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Abstract This paper concerns a family of weak parallelogram laws for Banach spaces. It is
shown that the familiar Lebesgue spaces satisfy a range of these inequalities. Connections
are made to basic geometric ideas, such as smoothness, convexity, and Pythagorean-type
theorems. The results are applied to the linear prediction of random processes spanning a
Banach space. In particular, theweak parallelogram laws furnish coefficient growth estimates,
Baxter-type inequalities, and criteria for regularity.
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1 Introduction

The familiar parallelogram law states that for any vectors x and y in a Hilbert space H,
we have

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (1.1)

If this condition is imposed on a normed space, then in fact the polarization identity

〈x, y〉 = ‖x + y‖2 − ‖x − y‖2
4

+ i
‖i x − y‖2 − ‖i x + y‖2
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46 R. Cheng, W. T. Ross

(assuming complex scalars) determines an inner product, with ‖x‖2 = 〈x, x〉 for all vectors
x . Thus, the parallelogram law would have to be altered or weakened in some way in order
to apply to a more general normed space.

One example of this is furnishedbyClarkson’s inequalities,which constitute parallelogram
laws of sorts for the spaces L p = L p(�,�,μ), where 1 < p < ∞ and (�,�,μ) is any
measure space (see, for instance, [7, p. 119]). If 1 < p ≤ 2, then

‖x + y‖p
p + ‖x − y‖p

p ≥ 2p−1 (‖x‖p
p + ‖y‖p

p
)

(1.2)

for all x and y in L p; and if 2 ≤ p < ∞, then

‖x + y‖p
p + ‖x − y‖p

p ≤ 2p−1 (‖x‖p
p + ‖y‖p

p
)

(1.3)

for all x and y in L p . Another example comes from Bynum and Drew [5] and Bynum [4].
They discovered what they call weak parallelogram laws for L p:

If 1 < p ≤ 2, then

‖x + y‖2p + (p − 1)‖x − y‖2p ≤ 2
(
‖x‖2p + ‖y‖2p

)
(1.4)

for all x and y in L p; and if 2 ≤ p < ∞, then

‖x + y‖2p + (p − 1)‖x − y‖2p ≥ 2
(
‖x‖2p + ‖y‖2p

)
(1.5)

for all x and y in L p . That is, they are able to impose a version of condition (1.1) on the space
L p , at the cost of introducing a constant factor (p − 1), and weakening the equation to an
inequality. In both examples, the resulting inequalities tell us something about the geometry
of the space, such as smoothness and convexity properties.

Guided by these two examples, and in the interest of pursuing a parallelogram law for
general normed linear spaces, let us adopt the following terminology.

Definition 1.1 Let C > 0, and 1 < p < ∞. A Banach Space X satisfies a p-lower weak
parallelogram law with constant C if

‖x + y‖p + C‖x − y‖p ≤ 2p−1 (‖x‖p + ‖y‖p) (1.6)

for all x and y in X. In this case let us say that X is p-LWP(C).
Similarly, a Banach Space X satisfies a p-upper weak parallelogram law with constant C if

‖x + y‖p + C‖x − y‖p ≥ 2p−1 (‖x‖p + ‖y‖p) (1.7)

for all x and y in X. In this case let us say that X is p-UWP(C).

Itmay be convenient during usage to suppress the parameter p or the constantC . Naturally,
we speak of Banach spaces satisfying LWP or UWP as weak parallelogram spaces. By this
terminology, the Clarkson inequalities say that L p is p-UWP(1) when 1 < p ≤ 2, and L p is
p-LWP(1) when 2 ≤ p < ∞. Similarly, Bynum’s inequalities assert that L p is 2-LWP(p−1)
when 1 < p ≤ 2, and L p is 2-UWP(p − 1) when 2 ≤ p < ∞.

In this paper, our objectives are to obtain some properties of weak parallelogram spaces,
and to apply those ideas toward the prediction of certain processes. First, a complete descrip-
tion is obtained for the values of r and p for which the space Lr satisfies p-LWP(C) for some
C > 0, and respectively p-UWP(C).

The geometry of weak parallelogram spaces is then explored.We note that LWP spaces are
uniformly convex, and UWP spaces are uniformly smooth. We also derive Pythagorean-type
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Weak parallelogram laws 47

theorems for weak parallelogram spaces. In this context, orthogonality is in the Birkhoff–
James sense: two vectors x and y in X satisfy x ⊥ y if

‖x + ay‖ ≥ ‖x‖
for all scalars a. (See [1] for a recent review of Birkhoff–James orthogonality in normed
linear spaces).

