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Abstract In this paper the definition of n-th differential modules is introduced. It is shown
that an n-th differential module (M, δM , n) is Gorenstein projective (resp. injective) if and
only if M is Gorenstein projective (resp. injective). It is established that the relations between
Gorenstein homological dimensions of an n-th differential module and the ones of its under-
lying module.
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projective (resp. injective) dimension

Mathematics Subject Classification 16D40 · 16D50 · 16D90 · 16E45

1 Introduction

The concept of a differential module was introduced by Cartan and Eilenberg (see [3]), which
is a module equipped with a square-zero endomorphism. It is found that differential modules
have closely related to commutative algebras, algebraic topology and differential geometry.
Many people are interested in differential modules in rencent years. Levin defines a special
type of reduction in a free left module over a ring of difference-differential operators. He
applies the idea of the Gröbner basis to determine the Hilbert function of a finitely generated
difference-differential module equipped with the natural double filtration (see [11]). Zhou
and Winklerb [18] introduce a series of algorithms to construct Gröbner bases for a class
of difference-differential modules. Wu in [16] generalizes the Beke–Schlesinger algorithm
that factors differential modules. The authors in [1] establish lower bounds on the class—a
substitute for the length of a free complex, and on the rank of a differential module in terms
of invariants of its homology.
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Gorenstein theory for n-th differential modules 113

Enochs and Jenda introduced the notion of Gorenstein projective modules over an arbi-
trary ring, which is a generalization of finitely generated modules of G-dimension zero over
a two-sided noetherian ring. However, not much is known about concrete construction and
computation of Gorenstein projective modules in general. Cheng and Zhu in [4] generalized
some results of Gorenstein projective objects in the category of R-modules and its chain com-
plex category Ch(R). In the paper [17], Zhang introduced compatible bimodules, described

the Gorenstein-projective modules over an upper triangular matrix algebra Λ =
(
A M
0 B

)
,

whereM is a compatible A–B-bimodule.Moreover, the author proved that ifΛ is Gorenstein,
thenM is compatible. Ringel and Zhang in [14] proved that some deep results for the category
of perfect differential modules of a path algebra. They also gave the relations between its
stable category and the orbit category.Wei in [15] verified that a differential module is Goren-
stein projective (resp. injective) if and only if its underlying module is Gorenstein projective
(resp. injective). In this paper we introduce the definition of n-th differential modules. It is
noted that 2-th differential modules are just the usual differential modules. For an associative
ring R with an identity, we prove that an n-th differential module (M, δM , n) is Gorenstein
projective (resp. injective) if and only if M is projective (resp. injective). Moreover, we also
describe the relations between Gorenstein homological dimensions of an n-th differential
module and the ones of its underlying module.

The paper is organized as follows. In Sect. 2, we give some notations and some defini-
tions. In Sect. 3, we study the Gorenstein projective and Gorenstein injective theory for n-th
differential modules.

2 Preliminaries

Throughout this paper, the ring R is always assumed to be an associative ring with an identity,
R-modules are left modules. The notation ( )T denotes the transpose of vectors or matrices.

Firstly, we give some definition and basic results in this section.

Definition 2.1 Let M be an R-module, and δ : M −→ M be an endomorphism of M . If
δn = 0, then we call (M, δ, n) an n-th differential module.

If n = 2, then (M, δ, n) is a usual differential module. So, we always assume that n ≥ 2.

Definition 2.2 Let (M, δM , n), (N , δN , n) be two n-th differential modules, f be the homo-
morphism of R-modules from M to N . If f δM = δN f,we call f the homomorphism of n-th
differential modules.

Let X be an R-module. It is easy to check that (X⊕n, α, n) is an n-th differential module,
where α is the endomorphism of X⊕n induced by the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · · · · 0
1 0 0 · · · · · · 0
0 1 0 · · · · · · 0

. . .
. . .

. . .
. . .

0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n.

Such n-th differential modules are called contractible n-th differential modules. The notation
HomR((∗),C) (or HomR(I, (∗)) means that the functor HomR(−,C) (or HomR(I,−) is
applied to a complex (∗).
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114 H. Xu et al.

Definition 2.3 Let F be a family of R-modules. A proper F-resolution of an R-module M
is an exact sequence

· · · → C2 −→ C1 −→ C0 −→ M −→ 0 (2.1)

where Ci ∈ F for all i ≥ 0, and HomR (C , (2.1)) is exact for any C ∈ F .
A proper F-coresolution of an R-module N is an exact sequence

0 −→ N −→ C0 −→ C1 −→ C2 → · · · (2.2)

where Ci ∈ F for all i ≥ 0, and HomR ((2.2), C) is exact for any C ∈ F .

