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1 Introduction

We begin by introducing some notation. Let Z be a collection of points in Z × N and let

Zh = {(n, k) : (n, k) ∈ Z and k ≥ h} ,

Zh
α =

{
(z, s) ∈ Z2 : |z − y| < α(s − r) for some (y, r) ∈ Zh

}

and

Zh
α(λ) =

{
n : (n, λ) ∈ Zh

α

}
. (λ ∈ N)

Geometrically we can think of Z1
α as the lattice points contained in the union of all solid

cones with aperture α and vertex contained in Z1 = Z . We say a sequence of pairs of natural
numbers (nl , kl)∞l=1 is Stoltz if there exists a collection of points Z in Z × N, and a function
h = h(t) tending to infinity with t such that (nl , kl)∞l=t ∈ Zh(t) and there exist h0, α0 and

A > 0 such that for all integers λ > 0 we have |Zh0
α0 (λ)| ≤ Aλ. This technical condition

is interesting because of the following theorem [2].
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60 R. Nair

Theorem 1.1 Let (X, β, μ, T ) denote a dynamical system, with set X, a σ -algebra of its
subsets β, a measure μ defined on the measurable space (X, β) such that μ(X) = 1 and
a measurable, measure preserving map T : X → X. Suppose f is in L1(X, β, μ) and that
the sequence of pairs on natural numbers (nl , kl)∞l=1 is Stoltz then

m f (x) = lim
l→∞

1

kl

kl∑
i=1

f
(
T nl+i x

)
,

exists almost everywhere with respect to μ.

See [9,10] and [11] for applications of this theorem to the metric theory of continued
fractions. Note that if ml, f (x) = 1

kl

∑kl
i=1 f (T nl+i x) then

ml, f (T x) − ml, f (x) = k−1
l

(
f (T nl+kl+1x) − f (T nl+1x)

)
.

This means that m f (T x) = m f (x) μ almost everywhere. A dynamical system (X, β, μ, T )

is called ergodic if given any A ∈ β we have T−1A := {x ∈ X : T x ∈ A} = A, the set
A has either full or null measure. A standard fact in ergodic theory is that if (X, β, μ, T )

is ergodic and for μ measureable k on X we have k(T x) = k(x) almost everywhere, then
k(x) = ∫

X kdμ μ almost everywhere [6]. Averages where nl = 1 for all l will be called
non-moving. Moving averages satisfying the above hypothesis can be constructed by taking
for instance nl = 22

l
and kl = 22

l−1
. Proving pointwise ergodic theorems like Theorem 1.1

is closely related to the proof of results in differentiation theory. For instance the proof
of Birkhoff’s pointwise ergodic theorem is effected using a maximal inequality called the
maximal ergodic theorem. An idea due to N. Wiener clarified by A. Calderon [5] reduces the
proving the maximal ergodic theorem to proving it for the special case where X = Z and T
is addition by 1, that is for x ∈ Z we have T x = x + 1. In this setting the maximal ergodic
theorem is nothing other than the Hardy Littlewood maximal inequality on the group Z. The
proof of this is essentially identical to the case of the more familiar case where the group is
the R. As is well known, given a continuous function on the unit circle, it can be realised
as the boundry value function of a harmonic function defined inside the unit disk. The limit
behaviour of this harmonic function as the argument inside the unit disc tends toward the unit
circle has long been of interest to analysts. It turns out the almost everywhere convergence
behaviour of this limit is also governed by the Hardy Littlewoodmaximal functions. To prove
this theorem, it is required that this argument approaches the unit circle confined to a cone
within the unit circle. This cone is called the Stoltz cone. It is this condition in Harmonic
analysis that inspires the authors of [2] to prove Theorem 1.1. See [13] for more background.

Prior to the proof of Theorem 1.1 a number of authors considered moving averages for
specific sequences (nl , kl)l≥1. For instance in [1] it is shown that if nl = l and kl = √

l then
there is an L∞ function for which pointwise convergence of moving averages fails. In [14] it
is shown that if nl = p(l) for a non-constant polynomial with coefficients in Z and kl

nl
tends

to 0 as l tends to infinity, then there is an L∞ function for which convergence fails. Another
L∞ counter example appears [3] in the case nl = 4l and kl = 2l . On the other hand as the
authors of [2] state it was known at the time of writing of [2] that if nl = 22

l
and kl = √

nk
then pointwise convergence takes place. All this is now resolved in Theorem 1.1.

