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Abstract Let p be an odd prime. In this paper we study the integer solutions (x, y, n, a, b)
of the equation x2 + 2a pb = yn, x ≥ 1, y > 1, gcd(x, y) = 1, a ≥ 0, b ≥ 0, n ≥ 3.
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1 Introduction

Let Z, N be the sets of all integers and positive integers respectively. Let p be a fixed odd
prime. Recently, there are many papers related to the equation

x2 + 2a pb = yn, x, y, n ∈ N, gcd(x, y) = 1, a, b ∈ Z, a ≥ 0, b ≥ 0, n ≥ 3.
(1.1)
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All solutions (x, y, n, a, b) of (1.1) have been determined by [15] for p = 3, by [16] for
p = 5, by [5] for p = 11, by [17] for p = 13, by [21] for p = 19 and by [8] for
p = 17, 29, 41.

In this paper, we dealwith the solutions of (1.1) for a general p. Some special cases of (1.1)
have been solved in early papers. By [11], (1.1) has no solution (x, y, n, a, b)with a = b = 0.
By [7] and [10], (1.1) has only the solutions (x, y, n, a, b) = (5, 3, 3, 1, 0), (7, 3, 4, 5, 0)
and (11, 5, 3, 2, 0) with b = 0. Obviously, the remained cases of (1.1) can be classified into
two equations

x2 + pb = yn, x, y, n, b ∈ N, gcd(x, y) = 1, n ≥ 3 (1.2)

and
x2 + 2a pb = yn, x, y, n, a, b ∈ N, gcd(x, y) = 1, n ≥ 3. (1.3)

Since n ≥ 3, we have either 4|n or n has an odd prime divisor q . Let z = y
n
4 or y

n
q according

as 4|n or not. By (1.2) and (1.3), it is sufficient to solve the following four equations:

x2 + pb = z4, x, z, b ∈ N, gcd(x, z) = 1, (1.4)

x2 + pb = zq , x, z, b ∈ N, gcd(x, z) = 1, (1.5)

x2 + 2a pb = z4, x, z, a, b ∈ N, gcd(x, z) = 1, (1.6)

and
x2 + 2a pb = zq , x, z, a, b ∈ N, gcd(x, z) = 1. (1.7)

Equations (1.4) and (1.5) have been studied by many authors. In [1], Arif and Abu
Muriefah gave the complete list of solutions of (1.5) with b = 2k + 1, for p odd prime,
p �≡ 7 (mod 8) and q ≥ 5 prime to 6h, where h is the class number of the quadratic
field Q(

√−p). In [24], the first author proved that the Eq. (1.5) has exactly one solution
(p, k, x, y) = (11, 1, 9324, 443), where b = 2k + 1, q = 3 and p > 3 is an odd prime,
p �≡ 7 (mod 8), (h, 3) = 1, h is the class number of the quadratic field Q(

√−p) and gave
the parameterizations of all the solutions for Eq. (1.5), where b = 2k, q = 3 and p > 3 is an
odd prime. In [3], A. Bérczes and I. Pink solved the Eqs. (1.4) and (1.5) with b = 2k, where
2 ≤ p < 100 is prime, (x, y) = 1 and n ≥ 3. Recently, X. Pan [25] proved that the equation
x2 + p2m = yn, gcd(x, y) = 1,m > 1, n > 2, gcd(n, 6) = 1 has solutions if and only if p

satisfies p2l+1 = (−1)
p−1
2

(
1 −

(
q
2

)
a2 + · · · + (−1)

q−1
2

(
q
q − 1

)
aq−1

)
, where q is an

odd prime with q|n, q > 3 and q, n, l, a ∈ N with 2|a.
Now we introduce some notations and symbols. For any positive square free integer d , let

h(−4d) denote the class number of positive binary quadratic primitive forms of discriminant
−4d . For any positive odd integer k, let

uk = 1

2

(
ρk + ρk

)
, vk = 1

2
√
3

(
ρk − ρk

)
, (1.8)

u′
k = 1

2

(
ρ′k + ρ′k

)
, v′

k = 1

2
√
2

(
ρ′k − ρ′k

)
, (1.9)

Uk = 1

2
√
3

(
θk + θ

k
)

, Vk = 1

2
√
2

(
θk − θ

k
)

, (1.10)

where

ρ = 2 + √
3, ρ̄ = 2 − √

3, ρ′ = 1 + √
2, ρ̄′ = 1 − √

2,

θ = √
3 + √

2, θ = √
3 − √

2. (1.11)