Definition 2.4 An R-module M is called Gorenstein projective if there exists an exact
sequence of projective R-modules

· · · −→ P2 −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · (2.3)

such that M � Im(P1 → P0) and HomR ((2.3), P) is exact for any projective module P .
An R-module N is calledGorenstein injective if there exists an exact sequence of injective

R-modules

· · · −→ I2 −→ I1 −→ I0 −→ I−1 −→ I−2 −→ · · · (2.4)

such that N � Im(I0 → I−1) and HomR (I , (2.4)) is exact for any injective module I .
In the following we denote the category of R-modules by R-mod, the category of n-th

differentialmodules byDiff(R, n)-mod. It is noted thatDiff(R, n)-modhas enough projective
(resp. injective) objects, this result will be given in Proposition 3.5.

3 Gorenstein projective (resp. injective) theory

In this section we describe the main results for the Gorenstein projective (resp. injective) n-th
differential modules.

Some lemmas are given firstly in the following.

Lemma 3.1 Let (M, δ, n) be an n-th differential module and X ∈ R-mod.

(i) Let f ∈ HomR(M, X⊕n). Then f ∈ HomDiff(R,n)((M, δ, n), (X⊕n, α, n)) if and only
if there exists g ∈ HomR(M, X) such that f = (g, gδ, gδ2, . . . , gδn−1).

(ii) Let f ∈ HomR(X⊕n, M). Then f ∈ HomDiff(R,n)((X⊕n, α, n), (M, δ, n)) if and only
if there exists g ∈ HomR(X, M) such that f = (δn−1g, δn−2g, . . . , δg, g)T .

Proof (i) (⇒) Let f (m) = (p1(m), . . . , pn(m)) ∈ X⊕n for m ∈ M. Since f is the homo-
morphism of n-th differential modules, so α f = f δ. We calculate

α f (m) = (p1(m), p2(m), . . . , pn(m))A

= (p2(m), p3(m), . . . , pn(m), 0).

f δ(m) = (p1δ(m), p2δ(m), . . . , pnδ(m)).

Hence, we have the following equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1δ(m) = p2(m)

p2δ(m) = p3(m)

· · · · · ·
pn−1δ(m) = pn(m)

pnδ(m) = 0.
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Gorenstein theory for n-th differential modules 115

Set g = p1. Then we have f = (g, gδ, gδ2, . . . , gδn−1).
(⇐) Let f = (g, gδ, gδ2, . . . , gδn−1). By calculating, we have

f δ(m) = (gδ(m), . . . , gδn−1(m), gδn(m))

= (gδ(m), gδ2(m), . . . , gδn−1(m), 0).

α f (m) = (g(m), gδ(m), . . . , gδn−1(m))A

= (gδ(m), gδ2(m), . . . , gδn−1(m), 0).

So we obtain f δ = α f. Hence, f is a homomorphism of n-th differential modules.

(ii) (⇒) Let f be a homomorphism from n-th differential module (X⊕n, α, n) to n-th dif-
ferential module (M, δ, n). Set f = (p1, p2, . . . , pn)T . Then

δ f (x1, x2, . . . , xn) = δ(p1(x1) + p2(x2) + · · · + pn(xn))

= δp1(x1) + δp2(x2) + · · · + δpn(xn).

f α(x1, x2, . . . , xn) = f ((x1, x2, . . . , xn)A)

= f (x2, x3, . . . , xn, 0)

= p1(x2) + p2(x3) + · · · + pn−1(xn).

So we get the following equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δpn = pn−1

δpn−1 = pn−2

· · · · · ·
δp2 = p1
δp1 = 0.

Set g = pn . Then we can obtain f = (δn−1g, δn−2g, . . . , δg, g)T .
(⇐) Let f = (δn−1g, δn−2g, . . . , δg, g)T . We have

f α(x1, x2, . . . , xn) = f (x2, x3. · · · , xn, 0)

= δn−1g(x2) + δn−2g(x3) + · · · + δg(xn).

δ f (x1, x2, . . . , xn) = δ(δn−1g(x1) + δn−2g(x2) + · · · + δg(xn−1) + g(xn))

= δng(x1) + δn−1g(x2) + · · · + δ2g(xn−1) + δg(xn)

= 0 + δn−1g(x2) + δn−2g(x3) + · · · + δg(xn).

So f α = δ f . That is, f is a homomorphism of n-th differential modules.
The proof is finished 
�

Lemma 3.2 Let f : (M, δM , n) −→ (N , δN , n) be a homomorphism of n-th differential
modules and X be an R-module.

(i) HomR( f, X) is an epimorphism if and only if HomDiff(R,n)( f, (X
⊕n, α, n)) is an

epimorphism.
(ii) HomR(X, f ) is an epimorphism if and only if HomDiff(R,n)((X

⊕n, α, n), f ) is an
epimorphism.

Proof (i) (⇒)Assume that HomR( f, X) is an epimorphism. Let ϕ be a homomorphism from
(M, δM , n) to (X⊕n, α, n). By Lemma 3.1, we know that there exists g ∈ HomR(M, X)
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116 H. Xu et al.

such that ϕ = (g, gδM , gδ2M , . . . , gδn−1
M ). Since HomR( f, X) is an epimorphism, there is

h ∈ HomR(N , X) such that g = h f. Set ψ = (h, hδN , . . . , hδn−1
N ). It is easy to know that

ψ is a homomorphism of n-th differential modules by Lemma 3.1. We also get

(g, gδM , . . . , gδn−1
M ) = (h f, h f δM , . . . , h f δn−1

M )

= (h, hδN , . . . , hδn−1
N ) f

in view of f δM = δN f. Hence, HomDiff(R,n)( f, (X
⊕n, α, n)) is an epimorphism.

