficiency Let B be a subalgebra ofA, let σ ∈ Cqu(B) and let f : B −→ A be the inclusion
mapping. Consider the diagram
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On congruence extension properties for ordered algebras 101

By assumption there exists a commutative diagram

where f ′ is an order-embedding. Take	 := −→
ker g′ ∈ Cqu(A). We prove that	∩(B× B) =

σ .
Suppose that (a1, a2) ∈ 	 ∩ (B × B). Then a1, a2 ∈ B with g′(a1) ≤ g′(a2). Now

g′(ai ) = g′( f (ai )) = (g′ f )(ai ) = ( f ′σ �)(ai ) = f ′([ai ])
for i = 1, 2. Hence f ′([a1]) = g′(a1) ≤ g′(a2) = f ′([a2]). Since f ′ is an order-embedding,
we conclude that [a1] ≤ [a2] in B/σ . This means that (a1, a2) ∈ σ .

Conversely, let (b1, b2) ∈ σ . Then [b1] ≤ [b2] in B/σ . Hence

(g′ f )(b1) = ( f ′σ �)(b1) = f ′([b1]) ≤ f ′([b2]) = ( f ′σ �)(b2) = (g′ f )(b2),

which implies that (b1, b2) = ( f (b1), f (b2)) ∈ −→
kerg′ = 	. ��

4 Strong extension properites

An unordered algebra A is said to have the strong congruence extension property, see for
instance [6], if any congruence θ on any subalgebraB ofA can be extended to a congruence�

onA such that each�-class is either contained in B or disjoint from B; i.e.�∩(B× A) = θ .
In this section we define similar properties for ordered algebras.

Definition 4.1 We say that an ordered algebraA has the strong congruence extension prop-
erty (SCEP) if any order congruence θ on any subalgebra B ofA can be extended to an order
congruence � on A in such a way that � ∩ (B × A) = θ .

From the definitions it is clear that SCEP implies CEP. It turns out that SCEP can also be
described in terms of diagrams.

Theorem 4.2 An algebra A in a variety V of ordered �-algebras has SCEP if and only if
each diagram

C

B

C

g

��

B Af �� A

,
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102 V. Laan et al.

where f is an order-embedding and g is a regular epimorphism, can be completed to a
pullback diagram

C D
f ′

��

B

C

g

��

B Af �� A

D
g′

��

in V , where f ′ is an injective homomorphism. In this case, g′ is a regular epimorphism.

Proof Necessity LetA have SCEP. Consider an order-embedding f : B −→ A and a regular
epimorphism g: B −→ C. Let θ := ker g ∈ Con(B). By Lemma 3.2, we have:

θ ′ := {( f (b1), f (b2)) | (b1, b2) ∈ θ} ∈ Con( f (B)).

Using SCEP of A we obtain � ∈ Con(A) such that

� ∩ ( f (B) × A) = θ ′.

Consider the diagram

(4.1)

Again, by Theorem 1.6, the mapping f ′: C −→ A/�, given by

f ′(c) := [ f (b)] ∈ A/�,

where g(b) = c, is a homomorphism of ordered algebras, which makes the square (4.1)
commute. As in the proof of Theorem 3.3, we see that f ′ is injective.

We prove that (4.1) is a pullback square. For this, consider a diagram

(4.2)

in which the outer square also commutes. Let us first show that

(∀x ∈ B ′)(∃!bx ∈ B)(l(x) = g(bx ) ∧ k(x) = f (bx )).

If x ∈ B ′, then, by the surjectivity of g (see Remark 1.3), there exists b ∈ B such that
l(x) = g(b). We may therefore calculate

[ f (b)] = f ′(g(b)) = f ′(l(x)) = ( f ′l)(x) = [k(x)]
inA/�. In particular ( f (b), k(x)) ∈ �∩ ( f (B)× A) = θ ′. This means that ( f (b), k(x)) =
( f (b1), f (b2)) for some (b1, b2) ∈ θ . So we have f (b) = f (b1), k(x) = f (b2) and g(b1) =
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g(b2). Now, because f is injective, one has b = b1, and hence l(x) = g(b) = g(b1) = g(b2).
So b2 is the required element. It is unique by the injectivity of f .