Weak parallelogram spaces are shown to have the following properties. If X is p-LWP,
then there exists a constant K > 0 such that

‖x + y‖p ≥ ‖x‖p + K‖y‖p

whenever x ⊥ y; similarly, if X is p-UWP, then there exists a constant K > 0 such that

‖x + y‖p ≤ ‖x‖p + K‖y‖p

Indeed, if p = 2 and K = 1, and equality holds, then we have the usual Pythagorean
Theorem.

These ideas are used to study certain sequences of vectors in a Banach space. Specifically,
we are interested in sequences {Xn}∞n=0 of unit vectors for which m < n implies that Xm ⊥
Xn in the Birkhoff–James sense. This structure is motivated by prediction problems for
p-stationary processes, which were likewise extensions of prediction theory for stationary
Gaussian processes (i.e., the p = 2 case). For examples of processes of this type, see [6,9–
11,14]. For processes in the broader class of weak parallelogram spaces, bounds are obtained
for the coefficients {an} whenever ∑∞

n=0 an Xn converges in norm.
In addition, a Baxter-type inequality is derived for LWP spaces. This gives us a practical

bound for the average error incurred when the best estimate of X0 in the linear span of
{X1, X2, X3, . . .}, truncated at the nth term, is used in place of the best estimate of X0 in
the linear span of {X1, X2, X3, . . . , Xn}. The original Hilbert space version due to Baxter
[2] has proved very useful in time series analysis [12,16]. Our work extends this notion to a
broader class of processes.

Finally, a number of criteria are given for such sequences {Xn}∞n=0 to be regular (in the
sense of being purely linearly nondeterministic), if the underlying space is LWP. For instance,
regularity of the sequence is shown to be equivalent to {Xn}∞n=0 being a conditional basis for
its span.

We conclude this section with some notational and technical preliminaries. All Banach
spaces being considered here are assumed to be of dimension 2 or greater, so as to avoid
trivialities. The function space L p(�,�,μ) is simply referred to as L p , there being no need
to refer to the underlying measure space. The functions may be real or complex valued.
Typically, it is assumed that 1 < p < ∞, so that L p is a reflexive Banach space. As usual,
the norm in L p is written ‖ · ‖p . In this setting, let p′ denote the conjugate index to p: thus
(1/p) + (1/p′) = 1.

If x is a nonzero vector in a Banach spaceX, then a norming functional for x is a norm one
functional T in X∗ such that T (x) = ‖x‖. The Hahn-Banach theorem assures the existence
of such a functional. If the norming functional for x is unique, then let us call it Tx . If every
nonzero vector x in X has a unique norming functional, then X is said to be smooth. For
example, the space L p is smooth whenever 1 < p < ∞, but fails to be smooth when p = 1
or p = ∞. Here are some well established facts about smoothness.

Proposition 1.2 The following statements about a Banach space X are equivalent: (i) X
is smooth; (ii) the norm in X has directional derivatives at every nonzero point; and (iii)
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Birkhoff–James orthogonality ⊥ in X is linear in its second argument. Furthermore, if X is
smooth, then x ⊥ y in X if and only if Tx (y) = 0.

These properties are particularly relevant to the linear prediction problems of the later sec-
tions. For the proofs, see [3] for the equivalence of (i) and (ii); and [13] for the equivalence
of (i) and (iii).

Other natural and interesting questions arise. One might consider, for example, properties
of and relationships between the parameters p and C in the condition p-LWP(C) or p-
UWP(C). In addition, the weak parallelogram properties exhibited by the L p spaces suggest
a more general duality relationship. Furthermore, connections could be established between
the weak parallelogram laws and other ways of expressing a parallelogram law on a general
normed space, for example, the Rademacher type and co-type properties. In order to maintain
our present focus on applications, we defer these issues to another paper [8].

2 Weak parallelogram laws for L p

The inequalities (1.2), (1.3), (1.4) and (1.5) show that for 1 < p < ∞, the L p spaces satisfy
certain weak parallelogram laws. Our aim in the this section is to identify all of the weak
parallelogram laws satisfied by the L p spaces.

Theorem 2.1 If 1 < p ≤ 2, and p′ is the conjugate index, then L p is:

r − UWP(1) when 1 < r ≤ p;
r − LWP((p − 1)r/2) when 2 ≤ r ≤ p′; and

r − LWP(1) when r ≥ p′.