(⇐) Assume HomDiff(R,n)( f, (X
⊕n, α, n)) is an epimorphism. Let g : M → X be a homo-

morphism of R-modules. By Lemma 3.1, there exists ϕ = (g, gδM , gδ2M , . . . , gδn−1
M ) ∈

HomDiff(R,n)((M, δM , n), (X⊕n, α, n)). Since HomDiff(R,n)( f, (X
⊕n, α, n)) is an epimor-

phism, there exists ψ : (N , δN , n) → (X⊕n, α, n) such that ψ f = ϕ. By Lemma 3.1,
we know that there exists an R-modules homomorphism h : N → X such that ψ =
(h, hδN , hδ2N , . . . , hδn−1

N ). Hence,

(g, gδM , . . . , gδn−1
M ) = (h, hδN , . . . , hδn−1

N ) f

= (h f, hδN f, . . . , hδn−1
N f )

= (h f, h f δM , . . . , h f δn−1
M ).

It follows that h f = g and HomR( f, X) is an epimorphism.
(ii) The proof is similar to (i).

The proof is finished. 
�
We denote the sequences of R-modules and the sequences of n-th differential modules by

the same notations if there is no confusion.

Proposition 3.3 Let

0 → (M, δM , n) → (N , δN , n) → (L , δL , n) → 0 (3.1)

be an exact sequence of n-th differential modules, and X be an R-module. Then the following
statements hold.

(i) HomDiff(R,n) ((3.1), (X
⊕n, α, n)) is exact if and only if HomR ((3.1), X ) is exact;

(ii) HomDiff(R,n)((X
⊕n, α, n) , (3.1)) is exact if and only if HomR (X, (3.1)) is exact.

Proof It is easy to see by the left exactness of Hom functors and Lemma 3.2.
The proof is finished. 
�
By Proposition 3.3, we get that a contractible n-th differential module (X⊕n, α, n) is

projective (resp. injective) object in Diff(R, n)-mod if and only if X is projective (resp.
injective) as an R-module.

Lemma 3.4 Let (M, δM , n) be an n-th differential module, and F be a family of R-modules
which is closed under direct sums. Let

0 → L
λ−→ C

π−→ M → 0 (3.2)

be an exact sequence of R-modules, where C ∈ F . If

0 → Hom(C ′, L)
Hom(C ′,λ)−−−−−−−→ Hom(C ′,C)

Hom(C ′,π)−−−−−−−→ Hom(C ′, M) → 0 (3.3)

is exact for any C ′ ∈ F , then there exists an exact sequence of n-th differential modules
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Gorenstein theory for n-th differential modules 117

0 → (C⊕n−1 ⊕ L , δC⊕n−1⊕L , n)
S−→ (C⊕n, α, n)

T−→ (M, δM , n) → 0, (3.4)

where T = (δn−1π, . . . , δ2π, δπ, π)T ,

S =

⎛
⎜⎜⎜⎜⎜⎝

−1 h 0 · · · 0
0 −1 h · · · 0
...

. . .
. . .

...

−1 h
0 · · · 0 λ

⎞
⎟⎟⎟⎟⎟⎠

n×n,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δC⊕n−1⊕L(x1) = x2 − h(x1)
δC⊕n−1⊕L(x2) = x3 − h2(x1)

· · · · · ·
δC⊕n−1⊕L(xn−2) = xn−1 − hn−2(x1)
δC⊕n−1⊕L(xn−1) = −hn−1(x1) − λ(y)
δC⊕n−1⊕L(y) = λ−1(hn(x1) + hλ(y))

for any (x1, . . . , xn−1, y) ∈ C⊕n−1 ⊕ L and h ∈ EndRC such that

(i) HomDiff(R,n)((C
′⊕n, α, n), (3.4)) is exact for any C ′ ∈ F;

(ii) HomR ((3.2), X ) is exact if and only if HomDiff(R,n) ((3.4), (X⊕n, α, n)) is exact for
any R-module X.

Proof Since HomR (C ′, (3.2)) is exact for any C ′ ∈ F, we have HomR (C , (3.2)) is exact.
So Hom(C, π) is an epimorphism. Hence, there exists h ∈ EndRC such that πh = δπ. We
claim that the following diagram commutes

0 �� L

id

��

ς �� C⊕n−1 ⊕ L

ω

��

η �� C⊕n

T

��

�� 0

0 �� L
λ �� C

π �� M �� 0

(3.5)

where

ς = (0, . . . , 0, 1), ω =

⎛
⎜⎜⎜⎝
hn−1

...

h
λ

⎞
⎟⎟⎟⎠ , η =

⎛
⎜⎜⎜⎝
1
...