Let . . . x−1, x0, x1, . . . be two sided stationary process taking values from the finite set
K = {a1, . . . , as} and let p(x0, . . . , xn) denote the joint distribution function of the variables
x0, . . . , xn . In this paper we prove the following theorem.
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Theorem 1.2 Suppose (nl , kl)∞l=1 is Stoltz. Then there is a constant H such that

lim
l→∞

1

kl
log p(xnl , . . . , xnl+kl ) = −H,

almost everywhere.

In the case nl = 1 for all l, Theorem 1.2 reduces to the famous Shannon–McMillan–
Breiman theorem, referred to briefly as the SMB theorem [12,15], [4] is the fundamental
theorem of information theory. A primary application of the SMB theorem is to give a
theoretical underpinning to binary data compression of an ergodic time series of entropy
H > 0. Because the SMB theorem describes generic behaviour one is lead to the concept of
a typical set. In particular if x1, . . . , xn is a sequence of stationary variables taking values in
a finite state space K . Given ε ∈ (0, 1) then a typical set with respect to the probability p is
the set

An
ε :=

{
(x1, . . . , xn) ∈ Kn : 2−n(H+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H−ε)

}
.

Elementary arguments, to be found in standard textbooks—see for instance [7], enable one
to conclude that

P(An
ε ) ≥ 1 − ε, (1.1)

|An
ε | ≤ 2n(H+ε); (1.2)

and

|An
ε | ≥ (1 − ε)2n(H−ε) (1.3)

all for large n. These inequalities can be used to describe how to faithfully compress the data
from this sequence x1, . . . xn using a binary code. See [7] for instance for details how this can
be done. The role of the SMB theorem here is to ensure the existance of typical sets described
above used in the compression. We can now consider an alternative scenario where we have
a stationary series of random variables (xn)n≥1 which we are only able to observe from
time to time. Say for instance a space ship travels towards a far off data source. This data is
then collected compressed and returned to earth. Suppose data becomes more plentyful as it
approaches the source but that to conserve resources the data is collected only intermittently.
A protocol is needed to manage the collection, compression and communication of this data.
Theorem 1.2 tells us how this might be done. Suppose S = (kl , nl)l≥1 denotes a sequence of
Stoltz intervals and that data collection and communication are switched off outside Stoltz
intervals. We can, without loss of generality assume that the Stoltz intervals are disjoint.
Associated to these Stoltz intervals we can define a typical set

Bl
S,ε :=

{
(xnl+1, . . . , xnl+kl ) ∈ Kkl : 2−kl (H+ε) ≤ p(xnl+1, . . . , xnl+kl ) ≤ 2−kl (H−ε)

}
.

In light of Theorem 1.2, it is possible to prove along similar lines, analogues of inequalities
(1.1), (1.2) and (1.3), for the sets (Bl

S,ε)l≥1 which can then be used to construct a compression
scheme along the lines of the one that is constructed from (An

ε )n≥1.

2 Proof of Theorem 1.2

In the case of one sided shifts we can think of it as the future of a the two sided shift arising
form the natural extention of the one sided shift.Wewill denote byE( f |A)(x) the conditional
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expectation operator of the function f with respect to the σ - algebraA. To prove Theorem 1.2
we need the following lemma

Lemma 2.1 Suppose (�,B, p, T ) is a dynamical system and that (gk)∞k=1 is a sequence of
p measurable functions converging pointwise to g. Then if supk≥1 |gk | ∈ L1(�,B, p) we
have

lim
l→∞

1

kl

nl+kl∑
k=nl

gk(T
kω) = E(g|I)(ω).

Proof We have

1

kl

k=nl+kl∑
k=nl

gk(T
kx) = 1

kl

k=nl+kl∑
k=nl

g(T kx) + 1

kl

k=nl+kl∑
k=nl

[
gk(T

kx) − g(T kx)
]
.