If 2 ≤ p < ∞, and p′ is the conjugate index, then L p is:

r − LWP(1) when p ≤ r < ∞;
r − UWP((p − 1)r/2) when p′ ≤ r ≤ 2; and

r − UWP(1) when r ≤ p′.

To prove this, we begin by extending Clarkson’s inequalities. There are eight cases,
presented in two lemmas.

Lemma 2.2 Suppose that 1 < p < ∞ and 1 < r < ∞.

(i) If r ≥ max{p, p′}, then for all x and y in L p,

‖x + y‖r
p + ‖x − y‖r

p ≤ 2r−1
(
‖x‖r

p + ‖y‖r
p

)
(2.1)

(ii) If r ≤ min{p, p′}, then for all x and y in L p,

‖x + y‖r
p + ‖x − y‖r

p ≥ 2r−1
(
‖x‖r

p + ‖y‖r
p

)
(2.2)

(iii) If 1 < p ≤ r ≤ p′ < ∞, then for all x and y in L p,

‖x + y‖r
p + ‖x − y‖r

p ≤ 2r/p
(
‖x‖r

p + ‖y‖r
p

)
(2.3)

(iv) If 1 < p′ ≤ r ≤ p < ∞, then for all x and y in L p,

‖x + y‖r
p + ‖x − y‖r

p ≥ 2r/p
(
‖x‖r

p + ‖y‖r
p

)
(2.4)
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Proof In the case 2 ≤ r ≤ p < ∞, we use the inequality (1.3) to get
(
‖x + y‖r

p + ‖x − y‖r
p

)p/r

≤ ‖x + y‖p
p + ‖x − y‖p

p

≤ 2p−1 (‖x‖p
p + ‖y‖p

p
)

= 2p−1 (‖x‖p
p · 1 + ‖y‖p

p · 1)

≤ 2p−1
(
‖x‖r

p + ‖y‖r
p

)p/r (
1r/(r−p) + 1r/(r−p)

)(r−p)/r

The last step comes from applying the Hölder inequality to two-dimensional �1, using the
exponent r/p and its conjugate. Now raise both sides to the power r/p, noting that on the
right hand side, 2 is raised to the power

r(p − 1)

p
+ r(r − p)

r p
= r − 1

This proves part of case (i). If 2 ≤ p′ ≤ r < ∞, then

2
(
‖x‖r

p + ‖y‖r
p

)p′(p−1)/r

≤ 2
(
‖x‖p′

p + ‖y‖p′
p

)p−1

≤ ‖x + y‖p
p + ‖x − y‖p

p

≤
(
‖x + y‖r

p + ‖x − y‖r
p

)p/r
21−p/r (2.5)

where the step from line (2.5) to the next is yet another of Clarkson’s inequalities [7, p. 119].
It follows that

2
(
‖x‖r

p + ‖y‖r
p

)
≤ ‖x + y‖r

p + ‖x − y‖r
p

Now replace x and y with x + y and x − y, respectively, to see that this is equivalent to (2.1).
This completes the verification of (i). The rest is similar. ��

Indeed, when p = r , these are the original Clarkson’s Inequalities, and the special case
p = r = 2 is the parallelogram law proper. However, only cases (i) and (ii) above are weak
parallelogram laws as defined here in (1.6) and (1.7). The other two cases are near-misses
since the multiplicative constant 2r/p is of the wrong form. To obtain further results, we need
the following extension of the Bynum and Drew inequalities.

Lemma 2.3 Suppose that 1 < r < ∞ and 1 < p < ∞.

(v) If 1 < p ≤ r ≤ 2, then for all x and y in L p,

‖x + y‖r
p + (p − 1)r/2‖x − y‖r

p ≤ 2
(
‖x‖r

p + ‖y‖r
p

)
(2.6)

(vi) If 1 < p ≤ 2 ≤ r ≤ p′, then for all x and y in L p,

‖x + y‖r
p + (p − 1)r/2‖x − y‖r

p ≤ 2r−1
(
‖x‖r

p + ‖y‖r
p

)
(2.7)

(vii) If 2 ≤ r ≤ p < ∞, then for all x and y in L p,

‖x + y‖r
p + (p − 1)r/2‖x − y‖r

p ≥ 2
(
‖x‖r

p + ‖y‖r
p

)
(2.8)
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(viii) If p′ ≤ r ≤ 2 ≤ p < ∞, then for all x and y in L p,

‖x + y‖r
p + (p − 1)r/2‖x − y‖r

p ≥ 2r−1
(
‖x‖r

p + ‖y‖r
p

)
(2.9)