1
0

⎞
⎟⎟⎟⎠ .

It is obvious that left square is commutative. In fact, the right square is also commutative.
Indeed, let (x1, x2, . . . , xn−1, y) ∈ C⊕n−1 ⊕ L . We calculate

Tη(x1, x2, . . . , xn−1, y) = T (x1, x2, . . . , xn−1, 0)

= δn−1π(x1) + δn−2π(x2) + · · · + δπ(xn−1).πω(x1, x2, . . . , xn−1, y)

= π(hn−1(x1) + hn−2(x2) + · · · + h(xn−1) + λ(y))

= πhn−1(x1) + πhn−2(x2) + · · · + πh(xn−1) + 0

= δn−1π(x1) + δn−2π(x2) + · · · + δπ(xn−1).

Hence, the diagram (3.5) is commutative. Let (x1, x2, . . . , xn−1, y) ∈ C⊕n−1 ⊕ L . Then

S(x1, x2, . . . , xn−1, y)

= (−x1, h(x1) − x2, h(x2) − x3, . . . , h(xn−2) − xn−1, h(xn−1) + λ(y)).
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118 H. Xu et al.

If S(x1, x2, . . . , xn−1, y) = 0, we get x1 = · · · = xn−1 = y = 0 because λ is injective.
Hence, S is injective. Letm ∈ M. Then there exists x ′

n ∈ C such that π(x ′
n) = m.Obviously,

(0, . . . , 0, x ′
n) ∈ C⊕n and T (0, . . . , 0, x ′

n) = m. Hence, T is surjective. We calculate

T S(x1, x2, . . . , xn−1, y)

= T (−x1, h(x1) − x2, h(x2) − x3, . . . , h(xn−2) − xn−1, h(xn−1) + λ(y))

= −δn−1π(x1) + δn−2πh(x1) − δn−2π(x2) + · · · + δπh(xn−2) − δπ(xn−1)

+πh(xn−1) + 0 = 0.

Hence, ImS ⊆ KerT . Let (z1, . . . , zn) ∈ C⊕n and T (z1, . . . , zn) = 0. Then we can get

0 = T (z1, . . . , zn)

= δn−1π(z1) + δn−2π(z2) + · · · + δπ(zn−1) + π(zn)

= πhn−1(z1) + πhn−2(z2) + · · · + πh(zn−1) + π(zn)

= π(hn−1(z1) + hn−2(z2) + · · · + h(zn−1) + zn).

Hence, hn−1(z1) + hn−2(z2) + · · · + h(zn−1) + zn ∈ Kerπ = Imλ. So there exists y ∈ L
such that

λ(y) = hn−1(z1) + hn−2(z2) + · · · + h(zn−1) + zn .

Set ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = −z1
x2 = −(h(z1) + z2)
x3 = −(h2(z1) + h(z2) + z3)

· · · · · ·
xn−1 = −(hn−2(z1) + hn−3(z2) + · · · + h(zn−2) + zn−1).

It is easy to check S(x1, x2, . . . , xn−1,−y) = (z1, . . . , zn). Hence, KerT ⊆ ImS. So

0 → C⊕n−1 ⊕ L
S−→ C⊕n T−→ M → 0, (3.6)

is exact. For any (x1, x2, . . . , xn) ∈ C⊕n, we calculate

Tα(x1, x2, . . . , xn) = T (x1, x2, . . . , xn)A

= T (x2, x3, . . . , xn, 0)

= δn−1π(x2) + δn−2π(x3) + · · · + δπ(xn).

δT (x1, x2, . . . , xn) = δ(δn−1π(x1) + δn−2π(x2) + · · · + δπ(xn−1) + π(xn))

= δn−1π(x2) + δn−2π(x3) + · · · + δπ(xn).

That is, T ∈ HomDiff(R,n)((C
⊕n, α, n), (M, δM , n)). Similarly, it is easy to check that

S ∈ HomDiff(R,n)((C
⊕n−1 ⊕ L , δC⊕n−1⊕L , n), (C⊕n, α, n)). Therefore, the sequence (3.4)

is an exact sequence.

(i) LetC ′ ∈ F .ThenHomR(C ′, π) is an epimorphism.Weconsider the following sequence

0 → HomR(C ′,C⊕n−1 ⊕ L)
Hom(C ′,S)−−−−−−−→ HomR(C ′,C⊕n)

Hom(C ′,T )−−−−−−−→
HomR(C ′, M) → 0 (3.7)

For any ϕ ∈ HomR(C ′, M), there exists g ∈ HomR(C ′,C) such that πg = ϕ. Set ψ =
(0, . . . , 0, g). ThenψT = πg = ϕ.Hence, HomR(C ′, T ) is surjective and HomR (C ′, (3.6))
is exact. By Proposition 3.3, we get HomDiff(R,n)((C

′, α, n) , (3.4)) is exact.
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Gorenstein theory for n-th differential modules 119

(ii) (⇒) Let X ∈ R-mod. Assume that HomR ((3.2), X ) is exact. By Proposition 3.3, it is
enough to prove that

0 → HomR(M, X)
HomR(T,X)−−−−−−−−→ HomR(C⊕n, X)

HomR(S,X)−−−−−−−→ HomR(C⊕n−1 ⊕ L , X)→0

is exact. Since Hom functors are left exact, it suffices to prove that HomR(S, X) is an epi-
morphism . Let ϕ = (p1, · · · , pn−1, q)T : C⊕n−1 ⊕ L → X. Then there exists θ : C → X
such that θλ = q. Set

ψ =

⎛
⎜⎜⎜⎜⎜⎝

ν1
ν2
...