We next define a mapping h: B′ −→ B by

h(x) := bx .

This h makes both triangles in (4.2) commutative and it is unique as such because f is an
order-embedding. If x ≤ x ′ in B′ then f (h(x)) = k(x) ≤ k(x ′) = f (h(x ′)). Since f is an
order-embedding, we have h(x) ≤ h(x ′) in B. So h is monotone.

To show that h is a homomorphism, take an n-ary operation ω and elements x1, . . . , xn ∈
B′. Then

f (h(ω(x1, . . . , xn))) = k(ω(x1, . . . , xn))

= ω(k(x1), . . . , k(xn))

= ω( f (h(x1)), . . . , f (h(xn)))

= f (ω(h(x1), . . . , h(xn))).

Since f is injective, we have h(ω(x1, . . . , xn)) = ω(h(x1), . . . , h(xn)), as needed.

Sufficiency Let B be a subalgebra of A, let θ ∈ Con(B) and let f : B −→ A be the
inclusion mapping. Consider the diagram

By assumption there exists a pullback diagram

where f ′ is an injective homomorphism. Take � := ker g′ ∈ Con(A). We prove that
� ∩ (B × A) = θ .

Suppose that (b, a) ∈ � where b ∈ B and a ∈ A. Then

g′(a) = g′(b) = (g′ f )(b) = ( f ′θ�)(b) = f ′([b]),
whichmeans that the pair (a, [b]) belongs to the subalgebraK = {(x, [y]) | g′(x) = f ′([y])}
of A × B/θ . Clearly the outer square in the diagram
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where p1 and p2 are the projections, commutes. Hence there is a unique morphism h:K −→
B such that the triangles commute. Since (a, [b]) ∈ K, we have

a = p1(a, [b]) = ( f h)(a, [b]) = h(a, [b]),
whence, in particular, a ∈ B. This implies f ′([b]) = g′(a) = ( f ′θ�)(a) = f ′([a]). Using
injectivity of f ′ we obtain (b, a) ∈ θ . This proves the inclusion � ∩ (B × A) ⊆ θ .

For the converse, if (b, b′) ∈ θ then g′(b) = ( f ′θ�)(b) = ( f ′θ�)(b′) = g′(b′), i.e.
(b, b′) ∈ �. This completes the proof. ��
Definition 4.3 Wesay that an ordered algebraA has the strong quasiorder extension property
(SQEP) if for any compatible quasiorder σ on any subalgebraB ofA there exists a compatible
quasiorder 	 on A such that

(1) 	 ∩ (B × B) = σ ,
(2) 	 ∩ 	−1 ∩ (B × A) = σ ∩ σ−1.

Lemma 4.4 If an ordered algebra has SQEP then it has SCEP and QEP.

Proof Clearly, SQEP implies QEP. Suppose that an ordered algebra A has SQEP and θ

is an order-congruence on its subalgebra B. Then ≤
θ

∈ Cqu(B). Using SQEP one can find

	 ∈ Cqu(A) such that 	 ∩ (B × B) = ≤
θ
and 	 ∩ 	−1 ∩ (B × A) = ≤

θ
∩

(

≤
θ

)−1

= θ .

Putting � := 	 ∩ 	−1 ∈ Con(A) we have � ∩ (B × A) = θ . Thus A has SCEP. ��
Theorem 4.5 An algebra A in a variety V of ordered �-algebras has SQEP if and only if
each diagram

C

B

C

g

��

B Af �� A

,

where f is an order-embedding and g is a surjective homomorphism, can be completed to a
pullback diagram

C D
f ′

��

B

C

g

��

B Af �� A

D
g′

��

in V , where f ′ is an order-embedding. In this case, g′ is a surjective homomorphism.