Proof For (v), use Bynum’s weak parallelogram law (1.4) for L p , along with Hölder’s
Inequality on two-dimensional �2/r , as follows:

‖x + y‖r
p + (p − 1)r/2‖x − y‖r

p

≤
(
‖x + y‖2p + (p − 1)‖x − y‖2p

)r/2
(1 + 1)1−r/2

≤
(
2[‖x‖2p + ‖y‖2p]

)r/2
21−r/2

≤ 2
(
‖x‖r

p + ‖y‖r
p

)

The other assertions are similarly handled. ��
Note that when r = 2 we indeed get the inequalities of Bynum [4] and Bynum and

Drew [5].
Cases (vi) and (viii) are weak parallelogram laws. It will turn out that for the remaining

cases (v) and (vii), which are again near-misses, we can rule out any r -weak parallelogram
laws in principle. (See Proposition 3.6.) This exhausts all of the possibilities for p and r ,
and affirms Theorem 2.1. Note that Lr is p-LWP if and only if Lr ′

is p′-UWP; a more
general duality relationship is established in [8]. This completes the description of p-weak
parallelogram laws for the Lr spaces.

3 Geometry of weak parallelogram spaces

Let us explore some of the the geometric consequences of the weak parallelogram laws. First,
we note the following convexity and smoothness properties. The proofs follow those of [4]
for the p = 2 case, mutatis mutandis.

Proposition 3.1 Let 1 < p < ∞. If a Banach space X satisfies p-LWP(C), then X is
uniformly convex. If a Banach space X satisfies p-UWP(C), then X is uniformly smooth.

Thus, a LWP space is reflexive, and it enjoys the unique nearest point property by theMilman-
Pettis Theorem [15].

Next, suppose that X is a smooth Banach space, so that for each nonzero x in X, there
is a unique norm one functional Tx satisfying Tx (x) = ‖x‖. We establish below that weak
parallelogram laws on smooth Banach spaces are expressible as bounding conditions on the
norming functionals. Here 
z stands for the real part of a complex number z.

Lemma 3.2 Let 1 < p < ∞.
A smooth Banach space X is p-LWP if and only if for some positive constant K , and for

all x �= 0 and y in X,

‖x + y‖p ≥ ‖x‖p + K‖y‖p + p‖x‖p−1
(Tx (y)) (3.1)

A smooth Banach space X is p-UWP if and only if for some positive constant K , and for
all x �= 0 and y in X,

‖x + y‖p ≤ ‖x‖p + K‖y‖p + p‖x‖p−1
(Tx (y)) (3.2)

123



Weak parallelogram laws 51

Proof Suppose that (3.1) holds. Then

‖x‖p + K‖y‖p + p‖x‖p−1
(Tx (y)) ≤ ‖x + y‖p

‖x‖p + K‖ − y‖p + p‖x‖p−1
(Tx (−y)) ≤ ‖x − y‖p

2‖x‖p + 2K‖y‖p ≤ ‖x + y‖p + ‖x − y‖p

Replace x with x + y, and replace y with x − y, to find that

‖x + y‖p + K‖x − y‖p ≤ 2p−1 (‖x‖p + ‖y‖p) (3.3)

Thus X is p-LWP(K ).
Conversely, assume that X is p-LWP(C) for some C > 0, and apply

‖u + v‖p + C‖u − v‖p ≤ 2p−1 (‖u‖p + ‖v‖p)

to the pair of vectors u = x and v = x + 2−n y, for n = 0, 1, 2, . . . . The first step, with
n = 0, provides that

‖x + 1
2 y‖p + C‖ 1

2 y‖p ≤ 1
2‖x‖p + 1

2‖x + y‖p

and subsequent steps may take the form

2‖x + 2−(n+1)y‖p + 2C‖2−(n+1)y‖p − ‖x‖p ≤ ‖x + 2−n y‖p (3.4)

We then apply (3.4) repeatedly, substituting the last ‖x + 2−n y‖p term with the smaller
quantity on the left. This yields the estimate