νn−1

θ

⎞
⎟⎟⎟⎟⎟⎠

, where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ν1 = θhn−1 − pn−1hn−2 − · · · − p2h − p1,
...

νn−3 = θh3 − pn−1h2 − pn−2h − pn−3,

νn−2 = θh2 − pn−1h − pn−2,

νn−1 = θh − pn−1,

νn = θ.

It is easy to check ϕ = Sψ. Hence, HomR(S, X) is an epimorphism. By Proposition 3.3, we
get that HomDiff(R,n) ((3.4), (X

⊕n, α, n)) is exact.
(⇐) Suppose that HomDiff(R,n) ((3.4), (X⊕n, α, n)) is exact. By Proposition 3.3, we

know that

0 → HomR(M, X) → HomR(C⊕n, X) → HomR(C⊕n−1 ⊕ L , X) → 0

is exact. It is enough to show HomR(λ, X) is an epimorphism if we want to show

0 → HomR(M, X)
Hom(π,X)−−−−−−−→ HomR(C, X)

Hom(λ,X)−−−−−−−→ HomR(L , X) → 0

is an exact sequence. Let ϕ ∈ HomR(L , X). Then (0, 0, . . . , 0, ϕ)T ∈ HomR(C⊕n−1 ⊕
L , X).

So there exists an R-modules homomorphism (p1, p2, · · · , pn−1, pn)T : C⊕n → X
such that S(p1, p2, . . . , pn−1, pn)T = (0, 0, · · · , 0, ϕ)T . Hence, pnλ = ϕ. That is,
HomR(λ, X) is an epimorphism. The proof is finished. 
�

Obviously, Di f f (R, n)-mod � R[t]/〈tn〉-mod. So we have

Proposition 3.5 Diff(R, n)-mod is an abelian category with enough projective objects.

Proof Here we prove in another way. It is easy to check that Diff(R, n)-mod is an abelian cat-
egory. Secondly, thank to Lemma 3.2, the n-th differential module (X⊕n, α, n) is a projective
object inDiff(R, n)-mod if X is projective as an R-module. IfF is taken to be the subcategory
consisting of projective R-modules in Lemma 3.4, for any (M, δM , n), there exists C ∈ F
such that (3.2) is exact. It follows that (3.4) is exact. This means that Diff(R, n)-mod has
enough projective objects. 
�
Lemma 3.6 Let (M, δM , n) be an n-th differential module and F be a family of R-modules
which is closed under direct sums. Assume that

0 → M
λ−→ C

π−→ L → 0 (3.8)

is an exact sequence of R-modules, where C ∈ F . And assume that HomR ((3.8), C ′) is exact
for any C ′ ∈ F . Then there exists an exact sequence of n-th differential modules

0 → (M, δM , n)
S̃−→ (C⊕n, α, n)

T̃−→ (L ⊕ C⊕n−1, δL⊕C⊕n−1 , n) → 0 (3.9)
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where

S̃ = (λ, λδ, λδ2, . . . , λδn−1), T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

−1
. . .

. . .
. . .

. . .
. . .

. . . h 0
−1 π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

h ∈ EndRC such that

(i) HomDiff(R,n) ((3.9), (C
′⊕n, α, n)) is exact for any C ′ ∈ F .

(ii) HomR (X, (3.8)) is exact if and only if HomDiff(R,n)((X
⊕n, α, n), (3.9)) is exact for any

X ∈ R-mod.

Proof The proof is similar to Lemma 3.4. 
�
By Lemma 3.6, it is easy to see that Diff(R, n)-mod has enough injective objects.
In the following we denote byFδ the family of n-th differential modules (C⊕n, α, n)with

C ∈ F .

Lemma 3.7 Let (M, δM , n) ∈ Diff(R, n)-mod and F be a family of R-modules which is
closed under direct sums.

· · · → C2
c2−→ C1

c1−→ C0
c0−→ M −→ 0 (3.10)

is a proper F-resolution of the R-module M. Denote Mi = Imci for i ≥ 0. Then there exists
a proper Fδ-resolution of the n-th differential module (M, δM , n)

· · · → (Q⊕n
2 , α, n)

q2−→ (Q⊕n
1 , α, n)

q1−→ (Q⊕n
0 , α, n)

q0−→ (M, δM , n) −→ 0 (3.11)

such that

(i) Qi �
i⊕

k=0
Ck, Kerqi � Qi ⊕ Mi+1 for all i ≥ 0.