123



On the exponential Diophantine equation 235

By basic properties of Pell equations [23], (u, v) = (uk, vk), (k = 1, 3, 5, · · · ), (u′, v′) =
(u′

k, v
′
k), (k = 1, 3, 5, · · · ), and (U, V ) = (Uk, Vk), (k = 1, 3, 5, · · · ) are all solutions of

the equations

u2 − 3v2 = 1, u, v ∈ N, 2|u, (1.12)

u′2 − 2v′2 = −1, u′, v′ ∈ N (1.13)

and
3U 2 − 2V 2 = 1, U, V ∈ N, (1.14)

respectively. Let f, g be coprime nonzero integers. For any odd prime q , let

Aq( f, g) =
q−1
2∑

i=0

(
q
2i

)
f

q−1
2 −i gi ,

Bq( f, g) =
q−1
2∑

i=0

(
q
2i + 1

)
f

q−1
2 −i gi . (1.15)

In this paper, we prove some general results as follows:

Theorem 1.1 Equation (1.4) has only the following solutions:

(i) p = 23, (x, z, b) = (6083, 78, 3).
(ii) p = u′

k, (x, z, b) = (v′2
k − 1, v′

k, 2), where k > 1, if u′
k is an odd prime.

(iii) p = 2 f 2 − 1, (x, z, b) = ( f 2 − 1, f, 1), where f > 1, 2 f 2 − 1 is an odd prime.

Theorem 1.2 If 2|b, then Eq. (1.5) has only the following solutions:

(i) p = 3, q = 3, (x, z, b) = (46, 13, 4).

(ii) ps = |Bq( f 2,−1)|, p ≡ (−1)
p−1
2 (mod q), (x, z, b) = ( f |Aq( f 2,−1)|, f 2 +

1, 2s), where f > 0, 2| f , s ∈ N, and if p is a prime.
If 2 � b and p �≡ 7 (mod 8), then the solutions (x, z, b) satisfy q|h(−4p), except for

(iii) p = 3, q = 3, (x, z, b) = (10, 7, 5).
(iv) p = 19, q = 5, (x, z, b) = (22434, 55, 1).
(v) p = 3 f 2 + λ, q = 3, (x, z, b) = (8 f 3 + 3λ f, 4 f 2 + λ, 1), where f > 0, 2| f and

λ ∈ {±1}, if 3 f 2 + λ is a prime.

Theorem 1.3 If p �≡ 7 (mod 8), then Eq. (1.6) has only the following solutions:

(i) p = 3, (x, z, a, b) = (7, 5, 6, 2).
(ii) p = 3, (x, z, a, b) = (47, 7, 6, 1).
(iii) p = 3, (x, z, a, b) = (287, 17, 7, 2).
(iv) p = 17, (x, z, a, b) = (4785, 71, 9, 3).
(v) p = 22

r−1 + 1, (x, z, a, b) = (22
r+2 + 22

r−1+2 − 1, 22
r−1+1 + 1, 2r−1 + 4, 1), where

r ∈ N, and if 22
r−1 + 1 is a prime.

(vi) p = 2r + 1, (x, z, a, b) = (|2r−2 − 2r − 1|, 2r−1 + 1, 2r, 1), where r ∈ N, and if
22

r−1 + 1 is a prime.
(vii) p = f 2 − 22r−1, (x, z, a, b) = (| f 2 − 22r |, f, 2r + 1, 1), where r ∈ N, 2 � f, and if

f 2 − 22r−1 is a prime.
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Theorem 1.4 If 2|b, then Eq. (1.7) has only the following solutions:

(i) p = 3, q = 3, (x, z, a, b) = (955, 97, 3, 4).
(ii) p = 3, q = 3, (x, z, a, b) = (2681, 193, 4, 4).
(iii) p = uk

2 , q = 3, (x, z, a, b) = (8v3k + 3vk, 4v2k + 1, 2, 2), where k > 1.
(iv) ps = Vk, q = 3, (x, z, a, b) = (8U 3

k − 3Uk, 4U 2
k − 1, 1, 2s), where s ∈ N with 2 � s,

and if p is a prime.

(v) ps = |Bq( f 2,−22r )|, p ≡ (−1)
p−1
2 (mod q), (x, z, a, b) = ( f |Aq( f 2,−22r )|, f 2+

22r , 2r, 2s), where 2 � f, r, s ∈ N, and if p is a prime.

(vi) ps = |Bq( f 2,−22r+1)|, p ≡ (−1)
p2+4p−5

8 (mod q), (x, z, a, b) = ( f |Aq( f 2,
−22r+1)|, f 2 + 22r+1, 2r + 1, 2s), where 2 � f, r ∈ Z, r ≥ 0 and s ∈ N, and if
p is a prime.