Proof Necessity Let A have SQEP. Consider an order-embedding f : B −→ A and a
surjective homomorphism g: B −→ C. Let σ := −→

kerg ∈ Cqu(B). By Lemma 3.1, we have:

σ ′ := {( f (b1), f (b2)) | (b1, b2) ∈ σ } ∈ Cqu( f (B)).

Using SQEP of A we obtain 	 ∈ Cqu(A) such that

	 ∩ ( f (B) × f (B)) = σ ′ and 	 ∩ 	−1 ∩ ( f (B) × A) = σ ′ ∩ (σ ′)−1.
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Consider the diagram

(4.3)

Once more, Theorem 1.6 implies that the mapping f ′ : C −→ A/(	 ∩ 	−1), given by

f ′(c) := [ f (b)],
where b ∈ B is such that g(b) = c, is a homomorphism of ordered algebras which makes the
square (4.3) commute. As in the proof of Theorem 3.4 we see that f ′ is an order-embedding.

We prove that (4.3) is a pullback square. For this, consider a diagram

(4.4)

in which the outer square also commutes. Let us first show that

(∀x ∈ B ′)(∃!bx ∈ B)(l(x) = g(bx ) ∧ k(x) = f (bx )).

If x ∈ B ′, then, by the surjectivity of g, there exists b ∈ B such that l(x) = g(b). We may
therefore calculate

[ f (b)] = f ′(g(b)) = f ′(l(x)) = ( f ′l)(x) = [k(x)]
in A/	, which means that ( f (b), k(x)) ∈ 	 ∩ 	−1. Now

( f (b), k(x)) ∈ 	 ∩ 	−1 ∩ ( f (B) × A) = σ ′ ∩ (σ ′)−1

implies that ( f (b), k(x)) = ( f (b1), f (b2)) for some (b1, b2) ∈ σ ∩ σ−1 = ker g. So we
have f (b) = f (b1), k(x) = f (b2) and g(b1) = g(b2). Because f is injective, one has
b = b1, and hence l(x) = g(b) = g(b1) = g(b2). So b2 is the required element. It is unique
by the injectivity of f .

Next, we define a mapping h: B′ −→ B by

h(x) := bx .

This h makes both the triangles in (4.4) commutative and it is unique as such because f is an
order-embedding (hence a monomorphism). The proof that h is a monotone homomorphism
is exactly the same as in the proof of Theorem 4.2.

Sufficiency Let B be a subalgebra of A, let σ ∈ Cqu(B), let f : B −→ A be the inclusion
mapping, and let σ �: B −→ B/σ be the natural surjection. By assumption there exists a
pullback diagram
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where f ′ is an order-embedding. Take 	 := −→
kerg′ ∈ Cqu(A). In the proof of Theorem 3.4

we saw that 	 ∩ (B × B) = σ . We prove that 	 ∩ 	−1 ∩ (B × A) = σ ∩ σ−1, which is
equivalent to the equality ker g′ ∩ (B × A) = σ ∩ σ−1.

Suppose that (b, a) ∈ ker g′ where b ∈ B and a ∈ A. Then

g′(a) = g′(b) = (g′ f )(b) = ( f ′σ �)(b) = f ′([b]),
whichmeans that the pair (a, [b]) belongs to the subalgebraK = {(x, [y]) | g′(x) = f ′([y])}
of A × B/σ . Clearly the outer square in the diagram

where p1 and p2 are the projections, commutes. Hence there is a uniquemorphism h : K −→
B such that the triangles commute. Since (a, [b]) ∈ K, we have

a = p1(a, [b]) = ( f h)(a, [b]) = h(a, [b]),
whence, in particular, a ∈ B. This implies f ′([b]) = g′(a) = ( f ′σ �)(a) = f ′([a]). Using
injectivity of f ′ we obtain [b] = [a], which yields (b, a) ∈ σ ∩σ−1. This proves the inclusion
ker g′ ∩ (B × A) ⊆ σ ∩ σ−1.