Using the moving average ergodic theorem the first term on the right tends to E(g|I)(x). Let
GN (x) = supk≥N |gk(x)−g(x)|. Then for the second term on the right we have the estimate

lim sup
l→∞

∣∣∣∣∣∣
1

kl

k=nl+kl∑
k=nl

[
gk(T

kx) − g(T kx)
]
∣∣∣∣∣∣

≤ lim sup
l→∞

1

kl

k=nl+kl∑
k=nl

|gk(T kx) − g(T kx)|

≤ lim sup
l→∞

1

kl

k=nl+kl∑
k=nl

|GN (T kx)| = E(GN |I)(x)

almost everywhere. Now (GN )N≥1 converges monotonically to zero and

EG0 ≤ E(sup
k

|gk | + |g|)(x) < ∞,

by the monotone convergence theorem E(GN |I)(x) converges to 0. Lemma 2.1 is proved.
We now complete the proof of Theorem 1.2. Set g0(x) = − log p(x0) and set gk(x) =

log p(x−k ,...,x0)
p(x−k ,...,x1)

(k ≥ 1), where if (xn)∞n=0 is a one sided sequence we work with the two sided
sequences obtained via the natural extention T of the shift map.

− 1

kl
log p(xnl , . . . , xnl+kl ) = − 1

kl
T nl log p(x0, . . . , xkl−1) = 1

kl
T kl

⎛
⎝

kl−1∑
k=0

gk(T
kx)

⎞
⎠ .

Since T is 1–1 and measure preserving, the proof of Theorem 1.2 is completed, once we
show (gk)k≥0 converges almost everywhere an that E(supk gk) < ∞. To do this we start
with an equality of McMillan [12].

∫

m≤gk<m+1
gk ≤ s(m + 1)2−m .

We confine attention to the cylinder set Zi ⊆ � with Zi = {x : x0 = ai }. On Zi we have

gk(x) = − log p(x0 = ai |x−1, . . . , xk). (2.1)
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As p(x0 = ai |x−1, . . . , xk)k≥1 is a martingale, and −log is a convex function, the sequence
(gk(x))k≥1 is a semi-martingale. Then (gk)k≥1 converges almost everywhere on Zi and hence
� [8]. Furthermore by the semi-martingale property

∫

Zi
sup

0≤k≤n
gk ≤ e

e − 1
+ e

e − 1

∫

Zi
(gn(log

+ gn)).

Using (2.1) again we have
∫

Zi
(gn log

+ gn) =
∞∑

m=0

∫

Zi∩[m≤gn<m+1]
(gn log

+ gn)

≤
∞∑

m=0

s(m + 1) log(m + 1)2−m .

Thus
∫
Zi

(∑
k gk

)
< ∞ so by addition E(supk gk) < ∞ and Theorem 1.2 is proved. 
�

References

1. M.A. Akcoglu, A. del Junco, Convergence of averages of point transformations. Proc. Am. Math. Soc.
49, 265–266 (1975)

2. A. Bellow, R. Jones, J. Rosenblatt, Convergence of moving averages. Ergod. Theory Dyn. Syst. 10(1),
43–62 (1990)

3. A. Bellow, V. Losert, The weighted ergodic theorem and individual ergodic theorem along subsequences.
Trans. Amer. Math. Soc. 288, 307–345 (1985)

4. L. Breiman, The individual ergodic theorem of information theory. Ann. Math. Stat. 28(3), 809–811
(1957)

5. A.P. Calderón, Ergodic theory and translation-invariant operators. Proc. Nat. Acad. Sci. USA. 59, 349–353
(1968)

6. I.P. Cornfeld, S.V. Fomin, YaG. Sinai,Ergodic Theory, Grundlehren derMathematischenWissenschaften,
vol. 245 (Springer, New York, 1982). x+486 pp.

7. T. Cover, J. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Newyork, 2006)
8. J.L. Doob, Stochastic Processes (Wiley, New York, 1953)
9. H. Kamarul-Haili, R. Nair, Onmoving averages and continued fractions Unif. Distrib. Theory 6(1), 65–78

(2011)
10. H. Kamarul-Haili, R. Nair, Optimal continued fractions and the moving average ergodic theorem. Period.

Math. Hung. 66(1), 95–103 (2013)
11. H.Kamarul-Haili, R.Nair, The nearest integer continued fraction and themoving average ergodic theorem.

Unif. Distrib. Theory 8(1), 73–87 (2013)
12. B. McMillan, The basic theorems of Information. Ann. Math. Stat. 24, 196–219 (1953)
13. A. Nagel, E.M. Stein, On certain maximal functions and approach regions. Adv. Math. 54(1), 83–106

(1984)
14. M. Schwartz, Polynomially moving ergodic averages. Proc. Am. Math. Soc. 103(1), 252–254 (1988)
15. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, pp.379–423,623–656

(1948)

123


	On moving averages and asymptotic equipartition of information
	Abstract
	1 Introduction
	2 Proof of Theorem 1.2
	References