Theorem 1.5 The solutions of Eq. (1.7) with 2 � b satisfy q|h(−4p) or q|h(−8p) according
to 2|a or not, except for

(i) p = 3, q = 3, (x, z, a, b) = (17, 7, 1, 3).
(ii) p = 3, q = 3, (x, z, a, b) = (35, 13, 2, 5).
(iii) p = 3, q = 3, (x, z, a, b) = (595, 73, 4, 7).
(iv) p = 3, q = 3, (x, z, a, b) = (39151, 1153, 5, 5).
(v) p = 5, q = 5, (x, z, a, b) = (401, 11, 1, 3).
(vi) p = 3 f 2 + 3 f + 1, q = 3, (x, z, a, b) = (64 f 3 + 96 f 2 + 54 f + 11, 16 f 2 + 16 f +

5, 2, 1), where f ≥ 0, and if 3 f 2 + 3 f + 1 is a prime.
(vii) ps = 6 f 2 + 6 f + 1, q = 3, (x, z, a, b) = (64 f 3 + 96 f 2 + 42 f + 5, 16 f 2 + 16 f +

3, 1, s), where f > 0, s ∈ N with 2 � s, and if 6 f 2 + 6 f + 1 is a prime.

We organize this paper as follows. In Sect. 2, we recall and prove all necessary results that
we will need to get our main results. The proofs of these results will be done in last sections.

2 Preliminaries

Lemma 2.1 ([20]) The equation

X3 + 1 = 3Y 2, X, Y ∈ N (2.1)

has no solution (X, Y ).

Lemma 2.1 comes from the case of D = 3 in the main theorem of [20], where the original
result is more general.

Lemma 2.2 ([19]) The equation

X3 − 1 = 3Y 2, X, Y ∈ N (2.2)

has no solutions (X, Y ).

Lemma 2.2 comes from the case D = n = 3 in the Sect. 1 of [19], where the original
result is more general.

Lemma 2.3 ([12]) Let D be a positive integer. The equation

X4 − DY 2 = −1, X, Y ∈ N (2.3)

has at most one solution (X, Y ). In particular, (2.3) has only the solution (X, Y ) = (1, 1),
for D = 2.
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Lemma 2.3 comes from the case a = 1 in the equation a2x4 + 1 = Dy2 of [12], where
the original result is more general. When a = 1, D = 2, we can find the only positive integer
solution (x, y) = (1, 1).

Lemma 2.4 ([14]) Let D1, D2 be positive integers with min(D1, D2) > 1. The equation

D1X
2 − D2Y

4 = 1, X, Y ∈ N (2.4)

has at most one solution (X, Y ). In particular, Eq. (2.4) has only the solution (X, Y ) = (1, 1),
for (D1, D2) = (3, 2).

Lemma 2.4 comes from [14], where the original result is more general. It is proved that
the equation Ax2 − By4 = C (C = 1, 2, 4) has at most one positive integer solution in
some condition. When A = 3, B = 2,C = 1, we can find the only positive integer solution
(x, y) = (1, 1).

Lemma 2.5 ([18]) The equation

Xm − Yn = 1, X, Y,m, n ∈ N, min(X, Y,m, n) > 1 (2.5)

has only the solution (X, Y,m, n) = (3, 2, 2, 3).

Lemma 2.6 ([13]) If n ≥ 3, then the equation

1 + 3X2 = 4Yn, X, Y ∈ N (2.6)

has only the solution (X, Y ) = (1, 1).

Lemma 2.6 comes from [13], where the original result is more general. In fact, it is proved
that the equation 1 + Dx2 = 4yn(n ≥ 3) has no positive integer solution with y > 1 such
that D ≡ 3 (mod 4) and the class number of Q(

√−D) is not divisible by n. When D = 3,
1 + 3x2 = 4yn has the only positive integer solution (x, y) = (1, 1).

Lemma 2.7 ([2,20]) If n = 3, then the equation

Xn + 1 = 2Y 2, X, Y ∈ N (2.7)

has only the solution (X, Y ) = (1, 1) and (23, 78). If n ≥ 4, then (2.7) has only the solution
(X, Y ) = (1, 1).

The first result of Lemma 2.7 comes from the case of D = 2 in the main theorem of [20]
and the second result comes from the case ofC = 2 in Theorem 1.1 of [2], where the original
result is more general.

Lemma 2.8 ([2, Theorem 8.4]) The equation

X2 − 2m = Yn, X, Y,m, n ∈ N, gcd(X, Y ) = 1, Y > 1, m > 1, n > 2
(2.8)

has only the solution (X, Y,m, n) = (71, 17, 7, 3).