For the converse, if (b, b′) ∈ σ ∩ σ−1 then g′(b) = ( f ′σ �)(b) = f ′([b]) = f ′([b′]) =
( f ′σ �)(b′) = g′(b′), i.e. (b, b′) ∈ ker g′ = 	 ∩ 	−1. This completes the proof. ��

We point out one rather strong consequence of SCEP and SQEP.

Proposition 4.6 If an ordered algebra A has SQEP or SCEP then all its subalgebras are
convex.

Proof Since SQEP implies SCEP, it suffices to consider only A having SCEP. Let B be any
subalgebra ofA. Then θ := B× B is an order-congruence on B. Using SCEP we can find an
order-congruence � on A such that � ∩ (B × A) = θ . It is easy to see that the last equality
is equivalent to the fact that [b]� = [b]θ for every b ∈ B. Hence [b]� = [b]θ = B for every
b ∈ B. Since every equivalence class of an order-congruence is a convex subset, B is also
convex in A. ��

The following examples show that QEP and CEP do not imply SQEP or SCEP.

Example 4.7 Let I = (I,≤) be a chain of any cardinality and consider the posemigroup
I = (I,min,≤). Observe that any quasiorder σ that contains ≤ is a compatible quasiorder
of I. Indeed, since multiplication is commutative we only need to check the implication

(∀i, j, k ∈ I )[(i, j) ∈ σ �⇒ (min(i, k),min( j, k)) ∈ σ ].
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Because I is totally ordered, we have three cases: k > max(i, j), k < min(i, j) and
min(i, j) ≤ k ≤ max(i, j). The first case reduces to the tautology (i, j) ∈ σ ⇒ (i, j) ∈ σ ,
and the second case to the reflexivity for k. Consider the third case. If i ≤ k ≤ j then
(min(i, k),min( j, k)) = (i, k) ∈ σ because σ contains the order. If j ≤ k ≤ i and (i, j) ∈ σ

then (min(i, k),min( j, k)) = (k, j) ∈ σ because (k, i) ∈ σ and σ is transitive.
ThereforeCqu(I) = Cqu(I). Since any subposet of I is a subposemigroup of I, QEP for

I coincides with QEP for I and, since I has QEP due to Theorem 2.6, I has both QEP and
CEP.

On the other hand, no chain with at least three elements has either SQEP or SCEP. To
see this, consider the three-element chain 2 = {0 < 1 < 2} with a non-convex subalgebra
B = {0 < 2}, and apply Proposition 4.6.

Example 4.8 The reasoning from Example 4.7 can be duplicated for any partially ordered
left (or right) zero semigroup S = (S, ·,≤). The relevant implication in this case is

(∀s, t, u ∈ S)[(s, t) ∈ σ �⇒ (su, tu) ∈ σ ∧ (us, ut) ∈ σ ].
Since (su, tu) = (s, t) ∈ σ and (us, ut) = (u, u) ∈ σ (or vice versa in the case of a right
zero semigroup), this holds for any quasiorder σ of (S,≤). Furthermore, all subsets of S are
still subalgebras in this case.

5 Connections with amalgamation and transferability

Using the arrows ↪→ and � respectively to denote order-embeddings and surjective homo-
morphisms, we can represent QEP by the diagram:

C D� �

f ′
�����

B

C

g
����

B A� � f �� A

D
g′

���
�
�

.

Analogously we can define the amalgamation and transferability properties, abbreviated
AP and TP (cf. [7]), with the help of the following diagrams:

C D� �

f ′
�����

B

C

� �

g

��

B A� � f �� A

D

� �

g′
���
�
�

C D� �

f ′
�����

B

C

g

��

B A� � f �� A

D
g′

���
�
�

AP ≡ TP ≡, .

Proposition 5.1 (Cf. [7], Prop. 1.6) The following assertions hold in any class K of ordered
algebras.

(1) If K is closed under quotients then QEP and AP imply TP.
(2) TP implies QEP.
(3) If K has binary products then TP implies AP.