‖x + y‖p ≥ −(1 + 2 + 22 + · · · + 2n−1)‖x‖p

+
[ 1

2p−1 + 1

(2p−1)2
+ 1

(2p−1)3
+ · · · + 1

(2p−1)n

]
C‖y‖p

+ 2n‖x + 2−n y‖p

= −(2n − 1)‖x‖p + 1 − 2−(p−1)n

2p−1 − 1
C‖y‖p + 2n‖x + 2−n y‖p

= ‖x‖p + 1 − 2−(p−1)n

2p−1 − 1
C‖y‖p + ‖x + 2−n y‖p − ‖x‖p

2−n

Now take the limit as n tends toward infinity. Smoothness ensures that the directional
derivative in the final term exists. To obtain its value, apply McShane’s Lemma [7, Lemma
11.17, p. 120] to get

lim
a→0+

‖x + ay‖p − ‖x‖p

a
= p‖x‖p−1
(Tx (y))

The conclusion is

‖x + y‖p ≥ ‖x‖p + C

2p−1 − 1
‖y‖p + p‖x‖p−1
(Tx (y))

This affirms (3.1) with K = C/(2p−1 − 1), and an analogous argument establishes (3.2). ��

This, in turn, gives rise to a Pythagorean Theorem for weak parallelogram spaces.
Let 1 < p < ∞.
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Theorem 3.3 If a smooth Banach space X is p-LWP(C), then there exists a positive constant
K such that whenever x ⊥ y in X,

‖x‖p + K‖y‖p ≤ ‖x + y‖p (3.5)

If X is p-UWP(C), then there exists a positive constant K such that whenever x ⊥ y in
X,

‖x‖p + K‖y‖p ≥ ‖x + y‖p (3.6)

In either case, the constant K can be chosen to be C/(2p−1 − 1).

Proof The inequalities follow from the fact that Tx (y) = 0 if and only if x ⊥ y, as noted
in Proposition 1.2. The proof of Lemma 3.2 assures that the constant K = C/(2p−1 − 1)
suffices. ��

Let us refer to the constant K as a Pythagorean Constant for the space X.
The L p spaces certainly satisfy Pythagorean inequalities. These follow directly from the

weak parallelogram laws for L p .

Corollary 3.4 Let 1 < r < ∞, and 1 < p < ∞.
If 1 < p ≤ 2 ≤ r < ∞ or 2 ≤ p ≤ r < ∞, then there exists K > 0 such that

‖x‖r
p + K‖y‖r

p ≤ ‖x + y‖r
p

whenever x ⊥ y in L p.
If 1 < r ≤ p ≤ 2 or 1 < r ≤ 2 ≤ p < ∞, then there exists K > 0 such that

‖x‖r
p + K‖y‖r

p ≥ ‖x + y‖r
p

whenever x ⊥ y in L p.

Our first application to prediction theory is a bound on the coefficient growth for certain
moving average processes. Let {Xn}∞n=0 be a sequence of vectors in a Banach Space X. Let
us say that the sequence is an innovation sequence if each Xn is nonzero, and Xm ⊥ Xn

whenever m < n, where ⊥ is Birkhoff-James orthogonality. (This is a time reversal from
the usual terminology.) In the special case {Zn}∞n=0 is an orthonormal sequence in a Hilbert
space, then of course we have ‖ ∑∞

n=0 an Zn‖2 = ∑∞
n=0 |an |2. This extends to Banach spaces

in the following way.

Corollary 3.5 Let {Xn}∞n=0 be an innovation sequence of unit vectors in a smooth Banach
Space X, and suppose that the series

∑∞
n=0 an Xn converges in norm.

If X satisfies p-LWP, then

∥∥∥
∞∑

n=0

an Xn

∥∥∥
p ≥

∞∑

n=0

K n |an |p (3.7)

where K is the associated Pythagorean constant.
If X satisfies p-UWP, then

∥∥∥
∞∑

n=0

an Xn

∥∥∥
p ≤

∞∑

n=0

K n |an |p

where K is the associated Pythagorean constant.

This follows from applying the Pythagorean inequalities repeatedly.
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Weak parallelogram laws 53

The above norm estimates furnish a sense of the growth or decay of the coefficients an .
For example, in the LWP case, (3.7) gives rise to the crude bound

|an | ≤ K −n/p
∥
∥∥

∞∑

m=0

am Xm

∥
∥∥

where once again K is the associated Pythagorean constant.
Finally, let us return to the spaces L p and use the Pythagorean inequalities to affirm that

Theorem 2.1 indeed describes all of the r -weak parallelogram laws for L p . That is, for r and
p outside of its conditions, a weak parallelogram law fails to exist.