Lemma 2.9 ([2, Theorem 1.1]) If n ≥ 4, then the equation

Xn + Yn = 3Z2, X, Y, Z ∈ Z, XY Z �= 0, gcd(X, Y ) = 1 (2.9)

has no solution (X, Y, Z).
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Lemma 2.9 comes from the case C = 3 in Theorem 1.1 of [2], where the original result
is more general.

Lemma 2.10 The equation

X2 − 1 = 2m3n, X,m, n ∈ N, X > 1 (2.10)

has only the solutions (X,m, n) = (5, 3, 1), (7, 4, 1), and (17, 5, 2).

Proof Let (X,m, n) be a solution of (2.10). Since gcd(6, X) = 1 and gcd(X+1, X−1) = 2,
we have m ≥ 3 and

X + 1 =
{

2m−1,

2 · 3n, X − 1 =
{

2 · 3n,
2m−1,

(2.11)

hence we get
X = 2m−2 + 3n (2.12)

and
2m−2 − 3n = ±1. (2.13)

Applying Lemma 2.5 to (2.13), we obtain (m, n) = (3, 1), (4, 1), and (5, 2). Thus by (2.12),
the lemma is proved. 	


Lemma 2.11 The equation

|X2 − 2m | = 3n, X,m, n ∈ N (2.14)

has only the solutions (X,m, n) = (1, 2, 1) and (5, 4, 2).

Proof Let (X,m, n) be a solution of (2.14). Since ( 23 ) = −1, where ( ∗
∗ ) is the Legendre

symbol. From Eq. (2.14) by consideration modulo 3, we see that 2|m. Therefore, by (2.14),
we get

X + 2
m
2 = 3n, X − 2

m
2 = λ, λ ∈ { ± 1}. (2.15)

Hence we obtain
2X = 3n + λ (2.16)

2
m
2 +1 = 3n − λ. (2.17)

Applying Lemma 2.5 to (2.17), we get (X,m, n) = (1, 2, 1) and (5, 4, 2). The lemma is
proved. 	


Lemma 2.12 ([9, Theorem 1-2]) Let D, k be positive integers such that k > 1, 2 � k and
gcd(D, k) = 1. If the equation

X2 + DY 2 = kZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0 (2.18)

has solutions (X, Y, Z), then every solution of (2.18) can be expressed as

Z = Z1t, t ∈ N, (2.19)

X + Y
√−D = λ1(X1 + λ2Y1

√−D)t , λ1, λ2 ∈ { ± 1}, (2.20)

where (X1, Y1, Z1) is a positive integer solution of (2.18) satisfying Z1|h(−4D).
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Let α, β be algebraic integers. If α + β and αβ are nonzero coprime integers and α
β
is not

a root of unity, then (α, β) is called a Lucas pair. Let A = α + β and C = αβ. Then

α = 1

2
(A + λ

√
B), β = 1

2
(A − λ

√
B), λ ∈ {±1}, (2.21)

where B = A2−4C . We will call (A, B) the parameters of the Lucas pair (α, β). Two Lucas
pairs (α1, β1) and (α2, β2) are equivalent if

α1
α2

= β1
β2

= ±1. Given a Lucas pair (α, β), one
defines the corresponding sequence of Lucas numbers by

Lk(α, β) = αk − βk

α − β
, k = 0, 1, 2, · · ·. (2.22)

For equivalent Lucas pairs (α1, β1) and (α2, β2), we have Lk(α1, β1) = ±Lk(α2, β2), for
any k ≥ 0. A prime p is called a primitive divisor of Lk(α, β), (k > 1) if p|Lk(α, β) and
p � BL1(α, β) · · · Lk−1(α, β). Then we have:

Lemma 2.13 ([6, Theorem XIII]) If p is a primitive divisor of Lk(α, β), then p ≡ ( Bp )

(mod k).

A Lucas pair (α, β) will be called a k-defective Lucas pair if Lk(α, β) has no primitive
divisor. Furthermore, a positive integer k is called totally non-defective if no Lucas pair is
k-defective.

Lemma 2.14 ([22, Theorem1])Let k satisfy 4 < k ≤ 30 and k �= 6. Then, up to equivalence,
all parameters of k-defective Lucas pairs are given as follows:

(i) k = 5, (A, B) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,
−1364).

(ii) k = 7, (A, B) = (1,−7), (1,−19).
(iii) k = 8, (A, B) = (2,−24), (1,−7).
(iv) k = 10, (A, B) = (2,−8), (5,−3), (5,−47).
(v) k = 12, (A, B) = (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19).
(vi) k ∈ {13, 18, 30}, (A, B) = (1,−7).