(ii) HomR ((3.10), X ) is exact if and only if HomDiff(R,n) ((3.11), (X
⊕n, α, n)) is exact for

any R-module X.

Proof We can get M0 = Imc0 = M by the exactness of the sequence (3.10). On the other
hand, we have following commutative diagram

· · · �� C2
c2 ��

π2 ����
��

C1
c1 ��

π1 ����
��

C0

π0 ����
��

c0 �� M �� 0

M2
λ1

������
M1

λ0

������
M0

id

������

(3.12)

where λi are embeddings, πi = ci and λi−1πi = ci . Obviously,

0 → Mi+1
λi−→ Ci

πi−→ Mi −→ 0 (3.13)

are exact. Let C ∈ F . It is easy to get that

0 → Hom(C, Mi+1)
Hom(C,λi )−−−−−−−→ Hom(C,Ci )

Hom(C,πi )−−−−−−−→ Hom(C, Mi ) −→ 0 (3.14)
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are exact. In particular, we have the following exact sequence

0 → M1
λ0−→ C0

π0−→ M0 = M −→ 0. (3.15)

By Lemma 3.4, there exists an exact sequence of n-th differential modules

0 → (C⊕n−1
0 ⊕ M1, δC⊕n−1

0 ⊕M1
, n) → (C⊕n

0 , α, n) → (M, δM , n) → 0 (3.16)

such that HomDiff(R,n)((C
⊕n, α, n), (3.16)) is exact for any (C⊕n, α, n) ∈ Fδ . Moreover,

HomR ((3.13), X ) is exact if and only if HomDiff(R,n) ((3.16), (X
⊕n, α, n)) is exact for any

X ∈ R-mod. It is easy to see that the sequence

0 → M2
(0,λ1)−−−→ C0 ⊕ C1

(
1 0
0 π1

)

−−−−−→ C0 ⊕ M1 −→ 0 (3.17)

is exact. Let C ∈ F, ϕ =
(
P1
P2

)
∈ HomR(C, C0 ⊕ M1). There exists g : C → C1

such that gπ1 = p2 by the epimorphism of HomR(C, π1). Set ψ =
(
p1
g

)
. Obviously,

ψ

(
1 0
0 π1

)
= ϕ. Hence, we get the exact sequence

0 → Hom(C, M2) → Hom(C,C0 ⊕ C1) → Hom(C,C0 ⊕ M1) → 0. (3.18)

Repeating the same process for (3.16) as (3.15), we can obtain the exact sequence

0 → ((C0 ⊕ C1)
⊕n−1 ⊕ M2, δ, n) → ((C0 ⊕ C1)

⊕n, α, n) → (C0 ⊕ M1, δ, n) → 0.

Take this process successively, we get the exact sequence of n-th differential modules

0 → ((C0 ⊕ · · · ⊕ Ci )
⊕n−1 ⊕ Mi+1, δ, n) → ((C0 ⊕ · · · ⊕ Ci )

⊕n, α, n)

→ (C0 ⊕ · · · ⊕ Ci−1 ⊕ Mi , δ, n) → 0.

Set Qi = C0 ⊕ · · · ⊕ Ci , then the above exact sequence becomes

0 → (Q⊕n−1
i ⊕ Mi+1, δ, n) → (Q⊕n

i , α, n) → (Qi−1 ⊕ Mi , δ, n) → 0 (3.19)

and satisfies HomDiff(R,n)((C
n, α, n), (3.19)) is exact for any C ∈ F, HomR ((3.10), X )

is exact if and only if HomDiff(R,n) ((3.19), (X⊕n, α, n)) is exact for any X ∈ F . Since

(Qi−1 ⊕ Mi , δ, n) ↪→ (Q⊕n−1
i−1 ⊕ Mi , δ, n), we get

· · · → (Q⊕n
i+1, α, n) → (Q⊕n

i , α, n) → (Q⊕n
i−1, α, n) → · · · → (M, δ, n) → 0

is exact. This completes the proof. 
�
Lemma 3.8 Let (M, δM , n) ∈ Diff(R, n)-mod and F be a family of R-modules which is
closed under direct sums.

0 −→ M
c0−→ C0

c1−→ C1
c2−→ C2 → · · · (3.20)

is a proper F-coresolution of the R-module M. Denote Mi = Imci for i ≥ 0. Then there
exists a proper Fδ-coresolution of the n-th differential module (M, δM , n)

0 −→ (M, δM , n)
q0−→ (Q⊕n

0 , α, n)
q1−→ (Q⊕n

1 , α, n)
q2−→ (Q⊕n

2 , α, n) → · · · (3.21)

such that
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(i) Qi �
i⊕

k=o
Ck, Cokerqi � Qi ⊕ Mi+1 for all i ≥ 0.

(ii) HomR (X, (3.20)) is exact if and only if HomDiff(R,n)((X
⊕n, α, n), (3.21)) is exact for

any R-module X.