Proposition 3.6 Let 1 < r < ∞, and 1 < p < ∞. If r > p or r > 2, then there does not
exist a positive constant C such that for all x and y in L p,

‖x + y‖r
p + C‖x − y‖r

p ≥ 2r−1
(
‖x‖r

p + ‖y‖r
p

)

If r < p or r < 2, then there does not exist a positive constant C such that for all x and
y in L p,

‖x + y‖r
p + C‖x − y‖r

p ≤ 2r−1
(
‖x‖r

p + ‖y‖r
p

)

Proof Our strategy is to show that the respective Pythagorean inequalities fail, and hence
the corresponding weak parallelogram laws fail. Consider the example of 2-dimensional �p

with vectors x = (a, a) and y = (1,−1). Note that x ⊥p y. Assuming a is positive and
large, we find that

‖x + y‖r
p − ‖x‖r

p

‖y‖r
p

=
(
|a + 1|p + |a − 1|p

)r/p −
(
|a|p + |a|p

)r/p

(1 + 1)r/p

= ar
[
1 + p(p − 1)

2a2 + O(1/a3)
]r/p − ar

= 1

2
ar−2r(p − 1) + O

(
ar−3)

where the estimates come from the binomial series:
(
1 + 1

a

)p = 1 + p
(1

a

)
+ p(p − 1)

2

(1
a

)2 + O
([1

a

]3)

As a → ∞ this tends to the limit 0 if 1 < r < 2; it diverges to ∞ if 2 < r < ∞. It
follows that �p fails to be r -LWP if 1 < r < 2, and that �p fails to be r -UWP if 2 < r < ∞.

Next, consider 2-dimensional �p with vectors x = (1, 0) and y = (0, a). As before,
x ⊥p y. Assume that a is positive and small. Then

‖x + y‖r
p − ‖x‖r

p

‖y‖r
p

=
(
1 + a p

)r/p − 1

ar

= r

p
a p−r + O

(
a2p−r )
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As a → 0+, this tends to 0 if p > r ; it diverges to ∞ if r > p. We may conclude that �p

fails to be r -LWP if p > r , and it fails to be r -UWP if r > p.
Now, every L p (of dimension at least 2) contains a possibly weighted copy of 2-

dimensional �p . It is a simple matter to account for the weights, and thus extend the above
conclusions to L p . Indeed, if the weights are w1 and w2, then the mapping (x1, x2) �→
(x1/w

1/p
1 , x2/w

1/p
2 ) is an isometry from �p to weighted �p that preserves orthogonality. ��

The results of this section amplify those of [4], where r = 2, as well as [10], where p = r ,
and apply to a larger class of Banach spaces.

4 Baxter’s inequality

Our next application is an extension of Baxter’s inequality from the stationary Gaussian
case to a much broader class of processes. Suppose that {Zk}∞k=−∞ is a centered stationary

Gaussian process. Let us write Ẑ for the best linear least-squares estimate of Z0 based on the
entire past

{
. . . , Z−3, Z−2, Z−1

}

and Ẑn for the best linear estimate of Z0 based on the finite past
{

Z−n, . . . , Z−3, Z−2, Z−1

}

Let Ẑ and Ẑn have series representations

Ẑ =
∞∑

k=1

ak Z−k

Ẑn =
n∑

k=1

ak,n Z−k

The original Baxter’s inequality [2] states that if the process has a positive and continuous
spectral density function, then there exist constants B and N such that

n∑

k=1

|ak,n − ak | ≤ B
∞∑

k=n+1

|ak |

whenever n ≥ N . The importance of Baxter’s inequality is that it gives us an estimate of
the error in using the truncated infinite best predictor in place of the finite best predictor,
expressed in terms of the tail of the best predictor. This is useful in applications, and has been
extended in a number of directions (see, for example, [12,16]).

Extending this idea to arbitrary normed spaces is challenging since there doesn’t exist any
notion of a spectrum in such generality. Here, however, is a version of Baxter’s inequality
for LWP spaces, which evidently retain just enough Hilbert space character. Suppose that
the sequence of vectors {Xn}∞n=0 spans the Banach space X. We adopt the notation X̂ for the
best linear estimate of X0 based on {X1, X2, X3, . . .}, and X̂n for the best linear estimate of
X0 based on {X1, X2, X3, . . . , Xn}. Let us write X̂(n) for the nth partial sum of X̂ .

Theorem 4.1 Let {Xn}∞n=0 be a sequence of unit vectors spanning a smooth Banach space
X. If X satisfies p-LWP(C), and the series representation
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X̂ =
∞∑

n=1

an Xn

converges in norm to X̂ , then there exist constants B and N such that

‖X̂n − X̂(n)‖p ≤ B‖X̂ − X̂(n)‖ (4.1)

whenever n ≥ N.