Lemma 2.15 ([4, Theorem D]). If k > 30, then k is totally non-defective.

3 Proof of Theorem 1.1

Let (x, z, b) be a solution of (1.4). Since gcd(x, z) = 1, we have 2|xz and gcd(z2 + x, z2 −
x) = 1. By (1.4), we get

z2 − x = 1, z2 + x = pb, (3.1)

so we obtain
2z2 = pb + 1 (3.2)

and
2x = pb − 1. (3.3)

If b has an odd prime divisor l, then from (3.2) we see that (2.7) has a solution (X, Y ) =
(p

b
l , z), for n = l. Therefore, by Lemma 2.7, we get p = 23, b = l = 3 and z = 78.

Substituting it into (3.3), we obtain the solution (i).

123



240 H. Zhu et al.

If 2|b, then by Lemma 2.3 we have 4 � b. From what we discussed above, we exclude
the case that b has an odd prime divisor. This implies that b = 2 and (u′, v′) = (p, z) is a
solution of (1.13). Hence, by (1.9), (1.11), and (3.3), we obtain the solution (ii).

Finally, if b = 1, then from (3.2) and (3.3) we obtain the solution (iii). Therefore, the
proof of Theorem 1.1 is completed.

4 Proof of Theorem 1.2

According to the results in [25], Eq. (1.5) has only the solution (i) and (ii) with 2|b. Now, we
consider the case that 2 � b and p �≡ 7 (mod 8). Since q ≥ 3, we see from (1.5) that 2 � z
and the equation

X2 + pY 2 = zZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0 (4.1)

has the solution
(X, Y, Z) = (x, p

b−1
2 , q). (4.2)

Applying Lemma 2.12 to Eq. (4.2), we get

q = Z1t, t ∈ N, (4.3)

x + p
b−1
2

√−p = λ1(X1 + λ2Y1
√−p)t , λ1, λ2 ∈ {±1}, (4.4)

where
X2
1 + pY 2

1 = zZ1 , X1, Y1, Z1 ∈ N, gcd(X1, Y1) = 1 (4.5)

and
Z1|h(−4p). (4.6)

Since q is an odd prime, by (4.3), we get either Z1 = q or Z1 = 1. Furthermore, using (4.6),
we see that if q � h(−4p), then Z1 = 1 and t = q . Hence, by (4.4) and (4.5), we have

x + p
b−1
2

√−p = λ1(X1 + λ2Y1
√−p)q , λ1, λ2 ∈ {±1} (4.7)

and
X2
1 + pY 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1. (4.8)

Let
α = X1 + Y1

√−p, β = X1 − Y1
√−p. (4.9)

Then, by (4.8) and (4.9), (α, β) is a Lucas pair with parameters

(A, B) = (2X1,−4pY 2
1 ). (4.10)

Let Lk(α, β), (k = 0, 1, 2, · · · ) denote the corresponding Lucas numbers. By (2.22) and
(4.7), we have

p
b−1
2 = Y1|Lq(α, β)|, (4.11)

thus

Y1 = ps, s ∈ Z, 0 ≤ s ≤ b−1
2 , (4.12)

|Lq(α, β)| = p
b−1
2 −s (4.13)
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and the Lucas number Lq(α, β) has no primitive divisor. Therefore, by Lemmas 2.14 and
2.15, Eq. (4.10) gives

q = 5, (A, B) = (12,−76) (4.14)

or
q = 3. (4.15)

In the case (4.14), Eqs. (4.7) and (4.8) give the solution (iv). For the case (4.15), from (4.12)
and (4.13), we have

|3X2
1 − p2s+1| = p

b−1
2 −s . (4.16)

If s < b−1
2 , then p = 3. If (b − 1)/2 − s = 1, then |X2

1 − 32s | = 1. This is impossible.
If (b − 1)/2− s > 2, then we have |X2

1 − 32s | = 3(b−1)/2−s−1. Hence 3|X1. This also leads
to a contradiction. Therefore, Eq. (4.16) becomes

|X2
1 − 32s | = 3. (4.17)

Since |X2
1 − 32s | ≥ 1 and 3 � X1, from (4.17) we deduce s = 0, X1 = 2 and b = 5. Hence,

we obtain the solution (iii).
If s = b−1

2 and b > 1, then b has an odd prime divisor l. From (4.16) we get

3X2
1 = pb + λ = (p

b
l )l + λl , λ ∈ {±1}. (4.18)

But, using Lemmas 2.1, 2.2, and 2.9, one can see that Eq. (4.18) has no solution.
If s = b−1

2 and b = 1, then from Eqs. (4.7), (4.8), (4.12), and (4.16) we obtain the solution
(v). Thus, this completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Let (x, z, a, b) be a solution of (1.6). Since 2 � xz and gcd(z2 − x, z2 + x) = 2, from (1.6)
we get either

z2 + x = 2a−1 pb, z2 − x = 2 (5.1)

or

z2 + x =
{

2a−1,

2pb,
z2 − x =

{
2pb,
2a−1.