Proof The proof is similar to Lemma 3.7. 
�
Theorem 3.9 Let (M, δM , n) ∈ Diff(R, n)-mod, X ∈ R-mod. Then the following conclu-
sions hold

(i) ExtiDiff(R,n)
((M, δM , n), (X⊕n, α, n)) = 0 ⇐⇒ ExtiR(M, X) = 0 for all i ≥ 1.

(ii) ExtiDiff(R,n)
((X⊕n, α, n), (M, δM , n)) = 0 ⇐⇒ ExtiR(X, M) = 0 for all i ≥ 1.

Proof Let

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0 (3.22)

be a projective resolution of R-module M . By Lemma 3.7, there exists a projective resolution
of n-th differential module (M, δM , n)

· · · −→ (Q⊕n
2 , α, n) −→ (Q⊕n

1 , α, n) −→ (Q⊕n
0 , α, n) −→ (M, δM , n) −→ 0 (3.23)

such that HomR ((3.22), X ) is exact if and only if HomDiff(R,n) ((3.23), (X
⊕n, α, n)) is exact.

Hence, we can get

ExtiDiff(R,n)((M, δM , n), (X⊕n, α, n)) = 0

⇐⇒ HomDiff(R,n)((3.23), (X
⊕n, α, n)) is exact

⇐⇒ HomR((3.22), X) is exact

⇐⇒ ExtiR(M, X) = 0,

where i ≥ 1.Wefinish the proof of statement (i). (ii) is similar to prove. The proof is finished.

�

Next we will give the first main theorem of this paper.

Theorem 3.10 Let (M, δM , n) be an n-th differential module. Then we have the following
results

(i) (M, δM , n) is Gorenstein projective if and only if M is Gorenstein projective as an
R-module.

(ii) (M, δM , n) is Gorenstein injective if and only if M is Gorenstein injective as an
R-module.

Proof We first prove the statement (i).
(⇒) Assume that (M, δM , n) is a Gorenstein projective n-th differential module. Then

there exists an exact sequence of projective n-th differential modules

· · · −→ (P2, δ2, n) −→ (P1, δ1, n) −→ (P0, δ0, n) −→ (P−1, δ−1, n) −→ · · · (3.24)

such that (M, δM , n) � Im((P0, δ0, n) → (P−1, δ−1, n)) and HomDiff(R,n) ((3.24),
(P⊕n, α, n)) is exact for any projective n-th differential module (P⊕n, α, n). By Proposi-
tion 3.3,we getHomR ((3.24), P) is exact for projective R-module P.Hence,M isGorenstein
projective by the definition.
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(⇐) Assume that M is Gorensten projective. We can get an exact sequence of projective
modules

· · · −→ P2 −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · (3.25)

such that M � Im(P0 → P−1) and HomR ((3.25), P) is exact for any projective R-module
P. Hence, we get the following two exact sequences

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0 (3.26)

0 −→ M −→ P−1 −→ P−2 −→ P−3 −→ · · · (3.27)

and HomR ((3.26), P), Hom ((3.27), P) are exact for any projective R-module P. By
Lemma 3.7 and Lemma 3.8, we can get the following exact sequences

· · · −→ (Q⊕n
2 , α, n) −→ (Q⊕n

1 , α, n) −→ (Q⊕n
0 , α, n) −→ (M, δM , n) −→ 0 (3.28)

0 −→ (M, δM , n) −→ (Q⊕n
−1 , α, n) −→ (Q⊕n

−2 , α, n) −→ (Q⊕n
−3 , α, n) −→ · · · (3.29)

where Qi are projective, HomDiff(R,n) ((3.28), (P⊕n, α, n)) and HomDiff(R,n) ((3.28),
(P⊕n, α, n)) are exact for any projective n-th differential module (P⊕n, α, n). By the exact
sequences (3.28) and (3.29), we get an exact sequence of projective n-th differential modules

· · · −→ (Q⊕n
2 , α, n) −→ (Q⊕n

1 , α, n) −→ (Q⊕n
0 , α, n) −→ (Q⊕n

−1 , α, n)

−→ (Q⊕n
−2 , α, n) −→ · · · (3.30)

such that (M, δM , n) � Im((Q⊕n
0 , α, n) → (Q⊕n

−1 , α, n)) and HomDiff(R,n) ((3.30),
(P⊕n, α, n)) is exact for any projective n-th differential module (P⊕n, α, n). Hence,
(M, δM , n) is a Gorenstein projective n-th differential module.

The statement (ii) is similar to prove. This finishes the proof of the theorem. 
�

Let M be an R-module. The Gorenstein projective dimension of M , denoted by GpdM, is
defined to be the minimal integer n such that there is an exact sequence 0 → Pn → · · · →
P0 → M → 0 with all Pi ’s Gorenstein projective, or ∞ if no such exact sequence exists.
The Gorenstein injective dimension of M , denoted by GidM, is defined dually. Moreover, the
supresum of Gorenstein projective dimensions of all R-modules coincides with the supresum
of Gorenstein injective dimensions of all R-modules, which is called the Gorenstein global
dimension of R and is denoted by GgdR [2].

We have the following result for these Gorenstein homological dimensions.