Proof By assumption, X0− X̂n is orthogonal to any vector in closed linear span of
∨{Xk}n

k=1.
In particular,

X0 − X̂n ⊥ X̂n − X̂(n)

It follows that

‖X0 − X̂n‖p + C‖X̂n − X̂(n)‖p ≤ ‖X0 − X̂(n)‖p

from the Pythagorean inequality (3.5), and therefore

C‖X̂n − X̂(n)‖p ≤ ‖X0 − X̂(n)‖p − ‖X0 − X̂n‖p

≤ ‖X0 − X̂(n)‖p − ‖X0 − X̂‖p (4.2)

TheMeanValue Theorem, applied to the function f (x) = x p , assures that for any positive
numbers a > b there exists a number c, with a > c > b, such that

a p − bp

a − b
= pcp−1

Use cp−1 ≤ a p−1 + bp−1, a = ‖X0 − X̂(n)‖, b = ‖X0 − X̂‖, and the Triangle inequality

‖X0 − X̂(n)‖ − ‖X0 − X̂‖ ≤ ‖X̂ − X̂(n)‖
and then the chain of estimates continues from (4.2) with

≤ p‖X̂ − X̂(n)‖
(
‖X0 − X̂‖p−1 + ‖X0 − X̂(n)‖p−1

)

≤ 2p‖X̂ − X̂(n)‖
for n sufficiently large. ��

Once again, what we have in (4.1) is an error estimate for using the truncated best predictor
in place of the best finite predictor, in terms of the tail of the best predictor. This is a new
result even for L p , with p �= 2. Thus it is applicable, for example, to a random process
{Xn}∞n=−∞ that satisfies E |Xn |p < ∞ for all n, and

E

∣∣∣∣

N∑

n=1

cn Xkn+K

∣∣∣∣

p

= E

∣∣∣∣

N∑

n=1

cn Xkn

∣∣∣∣

p

for all integers K , positive integers n, scalars c1, c2, . . . , cn , and indices k1, k2, . . . , kn . Such
a process is said to be p-stationary. For 1 < p ≤ 2, the p-stationary processes includeweakly
stationary processes, harmonizable stable processes, certain SαS stablemoving averages, and
p-th order strictly stationary processes (see [6,9–11,14]).

We emphasize that the Banach space norm ‖ · ‖ in Theorem 4.1 need not be the L p norm;
rather, the requirement is for the space to satisfy p-LWP(C), which occurs for a large class
of spaces.
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5 Regularity

Let {Xn}∞n=0 be a sequence of nonzero vectors spanning a Banach space X. Define for all
n = 0, 1, 2, …,

Xn =
∨{

Xn, Xn+1, Xn+2, . . .
}

X∞ =
⋂

n

Xn

where
∨

means the closed span under the norm topology. We say that the sequence {Xn}∞n=0
is regular if X∞ = (0). This is a linear version of the stronger condition that the sequence
{Xn}∞n=0 has trivial tail σ -field. It is also analogous to a Gaussian process being purely non-
deterministic. In the stationary Gaussian case, complete spectral criteria are well known for
regularity (see, for example, [17]). However, in the present more general setting, there is no
comparable notion of spectrum, and even an innovation sequence can fail to be regular. Our
aim is to characterize the regular innovation sequences in LWP spaces.

We can attempt to define the coordinate functionals kn on finite linear combinations in the
obvious way:

kn

(∑
ak Xk

)
= an

It needs to be established that each kn is well-defined, and extends continuously to all of
X. We find that a sufficient condition is for X to satisfy LWP.

Lemma 5.1 Let {Xn}∞n=0 be an innovation sequence of unit vectors spanning a smooth
Banach space X. If X satisfies p-LWP, then the coordinate functionals kn, for n = 0, 1, 2,
…, extend continuously to X.

Proof If LWP holds, then X satisfies a lower Pythagorean inequality. Thus by Corollary 3.5
there is a constant C such that

∥∥∥
∞∑

n=0

an Xn

∥∥∥
p ≥

∞∑

n=0

Cn |an |p

holds when all but finitely many of the coefficients an are zero. From this it follows that if
two such sums on the left are equal, their corresponding coefficients must coincide. It also
follows that kn is a bounded linear functional, with ‖kn‖ ≤ C−n/p . ��

Let us keep the symbol kn for the extended functional.
These functionals connect to our objective by way of the following lemmas.