(5.2)

First, we consider the case (5.1). Then we have

z2 = 2a−2 pb + 1 (5.3)

and
x = 2a−2 pb − 1. (5.4)

From (5.3), when a = 2, we get z2 = pb + 1. By Lemma 2.5, it gives no solution except for
the case b = 1. But when b = 1, we get z4 − x2 = 4p. From here, since x and z are odd,
then z4 − x2 is divided by 8. It is impossible. Hence a > 2. Furthermore, by (5.3), we get
either

z + 1 = 2a−3 pb, z − 1 = 2 (5.5)

or

z + 1 =
{

2a−3,

2pb,
z − 1 =

{
2pb,
2a−3.

(5.6)
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One can exclude also the case a = 3 which leads to no solution. Therefore, we suppose
a ≥ 4.

If Eq. (5.5) holds, then we have z = 3 and 2a−3 pb = 4. This implies a contradiction.
If (5.6) holds, then

z = 2a−4 + pb (5.7)

and
|2a−4 − pb| = 1. (5.8)

Since p �≡ 7 (mod 8), applying Lemma 2.5 to Eq. (5.8), we get the following four cases:

p = 3, a = 7, b = 2; (5.9)

p = 3, a = 5, b = 1; (5.10)

p = 3, a = 6, b = 1; (5.11)

and
p = 22

r + 1, a = 2r + 4, b = 1, r ∈ N. (5.12)

Hence, Eqs. (5.9)–(5.12) give the solutions (ii), (iii) and (v).
Next we consider the case (5.2). We have

z2 = 2a−2 + pb (5.13)

and
x = |2a−2 − pb|. (5.14)

If 2|b, then from (5.13) we get

z + p
b
2 = 2a−3, z − p

b
2 = 2, (5.15)

hence we obtain
z = 2a−4 + 1 (5.16)

and
p

b
2 = 2a−4 − 1. (5.17)

Notice that a = 4 gives an impossibility. Therefore, we suppose a ≥ 5.
Since p �≡ 7 (mod 8), applying Lemma 2.5 to (5.17), we get p = 3, a = 6, and b = 2.

Hence, by (5.16), we obtain the solution (i).
If 2 � b and b > 1, then b has an odd prime divisor l. By (5.13), we have

z2 = 2a−2 + (p
b
l )l . (5.18)

Applying Lemma 2.8 to Eq. (5.18) gives p = 17, b = l = 3, a = 9 and z = 71. Using Eq.
(5.14), the solution (iv) is obtained.

If b = 1, then Eq. (5.13) becomes

p = z2 − 2a−2. (5.19)

If 2|a, i.e. a = 2r , then we see that Eq. (5.19) implies

z + 2r−1 = p, z = 2r−1 + 1. (5.20)

Hence, one can use Eqs. (5.14) and (5.20) to obtain the solution (vi).
If 2 � a, i.e. a = 2r + 1, then by (5.14) and (5.19), we have the solution (vii). Therefore,

this completes the proof of Theorem 1.3.
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6 Proof of Theorem 1.4

Let (x, z, a, b) be a solution of (1.7) with 2|b. First, we consider the case of 2|a. Then we
have 2 � z. Since h(−4) = 1, by Lemma 2.12, we have

x + 2
a
2 p

b
2
√−1 = λ1(X1 + λ2Y1

√−1)q , λ1, λ2 ∈ { ± 1}, (6.1)

where
X2
1 + Y 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1. (6.2)

Let
α = X1 + Y1

√−1, β = X1 − Y1
√−1. (6.3)

Then (α, β) is a Lucas pair with parameters

(A, B) = (2X1,−4Y 2
1 ). (6.4)

Let Lk(α, β), (k = 0, 1, 2, · · · ) denote the corresponding Lucas numbers. By (1.15), (6.1),
and (6.3), we have

x = X1|Aq(X
2
1,−Y 2

1 )| (6.5)

and
2

a
2 p

b
2 = Y1|Lq(α, β)|. (6.6)

Since 2 � Lq(α, β), we get from (6.6) that

Y1 = 2
a
2 pm, m ∈ Z, 0 ≤ m ≤ b

2
(6.7)

and
|Lq(α, β)| = p

b
2−m . (6.8)

If m = 0, then from (6.5), (6.6), and (6.7) we obtain the solution (v).
If m > 0, then from (6.4) and (6.7), we see that Lq(α, β) has no primitive divisor.