Proof (1) Let K have QEP and AP. Consider an order-embedding f : B −→ A and a
morphism g : B −→ C. By Theorem 1.5 we have the following diagram, in which (ker g)�

is surjective and ι is an order-embedding:
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(5.1)

Then using QEP and AP, respectively, we obtain the upper and lower commutative squares.
It is straightforward to see that the outer square also commutes.

(2) This is immediate.
(3) Assume that K has TP and consider two order-embeddings f : B −→ A and g:

B −→ C. Using TP (‘horizontally’ and ‘vertically’) we get commutative squares

C D
f ′

�����

B

C

� �

g

��

B A� � f �� A

D

� �

g′
���
�
�

C E� �

f ′′
�����

B

C

� �

g

��

B A� � f �� A

E
g′′

���
�
�

.

Next, considering the morphisms g′: A −→ D, g′′: A −→ E , there exists, by the universal
property of the product D × E , a unique morphism m: A −→ D × E such that p1m = g′,
p2m = g′′; where p1 and p2 are the projections of D × E . By a similar token there exists
a unique morphism n: C −→ D × E such that p1n = f ′, p2n = f ′′. One can now easily
observe that

p2ng = f ′′g = g′′ f = p2m f and p1ng = f ′g = g′ f = p1m f.

This gives ng = m f , whence the square

C D × En
��

B

C

g

��

B Af �� A

D × E

m

��

commutes. Finally, if m(a1) ≤ m(a2) for a1, a2 ∈ A then (p1m)(a1) ≤ (p1m)(a2), that is,
g′(a1) ≤ g′(a2). And since g′ is an order-embedding, we conclude that a1 ≤ a2. Thus we
have shown that m is an order-embedding. In a similar manner one can show that n is an
order-embedding. ��

Since every variety is closed under quotients and products, we have the following result.

Corollary 5.2 A variety V of ordered �-algebras has TP iff it has QEP and AP.

Next, we consider certain classes of ordered algebras that have AP and TP.
Let K be a class of ordered �-algebras where � = �0 ∪ �1. Take two algebras A and C

in K. Define a partial order on the set

A � C = ({1} × A) ∪ ({2} × C)

by

(i, x) ≤ ( j, y) ⇐⇒ i = j and x ≤ y in A or C (depending on k).
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For each ω ∈ �1 put

ωA�C(1, a) := (1, ωA(a)),

ωA�C(2, c) := (2, ωC(c))

and for each ω ∈ �0 put

ωA�C := (1, ωA).

These operations are clearly monotone, soA� C is an ordered �-algebra. Next, consider the
following relation on A � C :

H = {((1, ωA), (2, ωC)) | ω ∈ �0}. (5.2)

Let θ be the order-congruence onA�C generated by H . Denote the regular quotient algebra
(A � C)/θ by A ∗ C. We note that

ωA∗C = [(1, ωA)] = [(2, ωC)]
for every ω ∈ �0.

The following lemma is easy to prove.

Lemma 5.3 If � = �0 ∪ �1 then the algebraA ∗ C is the coproduct of ordered algebrasA
and C in the category of all ordered �-algebras.

Proposition 5.4 Let � = �0 ∪ �1. Then every class K of ordered �-algebras, which is
closed under finite coproducts and regular epimorphic images, has AP.

Proof Consider order-embeddings f :B −→ A and g:B −→ C inK. As above, we construct
the �-algebrasA�C andA∗C = (A�C)/θ . By assumption and Lemma 5.3,A∗C belongs
to K.

Now let � be the order-congruence on A � C generated by the set

K = {((1, f (b)), (2, g(b))) | b ∈ B}
and form the quotient algebra D := (A � C)/�. We note that H ⊆ K (see (5.2)) and hence
θ ⊆ �. Define a mapping h : (A � C)/θ −→ (A � C)/� by

h ([x]θ ) := [x]�.