Lemma 5.2 Let {Xn}∞n=0 be an innovation sequence of unit vectors spanning a smooth
Banach space X, and assume that X satisfies LWP. Then X ∈ X∞ if and only if kn(X) = 0
for all n = 0, 1, 2, ….

Proof Suppose that X ∈ X∞. Then for each nonnegative integerm, there exists Ym belonging
to the span of {Xm, Xm+1, Xm+2, . . . , } such that ‖X − Ym‖ < 1/m. Thus by the continuity
of the functional kn , we have kn(X) = limm→∞ kn(Ym) = 0 for each n.

Conversely, suppose that kn(X) = 0 for all n = 0, 1, 2, …. Consider finite sums Ym =∑∞
n=0 am,n Xn converging in norm to X . For any fixed positive integer N , and any ε > 0, it

happens that limm→∞ am,n = 0 for all 0 ≤ n ≤ N . Thus we can choose m sufficiently large
that YN differs from a vector in the span of {Xm, Xm+1, Xm+2, . . . , } by no more than ε in
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norm. This shows that X belongs to XN , and since N was arbitrary, it follows that X belongs
to X∞. ��

Let us write Tn for the norming functional of Xn . Here is the way the norming functionals
{Tn} and coordinate functionals {kn} are related.
Lemma 5.3 Let {Xn}∞n=0 be an innovation sequence of unit vectors spanning a smooth
Banach space X. If X satisfies LWP, then the spans of {kn}∞n=0 and {Tn}∞n=0 in X∗ coincide.

Proof We verify that

k0 = T0

kn = Tn −
n−1∑

m=0

Tn(Xm)km

for all n = 1, 2, 3,…. Indeed, the equations are true when the respective functionals are
evaluated at any X j . From this we deduce that each TN belongs to the span of {kn}N

n=0, and
similarly each kN belongs to the span of {Tn}N

n=0.
Thus {kn}N

n=0 and {Tn}N
n=0 span the same subspace for all N . The assertion follows. ��

Lemma 5.4 Let {Xk}∞k=0 be an innovation sequence of unit vectors spanning a smooth p-
LWP space X, and let T be a nonzero functional on X. The following are equivalent:

(i) T ⊥ kn for all n = 0, 1, 2, ….
(ii) T/‖T ‖ is the norming functional for some nonzero X ∈ X∞.

Proof In any case, the p-LWP condition implies that X is uniformly convex, and hence
reflexive. Furthermore, X∗ must then be smooth.

If condition (i) holds, then by [13, Theorem 2.1], there exists a nonzero vector X in
X = X∗∗ such that kn(X) = 0 for all indexes n, and T (X) = ‖T ‖‖X‖. By Lemma 5.2, this
implies that X belongs to X∞. It is readily seen that T/‖T ‖ is the norming functional for X ,
and hence (ii) holds.

Conversely, assume (ii). Then for any constant a and any index n, we have

‖T + akn‖ ≥ |T (X/‖X‖) + akn(X/‖X‖)|
= |T (X/‖X‖)|
= ‖T ‖

and (i) follows. ��
Here is our characterization of regular innovation sequences in LWP spaces, in terms of

the coordinate functionals, the norming functionals for the sequence, and a basis property.
(See [17] for the definition of conditional basis).

Theorem 5.5 Let {Xn}∞n=0 be an innovation sequence of unit vectors spanning a smooth
p-LWP space X. The following are equivalent.

(i) The sequence {Xn}∞n=0 is regular.
(ii) The associated coordinate functionals {kn}∞n=0 span X∗.
(iii) The sequence {Xn}∞n=0 is a conditional basis for X.
(iv) The associated norming functionals {Tn}∞n=0 span X∗.
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Proof The equivalence of (i) and (ii) is immediate from Lemma 5.4.
Suppose that (i) holds, and for X in X we have kn(X) = an for all n. If the series∑∞
n=0 an Xn converges in norm to Y , then kn(X −Y ) = 0 for all n. By assumption this forces

X = Y , and (iii) is affirmed.
Conversely, suppose (iii) holds. If X belongs to X∞, then kn(X) = 0 for all n. By

assumption, the series
∑∞

n=0 kn(X)Xn converges to X . But the left hand side is the zero
vector, and we may conclude that (i) holds.

The equivalence of (ii) and (iv) follows from Lemma 5.3. ��
These results show that weak parallelogram spaces serve as a natural environment in

which to pursue prediction theory, extending previous work on Gaussian and p-stationary
processes.
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