Therefore, by Lemmas 2.14 and 2.15, we get q = 3, and by (6.8), we have

|3X2
1 − 2a p2m | = p

b
2−m . (6.9)

When m = b
2 , as (−1

3 ) = −1, Eq. (6.9) implies a = 2 and

4pb − 3X2
1 = 1. (6.10)

Applying Lemma 2.6 to (6.10), we have b = 2. It implies that (1.12) has the solution

(u, v) = (2p
b
2 , X1). Therefore, we use Eq. (1.8) to obtain the solution (iii).

When 0 < m < b
2 , since p � X1, we see from (6.9) that p = 3, b = 2m + 2 and

X2
1 − 2a · 32m−1 = 1. (6.11)

Applying Lemma 2.10 to (6.11), we obtain the solution (ii).
Second, we consider the case of 2 � a. Since h(−8) = 1, by Lemma 2.12, we use Eq.

(1.7) to get

x + 2
a−1
2 p

b
2
√−2 = λ1(X1 + λ2Y1

√−2)q , λ1, λ2 ∈ { ± 1}, (6.12)

where
X2
1 + 2Y 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1. (6.13)
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Let
α = X1 + Y1

√−2, β = X1 − Y1
√−2. (6.14)

then (α, β) is a Lucas pair with parameters

(A, B) = (2X1,−8Y 2
1 ). (6.15)

Let Lk(α, β), (k = 0, 1, 2, · · · ) denote the corresponding Lucas numbers. Thus, using Eqs.
(6.12) and (6.14) we get

x = X1|Aq(X
2
1,−2Y 2

1 )| (6.16)

and
2

a−1
2 p

b
2 = Y1|Lq(α, β)|. (6.17)

Hence, Eq. (6.17) implies

Y1 = 2
a−1
2 pm, m ∈ Z, 0 ≤ m ≤ b

2
(6.18)

and
|Lq(α, β)| = p

b
2−m . (6.19)

If m = 0, we see from (6.18) and (6.19) that p is a primitive divisor of Lq(α, β). Hence,
by Lemma 2.13, we get from (6.15) that p ≡ (−8

p ) (mod q). Again here, Eqs. (6.13), (6.16)
and (6.18) yield the solution (vi).

If 0 < m < b
2 , then Lq(α, β) has no primitive divisor. Therefore, we apply Lemmas 2.14

and 2.15 to (6.15) to get q = 3. Thus, Eq. (6.19) becomes

|3X2
1 − 2Y 2

1 | = |3X2
1 − 2a p2m | = p

b
2−m . (6.20)

If m = b
2 , then we have

|3X2
1 − 2a pb| = 1. (6.21)

Since 2 � a, by considerations modulo 8 to Eq. (6.21), we have a = 1 and

3X2
1 − 2pb = 1. (6.22)

Using Lemma 2.4, we see that 4 � b. This implies that b = 2s, where s is a positive odd
integer. Moreover, from (6.22) we deduce that (U, V ) = (X1, ps) is a solution of (1.14).
Therefore, Eq. (1.10) implies the solution (iv). Thus, Theorem 1.4 is proved.

7 Proof of Theorem 1.5

Let (x, z, a, b) be a solution of (1.7) with 2 � b. First, we consider the case of 2|a. Then,
from Lemma 2.12 and Eq. (1.7) we deduce

q = Z1t, t ∈ N, (7.1)

x + 2
a
2 p

b−1
2

√−p = λ1(X1 + λ2Y1
√−p)t , λ1, λ2 ∈ {±1}, (7.2)

where

X2
1 + pY 2

1 = zZ1 , X1, Y1, Z1 ∈ N, gcd(X1, Y1) = 1, Z1|h(−4p). (7.3)
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Now we assume that q � h(−4p). Then, Eqs. (7.1) and (7.3) imply Z1 = 1 and t = q .
Hence, Eqs. (7.2) and (7.3) give

x + 2
a
2 p

b−1
2

√−p = λ1(X1 + λ2Y1
√−p)q , λ1, λ2 ∈ {±1} (7.4)

and
X2
1 + pY 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1. (7.5)

Letα, β be defined as in (4.9). Then (α, β) is a Lucas pair with parameters (4.10). Equation
(7.4) implies

x = X1|Aq(X
2
1,−pY 2

1 )| (7.6)

and
2

a
2 p

b−1
2 = Y1|Lq(α, β)|. (7.7)