This mapping is clearly a surjective homomorphism of �-algebras. Let us prove that h is
a regular epimorphism. Suppose, for this purpose, that [x]� ≤ [x ′]� in (A � C)/�. Then
x ≤

�
x ′, that is,

x ≤ x1 � x2 ≤ x3 � . . . � xn ≤ x ′

for some x1, . . . , xn ∈ A � C . But then we may write

[x]θ ≤ [x1]θ (ker h)[x2]θ ≤ [x3]θ (ker h) . . . (ker h)[xn]θ ≤ [x ′]θ ,
or shortly [x]θ ≤

ker h
[x ′]θ . We have shown that h is a Q-homomorphism and hence it is a

regular epimorphism in the variety of all ordered�-algebras by Theorem 1.4. Therefore also
(A � C)/� belongs to the class K.
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We define mappings f ′: C −→ (A � C)/� and g′: A −→ (A � C)/� by

f ′(c) := [(2, c)],
g′(a) := [(1, a)].

Clearly these mappings are monotone, make the diagram

C (A � C)/�
f ′

��

B

C

g

��

B Af �� A

(A � C)/�

g′
��

commutative and preserve the operations. So f ′ and g′ are homomorphisms of �-algebras.
To complete the proof, we show that f ′ is an order-embedding (for g′ the proof is anal-

ogous). Suppose that we have c, c′ ∈ C and f ′(c) ≤ f ′(c′), i.e. (2, c) ≤
�

(2, c′). Using

Lemma 1.2, either (2, c) ≤ (2, c′), in which case c ≤ c′, or we have a sequence

(2, c) ≤ pA�C
1 (x1) pA�C

2 (y2) ≤ pA�C
3 (x3) pA�C

n (yn) ≤ (2, c′)
pA�C
1 (y1) ≤ pA�C

2 (x2) . . .
,

where p1(x), . . . , pn(x) are unary �-polynomials that depend on x and (x1, y1), . . .,
(xn, yn) ∈ H ∪ H−1. Now pA�C

1 (x1) ∈ {2} ×C by the definition of order and x1 ∈ {2} ×C
because of the definition of unary operations. Hence x1 = (2, g(b1)) and y1 = (1, f (b1))
for some b1 ∈ B. Thus we can write

pA�C
1 (x1) = pA�C

1 (2, g(b1)) = (2, pC1 (g(b1))).

Now the inequality (2, c) ≤ (2, pC1 (g(b1))) implies c ≤ pC1 (g(b1)).
Next, because pA�C

2 (x2) ∈ {1} × A, there exists b2 ∈ B such that x2 = (1, f (b2)) and
y2 = (2, g(b2)). And again we may write:

(

1, pA
1 ( f (b1))

)

= pA�C
1 (y1) ≤ pA�C

2 (x2) =
(

1, pA
2 ( f (b2))

)

.

So

f (pB1 (b1)) = pA
1 ( f (b1)) ≤ pA

2 ( f (b2)) = f (pB2 (b2)).

But then pB1 (b1) ≤ pB2 (b2), because f is an order-embedding. We have therefore obtained

c ≤ pC1 (g(b1)) = g(pB1 (b1)) ≤ g(pB2 (b2)) = pC2 (g(b2)),

where pA�C
2 (y2) = (

2, pC2 (g(b2))
)

. Continuing in this manner we get that c ≤ pCn (g(bn)),
where pA�C

n (yn) = (

2, pCn (g(bn))
)

and bn ∈ B. Hence c ≤ pCn (g(bn)) ≤ c′. ��
From Theorem 2.6, Proposition 5.4 and Proposition 5.1 we arrive at the following result.

Corollary 5.5 Let � = �0 ∪�1. Then every variety of ordered �-algebras, which is closed
under finite coproducts, has TP.

Example 5.6 Let S be a pomonoid. Then � = �1 and clearly the class of all right S-posets
has TP by Corollary 5.5. Also, the class of all finitely generated right S-posets has TP by
Theorem 2.6, Proposition 5.4 and Proposition 5.1.
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