Theorem 3.11 Let (M, δM , n) be an n-th differential module, and p ∈ Z
+.

(i) Gpd (M, δM , n) ≤ p ⇐⇒ Gpd M ≤ p.
(ii) Gid (M, δM , n) ≤ p ⇐⇒ Gid M ≤ p.
(iii) Ggd Diff(R, n) ≤ p ⇐⇒ Ggd R ≤ p.

Proof We first prove the statement (i).
(⇒)Assume that Gpd (M, δM , n) ≤ p. There exists an exact sequence of n-th differential

modules

· · · −→ (Mn, δMn , n) −→ (P⊕n
n−1, α, n) −→ · · · −→ (P⊕n

0 , α, n)

−→ (M, δM , n) −→ 0 (3.31)
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where (P⊕n
i , α, n) are projective n-th differential modules, (M, δMn, n) is a Gorenstein

projective n-th differential module. It is easy to get the following exact sequence of R-
modules

0 −→ Mn −→ P⊕n
n−1 −→ · · · −→ P⊕n

1 −→ P⊕n
0 −→ M −→ 0 (3.32)

By Theorem 3.9, we can get Mn is Gorenstein projective. Hence, Gpd M ≤ p.
(⇐) Assume that Gpd M ≤ p. Then there exists an exact sequence

0 −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0 (3.33)

where Pn is Gorenstein projective, Pn−1, . . . , P0 are projective. By Lemma 3.7, there exists
the following exact sequence of n-th differential modules

0 −→ (Nn, δN , n) −→ (Q⊕n
n−1, α, n) −→ · · · −→ (Q⊕n

1 , α, n) −→ (Q⊕n
0 , α, n)

−→ (M, δM , n) −→ 0 (3.34)

where Qi are projective, and Nn is Gorenstein projective. So we can get that (Nn, δN , n) is
a Gorenstein projective n-th differential module. Hence, Gpd (M, δM , n) ≤ p. This finishes
(i).

The statement (ii) can be proved in a way similar to (i).
The statement (iii) can be gotten from the definition of Gorenstein global dimension.
This finishes the proof. 
�

Acknowledgments The authors are grateful to the referee for carefully reading the manuscript and for many
valuable comments which largely improved the article. Supported by National Natural Science Foundation of
China (Grant Nos. 11271043, 11471186).

References

1. L.L. Avramov, R.O. Buchweitz, S. Iyengar, Class and rank of differential modules. Invent. Math. 169(1),
1–35 (2007)

2. D. Bennis, N. Mahdou, Global Gorenstein dimensions. Proc. Am. Math. Soc. 138(2), 461–465 (2010)
3. H. Cartan, S. Eilenberg, Homological Algebra (Princeton University Press, Princeton, 1956)
4. H. Cheng, X. Zhu, Gorenstein projective objects in abelian categories. Bull. Iran. Math. Soc. 39,

1079–1097 (2013)
5. E.E. Enochs, O.M.G. Jenda, Gorenstein injective and projective modules. Math. Z. 220(4), 611–633

(1995)
6. E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra (Walter de Gruyter, Berlin, 2000)
7. R. Fossum, P. Griffith, I. Reiten, Trivial Extensions of Abelian Categories (Springer, Berlin, 1975)
8. N. Gao, P. Zhang, Gorenstein derived categories. J. Algebra. 323, 2041–2057 (2010)
9. D. Happel, On Gorenstein algebras, in representation theory of finite groups and finite-dimensional

algebras. Prog. Math. 95, 389–404 (1991)
10. H. Holm, Gorenstein homological dimensions. J. Pure Appl. Algebra. 189(1–3), 167–193 (2004)
11. A.B. Levin, Reduced Gröbner bases, free difference-differential modules and difference-differential

dimension polynomials. J. Symb. Comput 30, 357C382 (2000)
12. Z.W. Li, P. Zhang, Gorenstein algebras of finite Cohen–Macaulay type. Adv. Math. 223, 728–734 (2010)
13. Z.W. Li, P. Zhang, A construction of Gorenstein-projective modules. J. Algebra. 323, 1802–1812 (2010)
14. C. M. Ringel, P. Zhang, Representations of quivers over the algebra of dual numbers, ArXiv:1112.1924
15. J. Wei, Gorenstein homological theory for differential modules, ArXiv:1202.4157
16. M.Wu,On the factorization of differentialmodules, inDifferential Equationswith Symbolic Computation,

ed. by D. Wang, Z. Zheng (Birkhäauser, Basel, 2005), pp. 139–254
17. P. Zhang, Gorenstein-projective modules and symmetric recollements. J. Algebra. 388, 65–80 (2013)
18. M. Zhou, F. Winkler, Gröbner bases in difference-differential modules (ACM Press, New York, 2006)

123

http://arxiv.org/abs/+1112.1924
http://arxiv.org/abs/+1202.4157

	Gorenstein theory for n-th differential modules
	Abstract
	1 Introduction
	2 Preliminaries
	3 Gorenstein projective (resp. injective) theory
	Acknowledgments
	References