Thus, we have

Y1 = 2
a
2 pm, m ∈ Z, 0 ≤ m ≤ b − 1

2
(7.8)

and
|Lq(α, β)| = p

b−1
2 −m . (7.9)

From (4.10) and (7.9), we see that Lq(α, β) has no primitive divisor. Therefore, by Lemmas
2.14 and 2.15, we get q = 3. Then, one can use Eqs. (7.6) and (7.9) to have

x = X1|X2
1 − 3pY 2

1 | = X1|X2
1 − 2a · 3p2m+1| (7.10)

and
|3X2

1 − pY 2
1 | = |3X2

1 − 2a p2m+1| = p
b−1
2 −m . (7.11)

If m = b−1
2 , then equation (7.11) gives a = 2 and

3X2
1 + 1 = 4pb. (7.12)

Since 2 � b, applying Lemma 2.6 to (7.12), we get b = 1 and

p = 1

4
(3X2

1 + 1). (7.13)

Thus, X1 = 2 f + 1, where f is a positive integer. Hence, by (7.5), (7.8), and (7.10), we
obtain the solution (vi).

If m < b−1
2 , then equation (7.11) implies p = 3 and

|X2
1 − 2a · 32m | = 3

b−1
2 −m−1. (7.14)

As 2|a and |X2
1 − 2a · 32m | > 1, from (7.14) we deduce that m = 0, b−1

2 − 1 > 0 and

|X2
1 − 2a | = 3

b−1
2 −1. (7.15)

We apply Lemma 2.11 to Eq. (7.15) to obtain the solutions (ii) and (iii).
Next we consider the case of 2 � a. Then we have

q = Z1t, t ∈ N, (7.16)

x + 2
a−1
2 p

b−1
2

√−2p = λ1(X1 + λ2Y1
√−2p)t , λ1, λ2 ∈ {±1}, (7.17)

where

X2
1 + 2pY 2

1 = zZ1 , X1, Y1, Z1 ∈ N, gcd(X1, Y1) = 1, Z1|h(−8p). (7.18)
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We nowassume that q � h(−8p). Then, from (7.16), (7.17), and (7.18),we get Z1 = 1, t = q,

x + 2
a−1
2 p

b−1
2

√−2p = λ1(X1 + λ2Y1
√−2p)q , λ1, λ2 ∈ {±1} (7.19)

and
X2
1 + 2pY 2

1 = z, X1, Y1 ∈ N, gcd(X1, Y1) = 1. (7.20)

Let
α = X1 + Y1

√−2p, β = X1 − Y1
√−2p. (7.21)

Then (α, β) is a Lucas pair with parameters

(A, B) = (2X1,−8pY 2
1 ). (7.22)

Equations (7.19) and (7.21) give

x = X1|Aq(X
2
1,−2pY 2

1 )| (7.23)

and
2

a−1
2 p

b−1
2 = Y1|Lq(α, β)|. (7.24)

Therefore, we have

Y1 = 2
a−1
2 pm, m ∈ Z, 0 ≤ m ≤ b − 1

2
(7.25)

and
|Lq(α, β)| = p

b−1
2 −m . (7.26)

From (7.22) and (7.26), we see that Lq(α, β) has no primitive divisor. Therefore, using
Lemmas 2.14 and 2.15, we get

q = 5, (2X1,−8pY 2
1 ) = (2,−40) (7.27)

or
q = 3. (7.28)

If (7.27) holds, then we use Eqs. (7.20), (7.23), and (7.26) to obtain the solution (v).
If q = 3, then we have

x = X1|X2
1 − 6pY 2

1 | (7.29)

and
|3X2

1 − 2pY 2
1 | = |3X2

1 − 2a p2m+1| = p
b−1
2 −m . (7.30)

When m = b−1
2 and as 2 � a, Eq. (7.30) gives a = 1 and

|3X2
1 − 2pb| = 1. (7.31)

Since 2 � bX1, the solution (vii) comes from equations (7.29) and (7.31).
When 0 < m < b−1

2 , we get from (7.30) that p = 3 and

|X2
1 − 2a · 32m | = 3

b−1
2 −m−1. (7.32)

As 3 � X1 and ( 23 ) = −1, by (7.32) we have b = 2m + 3 and

X2
1 − 2a · 32m = 1. (7.33)

Since 2 � a, applying Lemma 2.10 to (7.33), we obtain the solution (iv).
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When m = 0 and b−1
2 > 0, we have p = 3 and

|X2
1 − 2a | = 3

b−1
2 −1. (7.34)

As 2 � a and ( 23 ) = −1, we see from (7.34) that X1 = 1, a = 1 and b = 3. Hence, we obtain
the solution (i). To sum up, Theorem 1.5 is proved.
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